Primal-dual interior-point optimization for a regularized reconstruction of NMR relaxation time distributions

Emilie CHOUZENOUX¹, <u>Saïd MOUSSAOUI</u>², Jérôme IDIER² and François MARIETTE³

¹ Université Paris-Est IGM, UMR CNRS 8049 Marne-La Vallée, France ²Ecole Centrale de Nantes IRCCyN, CNRS UMR 6597 Nantes, France

³IRSTEA UR TERE, IRM Food Rennes, France

contact: said.moussaoui@irccyn.ec-nantes.fr

31st May 2013 • Vancouver, Canada

Special session – Signal Processing for Chemical Sensing

Outline

1. NMR relaxation

- Principle
- Problem statement
- 2. Reconstruction method
 - Optimization framework
 - Main algorithm steps
- 3. Illustration
- 4. Conclusion

1. NMR Relaxation

How to identify the molecular structure of a material by observing its dynamics?

1.1 Principle

- Static field $B_0 \Rightarrow$ nuclear spin alignment (z axis)
- Short magnetic pulse $B_1 \Rightarrow$ flip angle Φ
- Relaxation: return to the equilibrium state
 - 1. Longitudinal dynamics (z axis) $\Rightarrow T_1$ relaxation: $x_1(\tau_1) = M_z(\tau_1)$
 - 2. Transverse dynamics (xy plane) $\Rightarrow T_2$ relaxation: $x_2(\tau_1) = M_{xz}(\tau_1)$

1) One-dimensionnal analysis

 \checkmark Find T1 or T2 relaxation time constants distribution

$$x_i(\tau_i) = \int k_i(\tau_i, T_i) \, \boldsymbol{S}(T_i) \, dT_i \longrightarrow \boldsymbol{y} = \boldsymbol{K}\boldsymbol{s} + \boldsymbol{e}$$

with $k_1(\tau_1) = 1 - (1 - \cos \Phi)e^{-\tau_1/T_1}$ in T_1 relaxation and $k_2(\tau_2) = e^{-\tau_2/T_2}$ for T_2 relaxation

 \longrightarrow Numerical inversion of a Laplace transfrom

2) Two-dimensional analysis [English 1991]

Apply two successive magnetic pulses with a predefined time spacing au_1 \checkmark

$$egin{aligned} x(au_1, au_2) &= \int \int k_1(au_1,T_1) oldsymbol{S}(oldsymbol{T_1},oldsymbol{T_2}) k_2(au_2,T_2) \, dT_1 \, dT_2 \ oldsymbol{Y} &= oldsymbol{K}_1 oldsymbol{S} oldsymbol{K}_2^\intercal + oldsymbol{E} &\Longleftrightarrow oldsymbol{y} = (oldsymbol{K}_1 \otimes oldsymbol{K}_2) oldsymbol{s} + oldsymbol{e} \end{aligned}$$

Find the joint distribution $S(T_1, T_2)$ of the relaxation time constants \checkmark

1.2 Relaxation time estimation ... problem statement

• Ill-conditioned matrices K_1, K_2 . The singular values of K_1 and K_2 decay exponentially

 \triangleleft Direct inversion yields unstable results

• Large-size problem in the case of T1-T2 analysis

❀ Typical setup

- 1. $m_1 = 50$ repetition time values τ_1
- 2. $m_2 = 5000$ echo time instants τ_2
- 3. $N_1 = N_2 = 300$ values of T_1 and T_2

 \triangleleft Matrix $\mathbf{K} := \mathbf{K}_1 \otimes \mathbf{K}_2$ of size $m_1 m_2 \times N_1 N_2$ contains over 10^{10} elements !!

1.3 Relaxation time estimation ... regularization framework

• The relaxation time distribution is a solution of

$$\min_{\boldsymbol{s} \in \mathbb{R}^{N+}} \left(F(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{K}\boldsymbol{s} - \boldsymbol{y}\|_2^2 + \beta R(\boldsymbol{s}) \right)$$

where R(s) is a *convex and differentiable* regularization criterion

- \longrightarrow Solve a *non-negativity constrained* optimization problem
- \longrightarrow Avoid the storing of matrix ${\boldsymbol{K}}$ in the 2D case
- Previous works
 - 1. Data compression and Tikhonov regularization [Venkataramanan, 2002]
 - 2. Maximum entropy and truncated Newton algorithm [Chouzenoux, 2010]
- Our proposal

Adopt and adapt an inexact primal-dual interior-point method

2. Primal-dual interior point optimization

2.1 Problem formulation

where $g(\lambda)$ is the Lagrange dual function: $g(\lambda) = \inf_{s \succeq 0} (L(s) := F(s) - \lambda^{\mathsf{T}} s)$

1) Optimality conditions (Karush Kuhn Tucker)

(C1) $\nabla F(s) - \lambda = 0$, (C2) $\Lambda s = 0$, (C3) $s \succeq 0$, (C4) $\lambda \succeq 0$

But in practice, take:

(C2)
$$\mathbf{\Lambda s} = \boldsymbol{\mu}_k$$

with $\mu_k > 0$ a perturbation parameter such that $\lim_{k \to \infty} \mu_k = 0$.

2) Interior point-algorithm ... four steps [Armand, 2000]

(1) Calculate the primal and dual directions $({m d}_k^s$, ${m d}_k^\lambda)$

A Newton step on (C1) and (C2) gives:

$$\begin{bmatrix} \nabla^2 F(\boldsymbol{s}_k) & -\boldsymbol{I} \\ \boldsymbol{\Lambda}_k \boldsymbol{I} & \text{Diag}(\boldsymbol{s}_k) \end{bmatrix} \begin{bmatrix} \boldsymbol{d}_k^s \\ \boldsymbol{d}_k^\lambda \end{bmatrix} = \begin{bmatrix} \boldsymbol{\lambda}_k - \nabla F(\boldsymbol{s}_k) \\ \boldsymbol{\mu}_k - \boldsymbol{\Lambda}_k \boldsymbol{s}_k \end{bmatrix}$$

 \triangleleft System of large size ... infeasible in 2D NMR !

② Find a step-size α_k by a *backtracking linesearch* and Armijo's condition on:

$$F_{\mu}(\boldsymbol{s}, \boldsymbol{\lambda}) = F(\boldsymbol{s}) + \boldsymbol{\lambda}^{\mathsf{T}} \boldsymbol{s} - \mu_k \sum_{n=1}^{N} \log(\lambda_n s_n^2)$$

3 Update primal and dual variables: $\left(\boldsymbol{s}_{k+1} = \boldsymbol{s}_k + \alpha_k \boldsymbol{d}_k^s, \boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \alpha_k \boldsymbol{d}_k^{\lambda} \right)$

④ Decrease the perturbation parameter value: $\mu_{k+1} = \theta \frac{\lambda_{k+1}^{\mathsf{T}} s_{k+1}}{N}$, with $\theta \in]0, 1)$.

3) Primal and dual direction calculation

A variable substitution gives: $d_k^{\lambda} = \text{Diag}(s_k)^{-1} \left[\mu_k - \Lambda_k s_k - \Lambda_k d_k^s \right]$, and

$$\left[\nabla^2 F(\boldsymbol{s}_k) + \operatorname{Diag}(\boldsymbol{s}_k)^{-1} \boldsymbol{\Lambda}_k\right] \boldsymbol{d}_k^s = -\nabla F(\boldsymbol{s}_k) + \operatorname{Diag}(\boldsymbol{s}_k)^{-1} \boldsymbol{\mu}_k$$

where $\nabla^2 F(\boldsymbol{s}_k) = (\boldsymbol{K}_1^{\mathsf{T}} \boldsymbol{K}_1) \otimes (\boldsymbol{K}_2^{\mathsf{T}} \boldsymbol{K}_2) + \nabla^2 R(\boldsymbol{s}_k)$

Still remains a huge system in 2D relaxation
Approximate resolution using a preconditioned conjugate gradient algorithm

1. Perform TSVDs of K_1 and K_2 to construct an efficient preconditioner,

- 2. Calculate with a low complexity Hessian-vector and Preconditioner-vector products,
- 3. See the paper for the stopping criteria.

 \triangleleft The convergence proof is established when d_k^s is obtained by an approximate resolution.

3. Illustration

3.1 Synthetic data

- Mixture of two Gaussian distributions,
- $(m_1 = 50, m_2 = 5000)$ values of (τ_1, τ_2) ,
- A flip angle $\Phi = 90^{\circ}$ in the T1-T2 model,
- Additive Gaussian noise with SNR=20 dB.

Reconstruction

- 1. $(N_1 = 300, N_2 = 300)$ with uniform spacing
- 2. Use a Tikhonov regularization criterion $R(s) = \|s\|_2^2$
- 3. Set the regularization parameter $\beta = 100$ (unsupervised tuning [Chouzenoux, 2010])

4. Computation time: (20 it., 1s) in 1D and (36 it., 55 s) for 2D reconstruction.

3.2 Real data: Analysis of an organic matter (apple)

- Measurements: $(m_1 = 50, m_2 = 10000)$
- Reconstruction for $N_1 = N_2 = 300$
- The flip angle is set to $\Phi=85^o$
- T1-T2 Computation time: 260 s for 61 iterations.
- T1 (resp. T2) computation time: 0.3 s for 21 iterations (resp. 9 s for 35 iterations).

Summary

\circledast Main contributions

- Address the inverse problem of 2D NMR relaxation times estimation
- Propose an efficient optimization algorithm for a *differentiable convex* regularization
- Exploit de forward model structure to reduce the computational complexity.
- \circledast Future investigations
- 1. Estimate the flip angle
- 2. Gaussian noise assumption is not valid on the nuclear spin module
- 3. Compare with alternative constrained optimization methods.

References

- A. E. English, K. P. Whittall, M. L. G. Joy, and R. M. Henkelman, Quantitative two-dimensional time correlation relaxometry, *Magnetic Resonance in Medecine*, vol. 22, pp. 425–434, 1991.
- [2] L. Venkataramanan, Y. Q. Song, and M. D. Hürlimann, Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, *IEEE Transactions on Signal Processing*, vol. 50, no. 5, pp. 1017-1026, 2002.
- [3] E. Chouzenoux, S. Moussaoui, J. Idier, and F. Mariette, Efficient maximum entropy reconstruction of nuclear magnetic resonance T1-T2 spectra, *IEEE Transactions on Signal Processing*, vol. 58, no. 2, pp. 6040-605, December 2010.
- [4] P. Armand, J. C. Gilbert, and S. Jan-Jégou, A feasible BFGS interior point algorithm for solving strongly convex minimization problems, *SIAM Journal on Optimization*, vol. 11, pp. 199-222, 2000.