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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes



given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

  High Dimensional Learning

Audio: instrument recognition

Huge variability

inside classes



• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Regression: approximate a functional f(x)

given n sample values {xi , yi = f(xi) 2 R}in

  High Dimensional Learning

Astronomy Quantum Chemistry

Physics: energy f(x) of a state vector x



     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

) kx� xik is always large

Huge variability

inside classes



”Similarity” metric: �(x, x0)

Data:

How to define � ?

  Learning by Euclidean Embedding 

x 2 Rd

kx� x

0k: non-informative

�x 2 H
Representation

�

Linear Classifier

C1 k�x� �x0k  �(x, x0)  C2 k�x� �x0k
Equivalent Euclidean metric:

x

Gaussian & Separated

k�x� �x0k



x

⇢(u) = |u|

Linear Classificat.

⇢

linear convolution

linear convolution

Optimize the Lk with support constraints: over 109 parameters

    Deep Convolution Neworks

L2

⇢

�(x)

...
Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...

non-linear scalar:

L1

neuron

Why does it work so well ?

• The revival of an old (1950) idea: Y. LeCun , G. Hinton



        Overview

• Deep multiscale networks: invariant and stable metrics on groups 

• Image classification 

• Models of audio and image textures: information theory 

• Learning physics: quantum chemistry energy regression



x(u) x

0(u)

Invariant to translations

• Low-dimensional ”geometric shapes”

Grenander

Di↵eomorphism action: D⌧x(u) = x(u� ⌧(u))

            Image Metrics

(classic mechanics)
Deformation metric:

�(x, x0) ⇠ min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

di↵eomorphism

amplitude



• High dimensional textures:
ergodic stationary processes

            Image Metrics

2D Turbulence

Highly non-Gaussian processes

X(u)

• Can we find � so that �(X) is nearly Gaussian,

without loosing information ?

• A Euclidean metric is a Maximum Likelihood on Gaussian models.



k�x� �x0k  C kx� x

0k

    Euclidean Metric Embedding

• Invariance to translations:

xc(u) = x(u� c) ) �(xc) = �(x)

• Stability to additive perturbations:

x⌧ (u) = x(u� ⌧(u)) ) k�x� �x⌧k  C kr⌧k1 kxk

• Stability to deformations:

Failure of Fourier and classic invariants



• Dilated wavelets:

Q-constant band-pass filters �̂�

 �(t) = 2�j/Q  (2�j/Qt) with � = 2�j/Q .

         Wavelet Transform

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .

: average

: higher
frequencies



rotated and dilated:

real parts imaginary parts

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

• Complex wavelet:  (t) = g(t) exp i⇠t , t = (t1, t2)

 Scale separation with Wavelets

|�̂�(⇥)|2

�1

�2

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .

: average

: higher
frequencies



20

21

|x ?  21,✓|

      Fast Wavelet Transform

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

2J

Scale



20

22

23

2J

|x ?  22,✓|

|x ?  23,✓|

        Wavelet Transform

|W1|
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|W1|

x ? �J : locally invariant by translation

How to make everything invariant to translation ?

Depth:



x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2

but covariant



|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

x

x ? �2J

         Scattering Transform

|W1|



x

x ? �2J

|x ?  �1 | ? �2J

||x ?  �1 | ?  �2(t)|

|W1|

|W2|

         Scattering Transform



x

x ? �2J

|||x ?  �1 | ?  �2 | ?  �3 |

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J
|W2|

|W1|

         Scattering Neural Network



= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is

translations invariance and deformation stability:

if x⌧ (u) = x(u� ⌧(u)) then

lim
J!1

kSJx⌧ � SJxk  C kr⌧k1 kxk

Wk is unitary ) |Wk| is contractive



LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

Linear Classifier
SJx y = f(x)

x

Training size Conv. Net. Scattering

50000 0.5% 0.4%



J. Bruna

Scat. Moments

     Classification of Textures

CUREt database
61 classes 

Texte

Linear Classifier
SJx y = f(x)

x

Training Fourier Histogr. Scattering
per class Spectr. Features

46 1% 1% 0.2 %

2J = image sizeClassification Errors



The scattering transform of a stationary process X(t)

Scattering  Moments of Processes

SJX =

0

BBBB@

X
|X ?  �1 |

||X ?  �1 | ?  �2 |
|||X ?  �2 | ?  �2 | ?  �3 |

...

1

CCCCA
? �2J : Gaussian for 2

J
large

if X is ergodic

E(SX) =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

J ! 1



Representation of Random Processes

E(SX) =

0

BBBB@

E(X) = E(U0X)
E(|X ?  �1 |) = E(U1X)

E(||X ?  �1 | ?  �2 |) = E(U2X)
E(|||X ?  �2 | ?  �2 | ?  �3 |) = E(U3X)

...

1

CCCCA

�1,�2,�3,...

Little loss of information: H
max

⇡ H(X)

p(x) =

1

Z
exp

⇣ 1X

m=1

�m . Umx
⌘

Theorem (Boltzmann) The distribution p(x) which satisfies

Z

RN

Umx p(x) dx = E(UmX)

with a maximum entropy H
max

= �
R
p(x) log p(x) dx is

H
max

� H(X) (entropie of X)



 Ergodic Texture Reconstructions
Joan BrunaOriginal Textures

Gaussian process model with same second order moments

2D Turbulence

E(|x ?  �1 |) , E(||x ?  �1 | ?  �2 |)
Second order Gaussian Scattering: O(logN2

) moments



Original

Paper

Cocktail Party

Representation of Audio Textures
Joan Bruna
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Failures: Harmonic Sounds

Speech

Bird

Cello

V .Lostanlen

Need to express frequency channel interactions: time-frequency image



-

-

-

-

-

-

-

1

2

3

4

5

octave

        Harmonic Spiral

t

�

• •

• •

•
• •

•

j

✓

• •
•

•

••

•

•

•

•

More regular variations along (✓, j) than �

• Alignment of harmonics in two main groups.

V .Lostanlen

Need to capture frequency variability and structures.

R⇥ ZR



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation

20 20 %

  Rotation and Scaling Invariance
Laurent Sifre



• Action on wavelet coe�cients:

 Extension to Rigid Mouvements
Laurent Sifre

x(u) |W1|

R
x(u)du

• Group of rigid displacements: translations and rotations

|W1|

R
x(u)du

xj(r↵(u� c), ✓ � ↵)
x(r↵(u� c)) xj(u, ✓) = |x ?  2j ,✓(u)|

rotation & translation

rotation & translation , angle translation

Need to capture the variability of spatial directions.



• To build invariants: second wavelet transform on L2
(G):

with wavelets  �2(u, ✓)

• Scattering on rigid mouvements:

Wavelets on Rigid Mvt.

Wavelets on Rigid Mvt.

 Extension to Rigid Mouvements
Laurent Sifre

xj(u , ✓)

Wavelets on Translations

x(u)

R
x(u)du

|W1| |W2| |xj ~  �2(v, ✓)|

R
xj(u, ✓) dud✓

|W3|
Z

|xj ~  �2(v, ✓)|dud✓

xj ~  �2(u, ✓) =

Z

R2

Z 2⇡

0
xj(v,↵) �2(u� v, ✓ � ↵) dv d↵

convolutions of xj(u, ✓)



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation Scat. Rigid Mouvt.

20 20 % 0.6%

  Rotation and Scaling Invariance
Laurent Sifre



Classification Accuracy

SJx

Data Basis Deep-Net Scat.-2
CalTech-101 85% 80%
CIFAR-10 90% 80%

Rigid Mvt.
computes invariants

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua Ancre

CalTech 101 data-basis:

Linear Classif. yx

Edouard Oyallon

variable selection

State of the art

Unsupervised

: 2000



• Energy of d interacting bodies:

Can we learn the interaction energy f(x) of a system

with x =

n

positions, values

o

?

Astronomy

Quantum Chemistry

 Learning Physics: N-Body Problem

Matthew Hirn
N. Poilvert



  Multiscale Interactions

35

• A system of d particles involves d2 interactions

• Multiscale separation into O(log

2 d) interactions



with
Organic molecules

Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine

          Quantum Chemistry

Electronic density ⇢
x

(u): computed by solving Schrodinger



Kohn-Sham model:

E(�) = T (�) +
Z

�(u) V (u) +
1
2

Z
�(u)�(v)
|u� v| dudv + E

xc

(�)

Molecular

energy

At equilibrium:

   Density Functional Theory

Kinetic
energy

electron-electron

Coulomb repulsion

electron-nuclei

attraction

Exchange

correlat. energy

37

deformation stable• f(x) is invariant to isometries and is

f(x) = E(⇢
x

) = min
⇢

E(⇢)



       Atomization Density

Electronic density ⇢
x

(u) Approximate density ⇢̃
x

(u)

38



   Quantum Chemistry

Partial Least Square regression on the training set:

Matthew Hirn

   Quantum Regression
N. Poilvert

invariant to action of isometries in R3
:

scattering coe�cients and squared

• Sparse regression computed over a representation

Fourier modulus coe�cients and squared

or

�x = {�
n

(⇢̃
x

)}
n

:

f

M

(x) =
MX

k=1

w

k

�

nk(⇢̃x)

M: number of variables



x    Scattering Regression

Quantum Energy Regression using Scattering Transforms

the RMSE is due to the fact that a scattering regression has
smaller error outliers.

0 1 2 3 4 5 6 7 8 9 10
Model Complexity log (M)

1

2

3

4

5

6

7

8

�
� |

�
|��

Fourier
Wavelet
Scattering
Coulomb

Figure 2. Decay of the log RMSE error
1
2 log2

h
E

⇣
|f(x)� ˜

f

M

(x)|2
⌘i

over the larger database of
4357 molecules, as a function of log2(M) in the Fourier (green),
Wavelet (blue) and Scattering (red) regressions. The dotted line
gives the Coulomb regression error for reference.

Table 1 shows that the error of Fourier and wavelet regres-
sion are of the same order although the Fourier dictionary
has 1537 elements and the wavelet dictionary has only 61.
Figure 2 gives the decay of these errors as a function of
M . This exepected error is computed on testing molecules.
The circles on the plot give the estimated value of M which
yield a minimum regression error by cross-validation over
the training set (reported in Table 1). Although the Fourier
and wavelet regressions reach nearly the same minimum
error, the decay is much faster for wavelets. When going
from the smaller to the larger database, the minimum error
of the Fourier and wavelet regressions remain nearly the
same. This shows that the bias error due to the inability of
these dictionaries to precisely regress f(x) is dominating
the variance error corresponding to errors on the regression
coefficients. The Coulomb and Scattering representations
on the other hand, achieve much smaller bias errors on the
larger database.

The number of terms of the scattering regression is M =

591 on the larger database, although the dictionary size is
11071. A very small proportion of scattering invariants are
therefore selected to perform this regression. The chosen
scattering coefficients used for the regression are coeffi-
cients corresponding to scales which fall between the min-
imum and maximum pairwise distances between atoms in
the molecular database. These selected coefficients are thus
adapted to the molecular geometries.

7. Conclusion
This paper introduced a novel intermediate molecular rep-
resentation through the use of a model electron density.
The regression is performed on a scattering transform ap-
plied to a model density built from a linear superposition of
atomic densities. This transform is well adapted to quan-
tum energy regressions because it is invariant to the per-
mutation of atom indices, to isometric transformations, it
is stable to deformations, and it separates multiscale inter-
actions. It is computed with a cascade of wavelet convolu-
tions and modulus non-linearities, as a deep convolutional
network. State-of-the-art regression accuracy is obtained
over two databases of two-dimensional organic molecules,
with a relatively small number of scattering vectors. Under-
standing the relation between the choice of scattering coef-
ficients and the physical and chemical properties of these
molecules is an important issue.

Numerical applications have been carried over planar
molecules, which allows one to restrict the electronic den-
sity to the molecular plane, and thus compute a two-
dimensional scattering transform. A scattering transform
is similarly defined in three dimensions, with the same in-
variance and stability properties. It involves computing a
wavelet transform on the two-dimensional sphere S2 in R3

(Starck et al., 2006) as opposed to the circle S

1. It entails
no mathematical difficulty, but requires appropriate soft-
ware implementations which are being carried out.

Energy regressions can also provide estimations of forces
through differentiations with respect to atomic positions.
Scattering functions are differentiable and their differential
can be computed analytically. However, the precision of
such estimations remain to be established.
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• A major challenge of data analysis is to find

• Continuity to action of di↵eomorphisms ) wavelets

• Can learn physics from prior on geometry and invariants.

        Conclusion

Unknown geometry: learn wavelets on appropriate groups.

• Known geometry ) no need to learn.

Euclidean embeddings of metrics , build Gaussian models

• Applications to images, audio and natural languages

www.di.ens.fr/data/scattering


