

Joan Bruna, Matthew Hirn, Stéphane Mallat Vincent Lostanlen, Edouard Oyallon, Nicolas Poilvert, Laurent Sifre, Irène Waldspurger

École Normale Supérieure www.di.ens.fr/data

___High Dimensional Learning

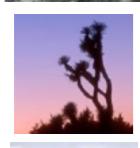
- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i < n}$

Image Classification $d = 10^6$

$$d = 10^6$$

Anchor

Joshua Tree



Water Lily

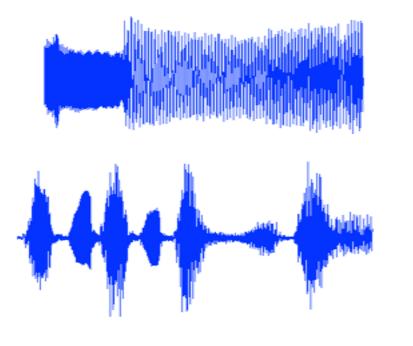
Huge variability inside classes

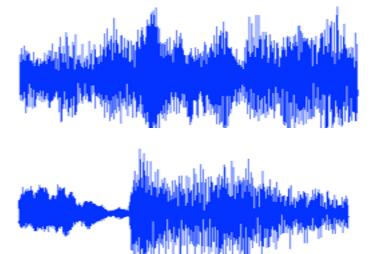
High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x) given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Audio: instrument recognition

Huge variability inside classes





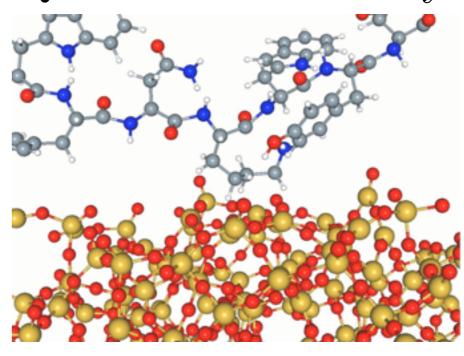
High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Regression: approximate a functional f(x) given n sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \leq n}$

Physics: energy f(x) of a state vector x

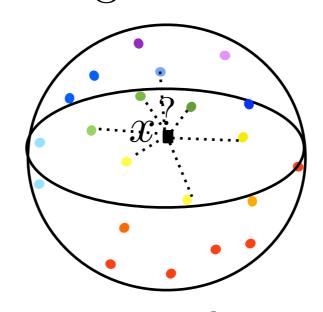
Astronomy

Quantum Chemistry

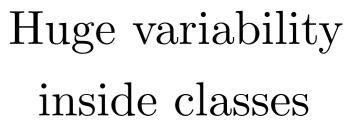


Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:



• Need e^{-d} points to cover $[0,1]^d$ at a Euclidean distance e $\Rightarrow ||x - x_i||$ is always large



Learning by Euclidean Embedding

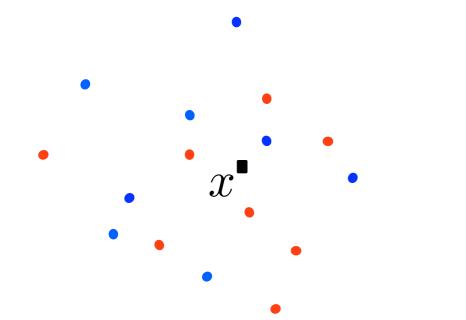
Data: $x \in \mathbb{R}^d$

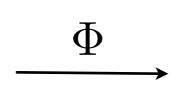
||x-x'||: non-informative

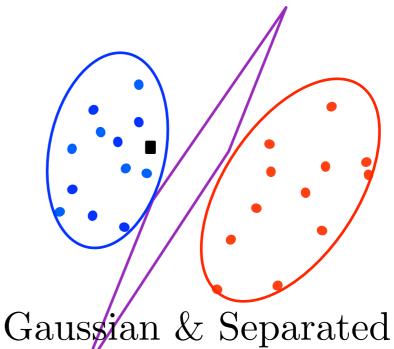
Representation

$$\Phi x \in \mathcal{H}$$

Linear Classifier







"Similarity" metric: $\Delta(x, x')$ \longleftarrow $\|\Phi x - \Phi x'\|$

$$\|\Phi x - \Phi x'\|$$

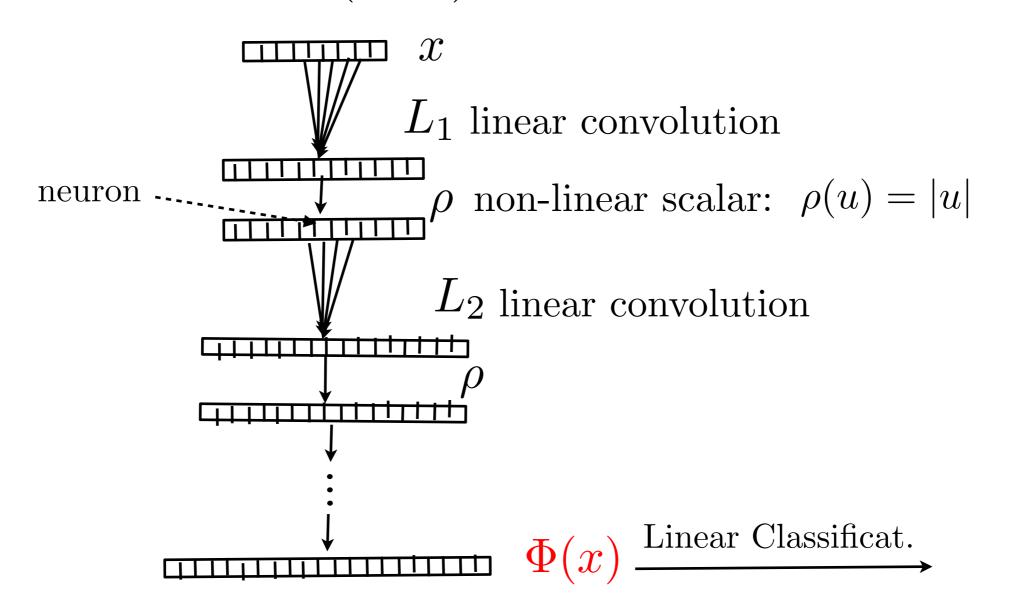
Equivalent Euclidean metric:

$$C_1 \|\Phi x - \Phi x'\| \le \Delta(x, x') \le C_2 \|\Phi x - \Phi x'\|$$

How to define Φ ?

Deep Convolution Neworks

• The revival of an old (1950) idea: Y. LeCun, G. Hinton



Optimize the L_k with support constraints: over 10^9 parameters Exceptional results for *images, speech, bio-data* classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo...

Why does it work so well?

Overview

• Deep multiscale networks: invariant and stable metrics on groups

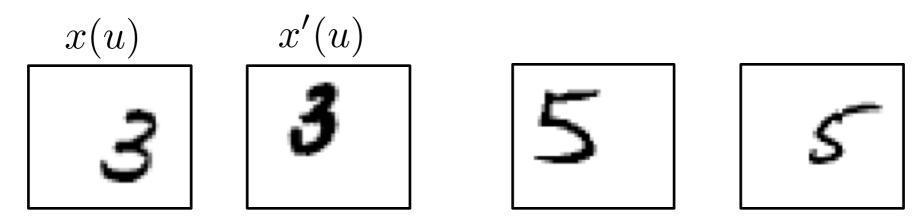
• Image classification

• Models of audio and image textures: information theory

• Learning physics: quantum chemistry energy regression

Image Metrics

• Low-dimensional "geometric shapes"



Deformation metric: (classic mechanics) Grenander

Diffeomorphism action: $D_{\tau}x(u) = x(u - \tau(u))$

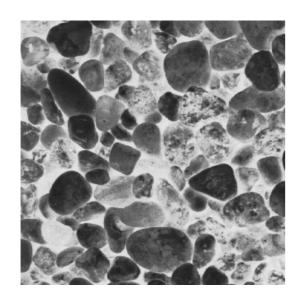
$$\Delta(x, x') \sim \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$$

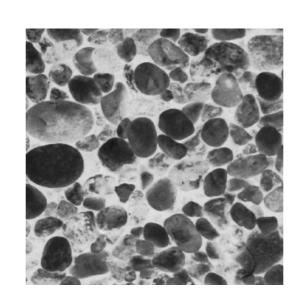
Invariant to translations

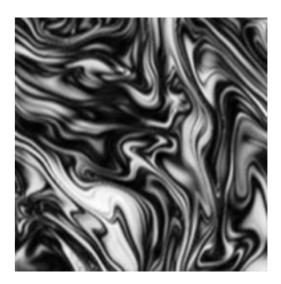
diffeomorphism amplitude

Image Metrics

• High dimensional textures: X(u) ergodic stationary processes







2D Turbulence

Highly non-Gaussian processes

- A Euclidean metric is a Maximum Likelihood on Gaussian models
 - Can we find Φ so that $\Phi(X)$ is nearly Gaussian, without loosing information ?

Euclidean Metric Embedding

• Stability to additive perturbations:

$$\|\Phi x - \Phi x'\| \le C \|x - x'\|$$

• Invariance to translations:

$$x_c(u) = x(u-c) \Rightarrow \Phi(x_c) = \Phi(x)$$

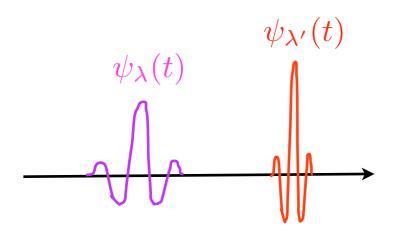
• Stability to deformations:

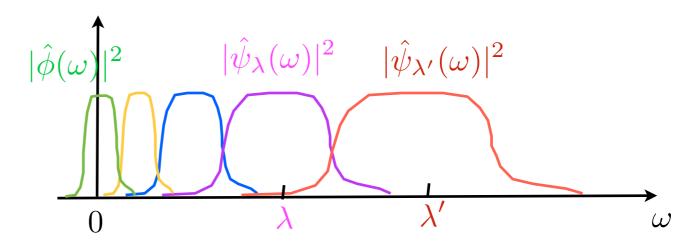
$$x_{\tau}(u) = x(u - \tau(u)) \Rightarrow \|\Phi x - \Phi x_{\tau}\| \le C \|\nabla \tau\|_{\infty} \|x\|$$

Failure of Fourier and classic invariants

Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-j/Q} \psi(2^{-j/Q}t)$ with $\lambda = 2^{-j/Q}$





Q-constant band-pass filters ψ_{λ}

• Wavelet transform:
$$Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$$
: average : higher

frequencies

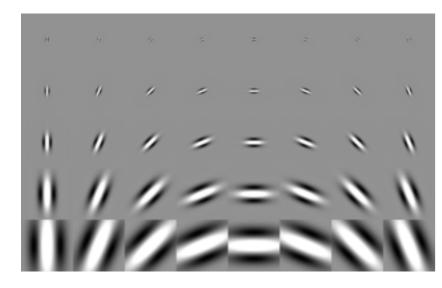
Preserves norm: $||Wx||^2 = ||x||^2$.

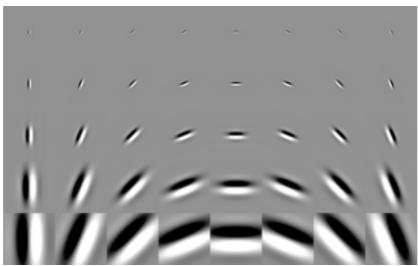
Scale separation with Wavelets

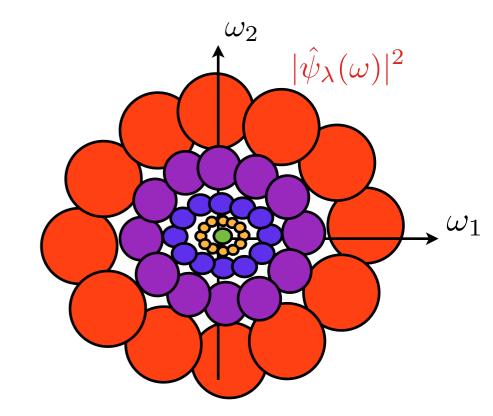
• Complex wavelet: $\psi(t) = g(t) \exp i\xi t$, $t = (t_1, t_2)$

rotated and dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j} r_{\theta} t)$ with $\lambda = (2^{j}, \theta)$

real parts



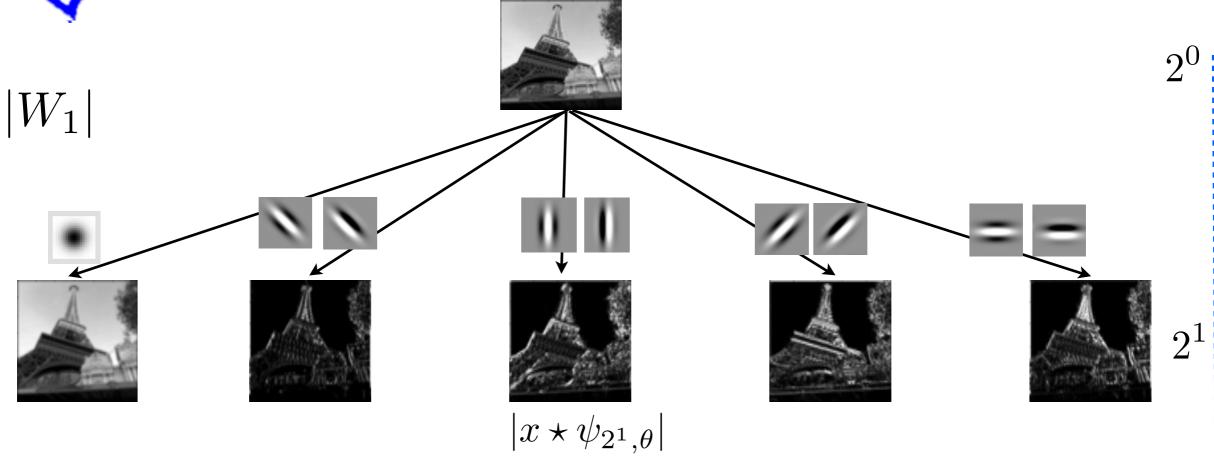




• Wavelet transform:
$$Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\substack{\lambda \leq 2^J \text{ higher frequencies}}}$$
: average

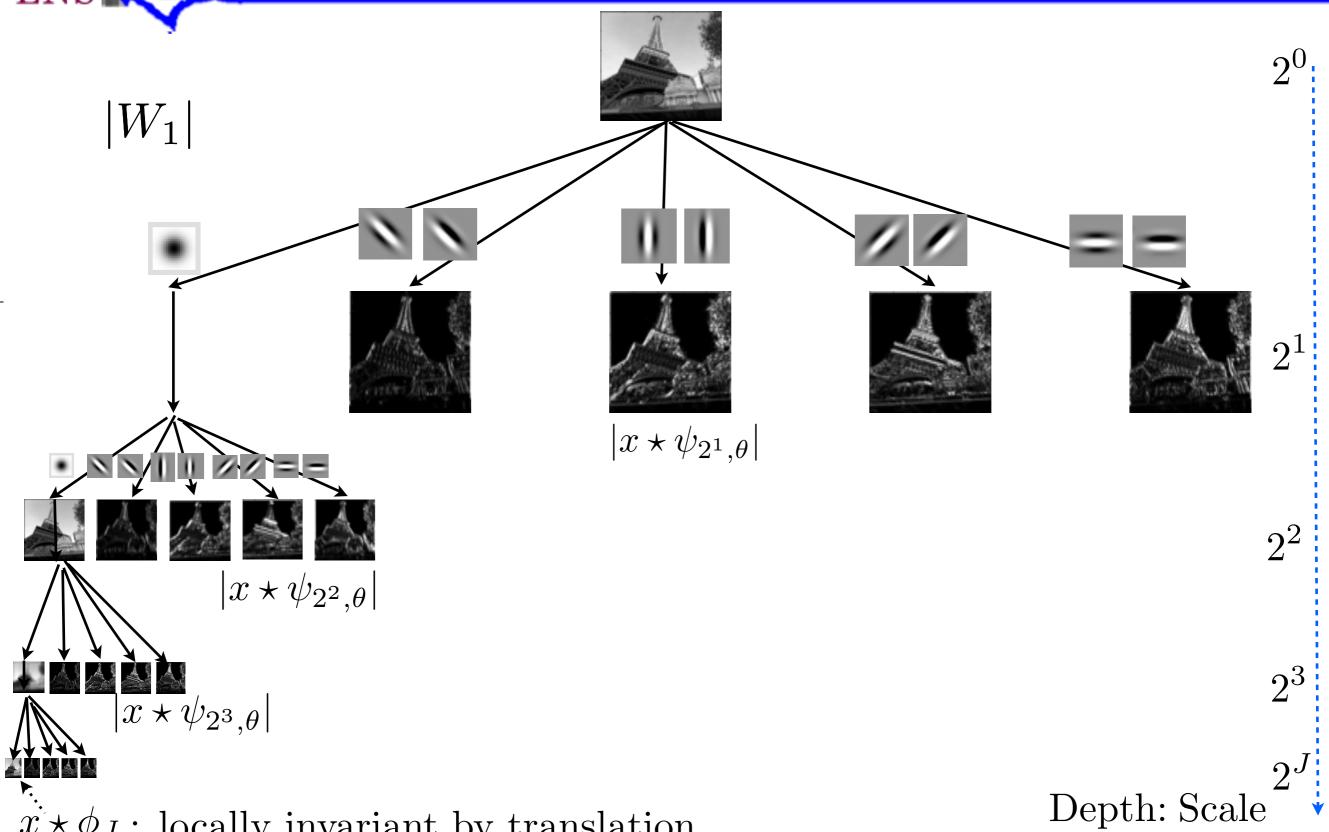
Preserves norm: $||Wx||^2 = ||x||^2$.

Fast Wavelet Transform



2° Scale

Wavelet Transform



 $x \star \phi_J$: locally invariant by translation

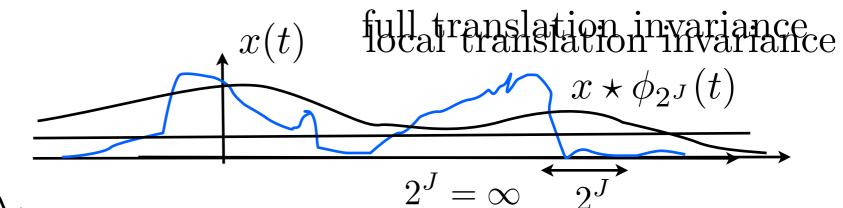
How to make everything invariant to translation?

ENS

Wavelet Translation Invariance

First wavelet transform

$$|W_1|_x = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{2^J} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi_{\lambda_1} \\ x \star \psi_{\lambda_1} \end{array} \right)_{\lambda_1} = \left(\begin{array}{c} x \star \phi$$

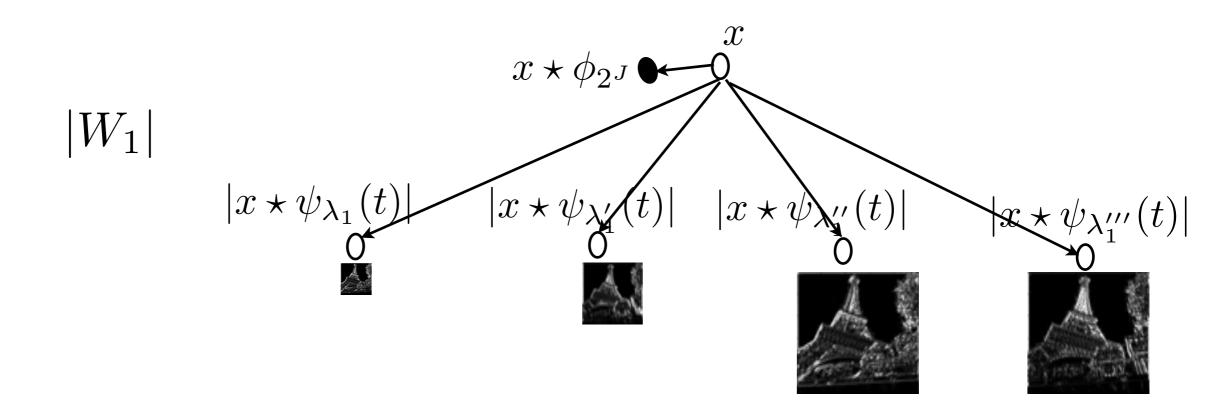


Modulus improves invariance: $|x \star \psi_{\lambda_1}(\vec{t})| \star \psi_{\lambda_1}(\vec{t}) \star \psi_{\lambda_1}(\vec{t}) + \psi_{\lambda_1}(\vec$

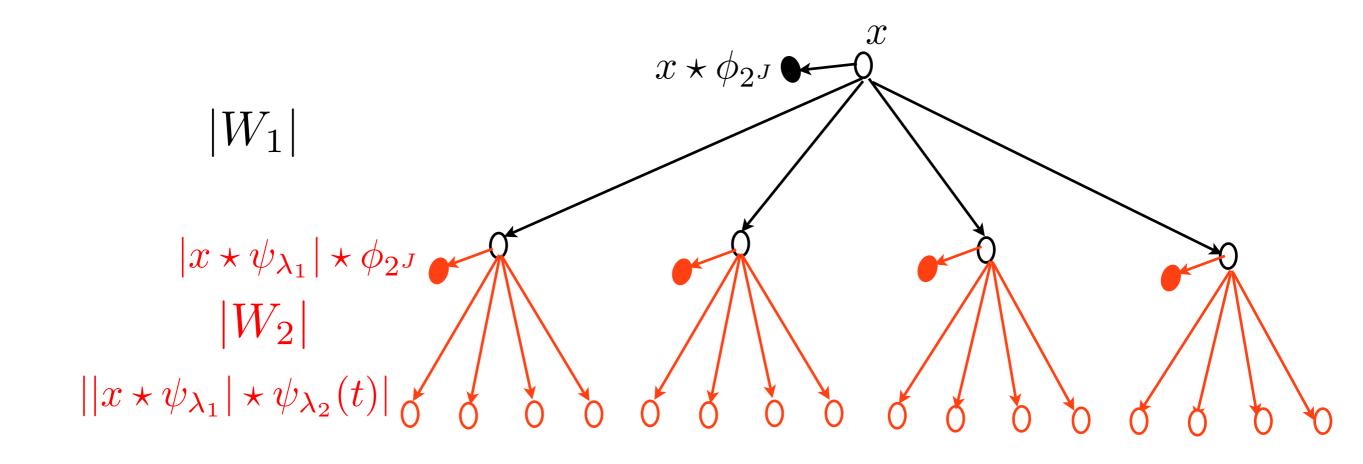
Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \begin{pmatrix} |x \star \psi_{\lambda_1}| \star \phi_{2^J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{pmatrix}_{\lambda_2}$$

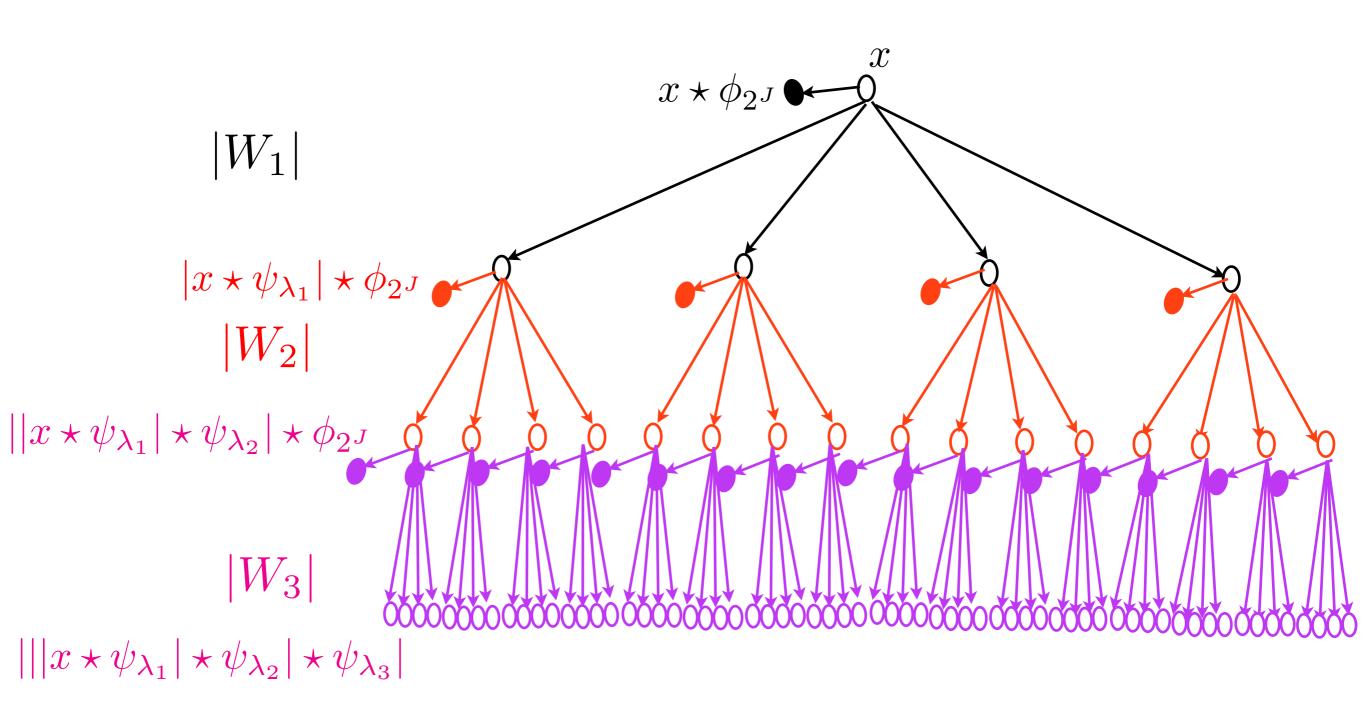
Scattering Transform



Scattering Transform



Scattering Neural Network



ENS

Scattering Properties

 W_k is unitary $\Rightarrow |W_k|$ is contractive

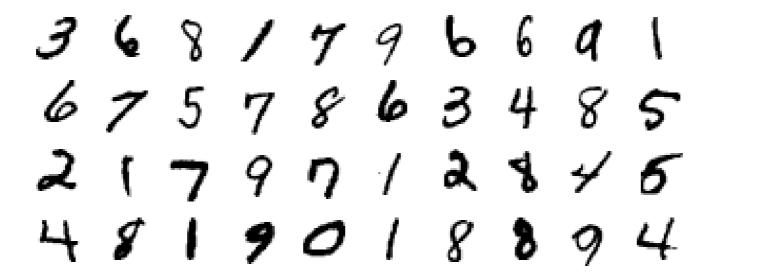
Theorem: For appropriate wavelets, a scattering is

contractive
$$||S_J x - S_J y|| \le ||x - y||$$
 ($\mathbf{L^2}$ stability)
preserves norms $||S_J x|| = ||x||$

translations invariance and deformation stability:

if
$$x_{\tau}(u) = x(u - \tau(u))$$
 then
$$\lim_{J \to \infty} ||S_J x_{\tau} - S_J x|| \le C ||\nabla \tau||_{\infty} ||x||$$

Digit Classification: MNIST



Joan Bruna

Classification Errors

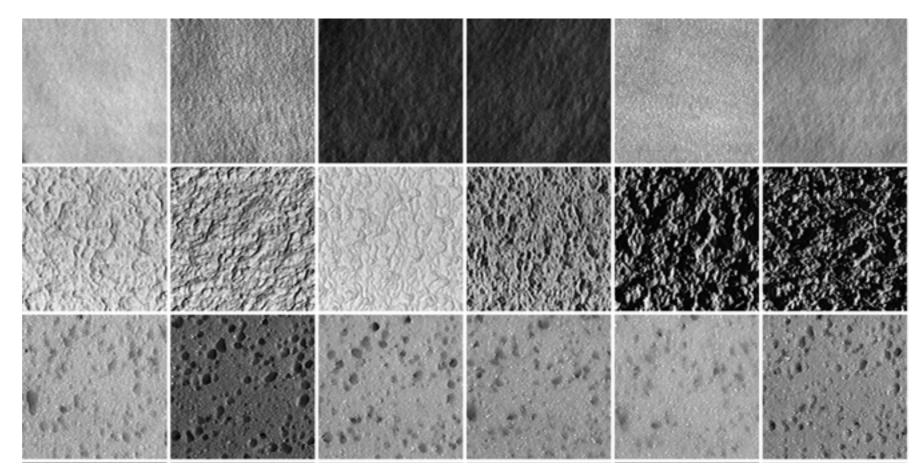
Training size	Conv. Net.	Scattering
50000	0.5%	0.4 %

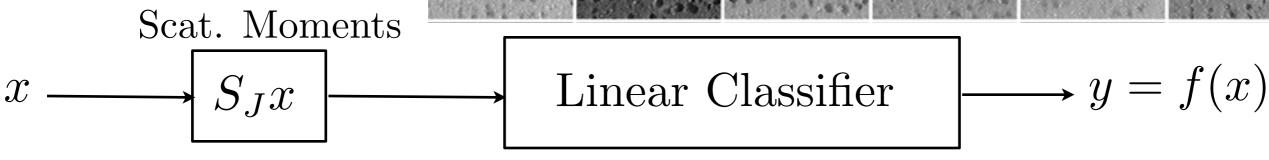
LeCun et. al.

i Maria

Classification of Textures

CUREt database 61 classes





Classification Errors

 $2^J = \text{image size}$

Training	Fourier	Histogr.	Scattering
per class	Spectr.	Features	
46	1%	1%	0.2 %

Scattering Moments of Processes

The scattering transform of a stationary process X(t)

The scattering transform of a stationary process
$$X(t)$$

$$S_{J}X = \begin{pmatrix} X \\ |X \star \psi_{\lambda_{1}}| \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \\ ||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \end{pmatrix} \star \phi_{2^{J}} : \text{Gaussian for } 2^{J} \text{ large if } X \text{ is ergodic}$$

$$J \to \infty \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_{1}}|) \\ \mathbb{E}(||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}|) \\ \mathbb{E}(||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}|) \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

Representation of Random Processes-

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) &=& \mathbb{E}(U_0X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) &=& \mathbb{E}(U_1X) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) &=& \mathbb{E}(U_2X) \\ \mathbb{E}(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) &=& \mathbb{E}(U_3X) \\ & \cdots & & \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Theorem (Boltzmann) The distribution p(x) which satisfies

$$\int_{\mathbb{R}^N} U_m x \ p(x) \, dx = E(U_m X)$$

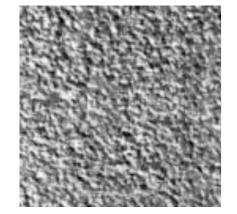
with a maximum entropy $H_{\text{max}} = -\int p(x) \log p(x) dx$ is

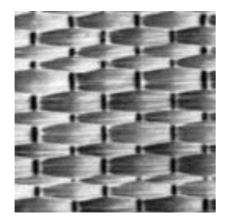
$$p(x) = \frac{1}{Z} \exp\left(\sum_{m=1}^{\infty} \lambda_m \cdot U_m x\right)$$

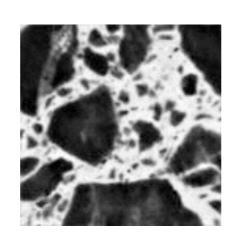
 $H_{\text{max}} \geq H(X)$ (entropie of X)

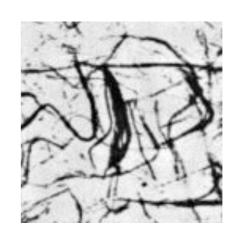
Little loss of information: $H_{\text{max}} \approx H(X)$

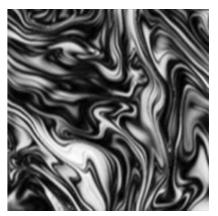
Ergodic Texture Reconstructions ____



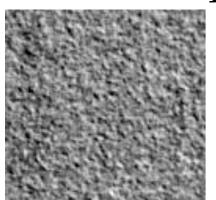


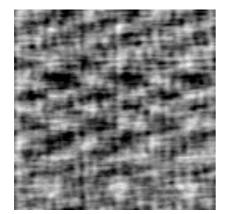


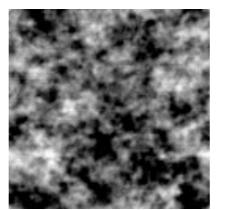


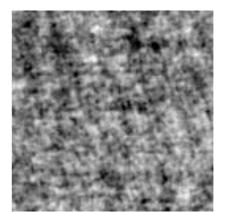


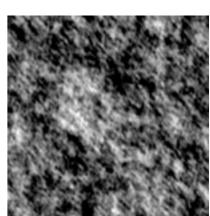
Gaussian process model with same second order moments



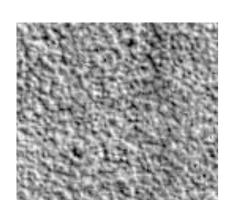


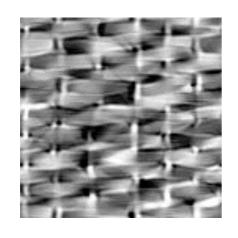




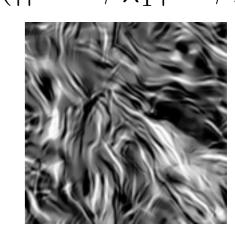


Second order Gaussian Scattering: $O(\log N^2)$ moments $\mathbb{E}(|x \star \psi_{\lambda_1}|)$, $\mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

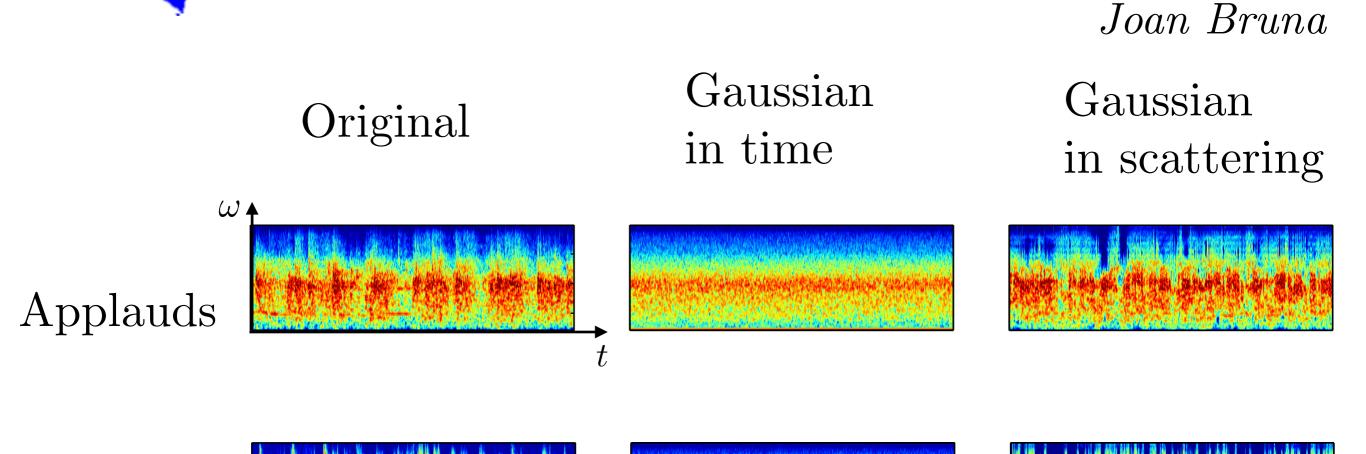








Representation of Audio Textures



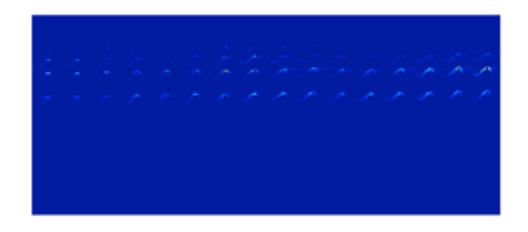
Cocktail Party

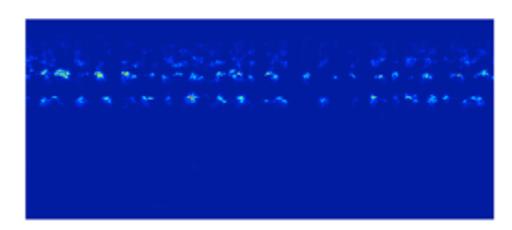
Paper

Failures: Harmonic Sounds V. Lostanlen-L

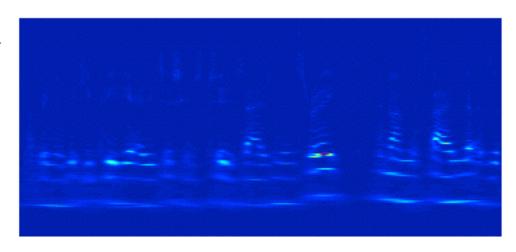
Need to express frequency channel interactions: time-frequency image

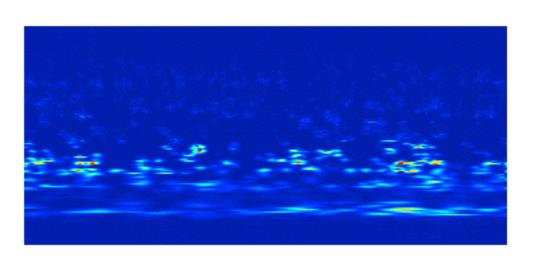
Bird



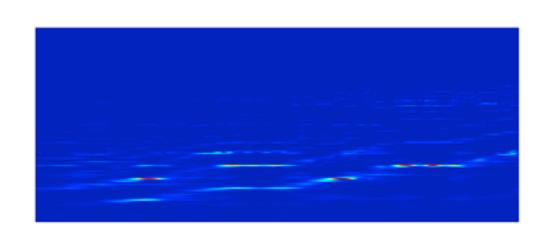


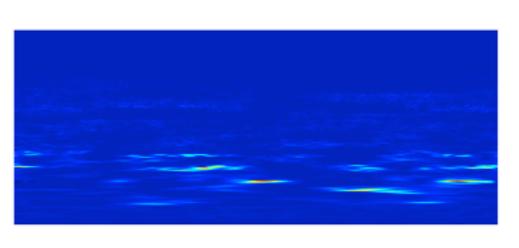
Speech





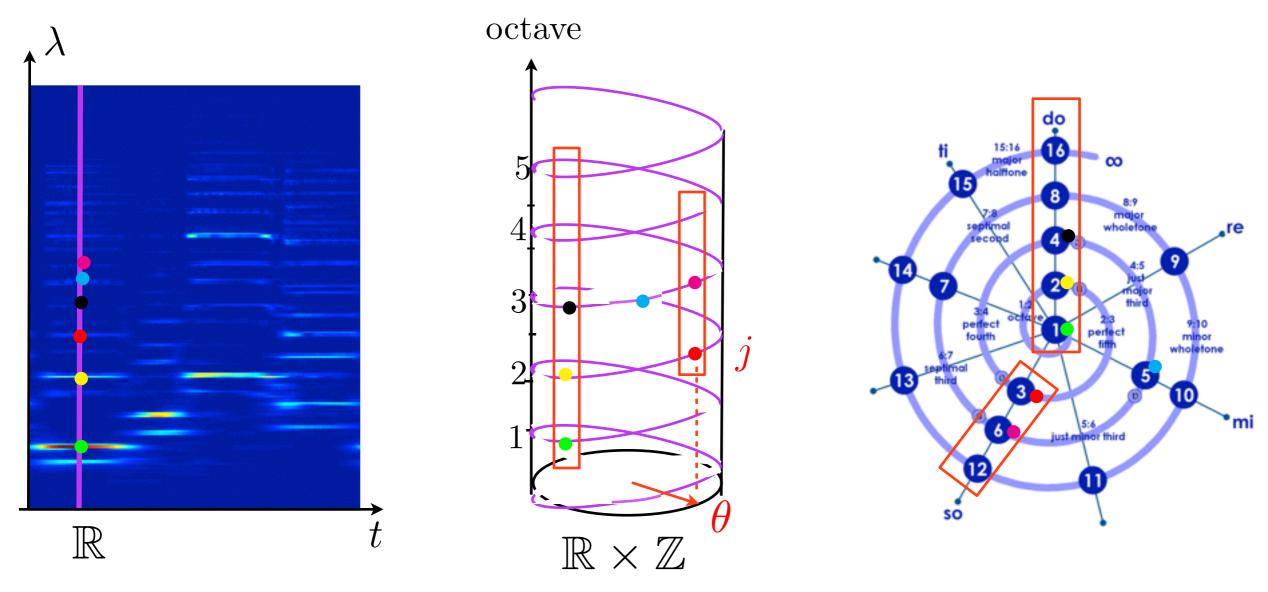
Cello







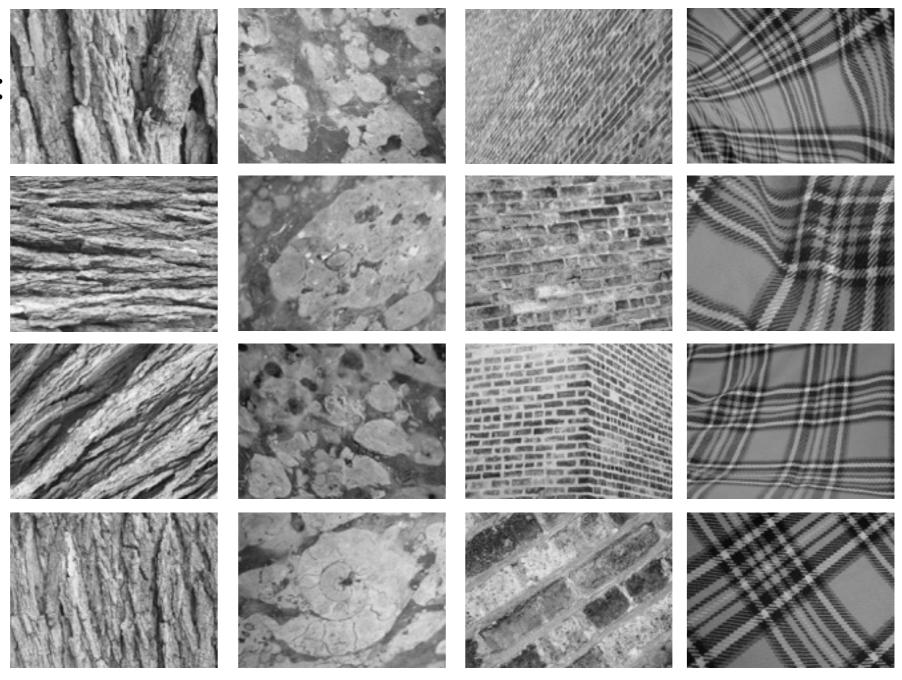
Need to capture frequency variability and structures.



• Alignment of harmonics in two main groups. More regular variations along (θ, j) than λ

Rotation and Scaling Invariance

UIUC database: 25 classes



Scattering classification errors

Training	Scat. Translation
20	20~%

Extension to Rigid Mouvements

Laurent Sifre

Need to capture the variability of spatial directions.

- Group of rigid displacements: translations and rotations
- Action on wavelet coefficients:

rotation & translation
$$x(r_{\alpha}(u x(u))) \longrightarrow |W_1| \longrightarrow x_j(v_{\alpha}\theta) = c_j, \forall \psi_2 \alpha, \theta(u)|$$

$$\int x(u) du$$

Extension to Rigid Mouvements

Laurent Sifre

• To build invariants: second wavelet transform on $\mathbf{L}^2(G)$: convolutions of $x_j(u,\theta)$ with wavelets $\psi_{\lambda_2}(u,\theta)$

$$x_j \circledast \psi_{\lambda_2}(u,\theta) = \int_{\mathbb{R}^2} \int_0^{2\pi} x_j(v,\alpha) \,\psi_{\lambda_2}(u-v,\theta-\alpha) \,dv \,d\alpha$$

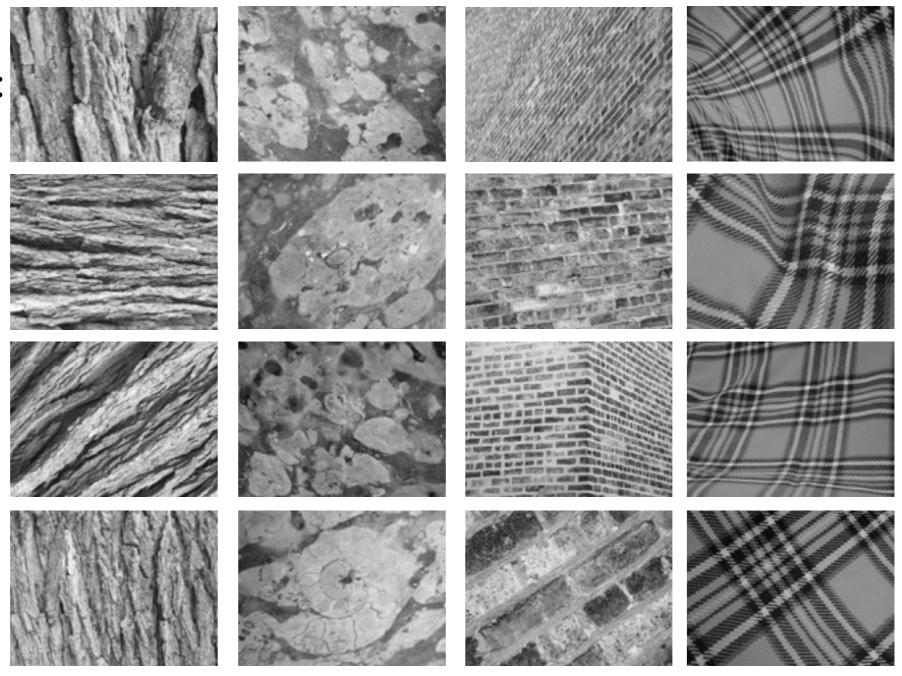
• Scattering on rigid mouvements:

Wavelets on Translations Wavelets on Rigid Mvt. Wavelets on Rigid Mvt.

$$x(u) \longrightarrow |W_1| \longrightarrow x_j(u, \theta) \longrightarrow |W_2| \longrightarrow |x_j \circledast \psi_{\lambda_2}(v, \theta)| \longrightarrow |W_3| \longrightarrow \int x(u) du \qquad \int x_j(u, \theta) du d\theta \qquad \int |x_j \circledast \psi_{\lambda_2}(v, \theta)| du d\theta$$

Rotation and Scaling Invariance

UIUC database: 25 classes



Scattering classification errors

Training	Scat. Translation	Scat. Rigid Mouvt.
20	20 %	0.6 %

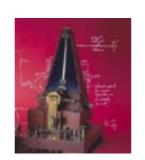
Complex Image Classification

CalTech 101 data-basis:

Arbre de Joshua

Ancre

Metronome

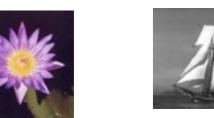


Castore

Edouard Oyallon

Nénuphare

Bateau



 $S_J x$ Rigid Mvt. Linear Classif.

computes invariants

variable selection: 2000

Classification Accuracy

Data Basis	Deep-Net	Scat2
CalTech-101	85%	80%
CIFAR-10	90%	80%

State of the art Unsupervised

Learning Physics: N-Body Problem -

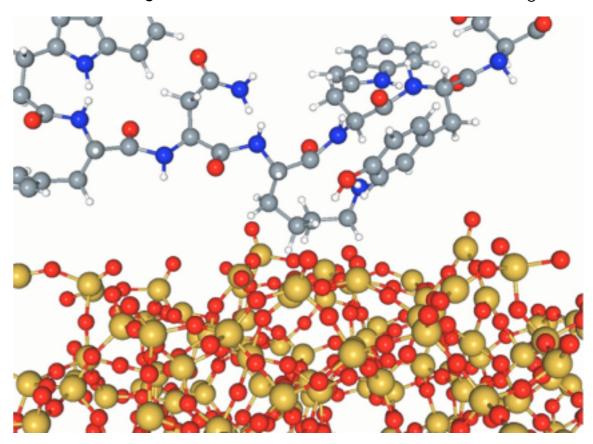
• Energy of d interacting bodies:

N. Poilvert Matthew Hirn

Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, values} \}$?

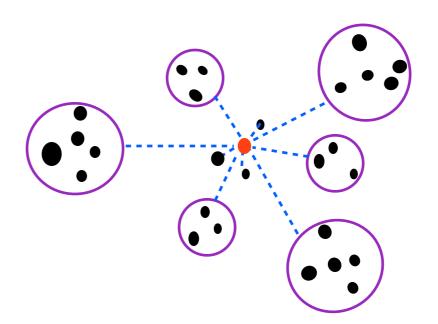
Astronomy

Quantum Chemistry

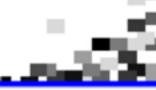


Multiscale Interactions

- A system of d particles involves d^2 interactions
- Multiscale separation into $O(\log^2 d)$ interactions



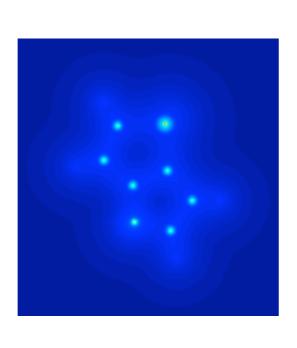
Quantum Chemistry

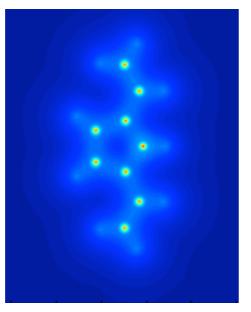


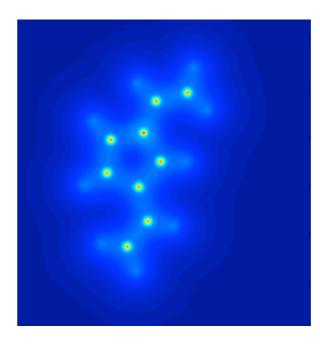
Electronic density $\rho_x(u)$: computed by solving Schrodinger

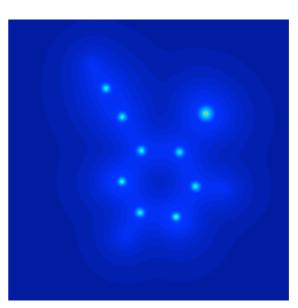
Organic molecules
with

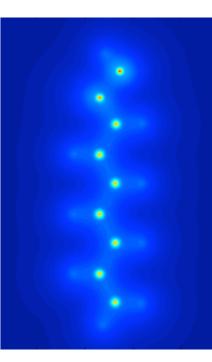
Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine

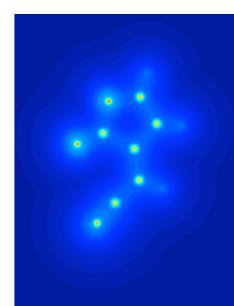












Density Functional Theory

Kohn-Sham model:

$$E(\rho) = T(\rho) + \int \rho(u) V(u) + \frac{1}{2} \int \frac{\rho(u)\rho(v)}{|u-v|} dudv + E_{xc}(\rho)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Molecular Kinetic electron-nuclei electron-electron Exchange energy energy attraction Coulomb repulsion correlat. energy

At equilibrium:

$$f(x) = E(\rho_x) = \min_{\rho} E(\rho)$$

• f(x) is invariant to isometries and is deformation stable

Atomization Density

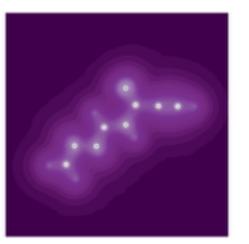
• We do not know the electronic density ρ_x at equilibrium.

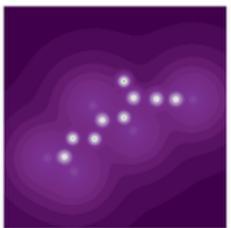
approximated by the sum of the densities of all atoms:

$$\tilde{\rho}_x(u) = \sum_{k=1}^d \rho_{z_k}(u - r_k)$$

Electronic density $\rho_x(u)$

Approximate density $\tilde{\rho}_x(u)$





Quantum Regression N. Poilvert

• Sparse regression computed over a representation invariant to action of isometries in \mathbb{R}^3 :

$$\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n :$$

 $\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n : \left| \begin{array}{c} \text{Fourier modulus coefficients and squared} \\ \text{scattering coefficients and squared} \end{array} \right|$

Partial Least Square regression on the training set:

$$f_M(x) = \sum_{k=1}^M w_k \, \phi_{n_k}(\tilde{\rho}_x)$$

M: number of variables

ENS

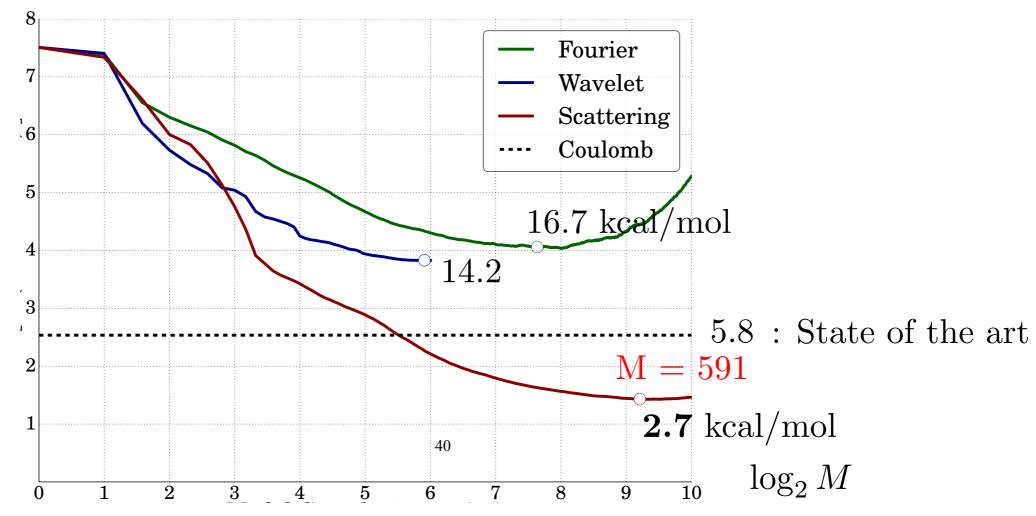
Scattering Regression

Data basis $\{x_i, f(x_i) = E(\rho_{x_i})\}_{i \leq N}$ of 4357 planar molecules

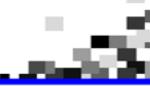
Regression:
$$f_M(x) = \sum_{m=1}^{M} w_m \, \phi_{k_m}(\tilde{\rho}_x)$$

Testing error

$$2^{-1}\log_2 \mathbb{E}|f_M(x) - y(x)|^2$$



Conclusion



- A major challenge of data analysis is to find Euclidean embeddings of metrics \Leftrightarrow build Gaussian models
- Continuity to action of diffeomorphisms \Rightarrow wavelets
- Known geometry ⇒ no need to learn.
 Unknown geometry: learn wavelets on appropriate groups.
- Can learn physics from prior on geometry and invariants.
- Applications to images, audio and natural languages

www.di.ens.fr/data/scattering