"Ca va être compliqué": Islands of knowledge, MathematicianPirates and the Great Convergence

Igor Carron, https://www.linkedin.com/in/lgorCarron http://nuit-blanche.blogspot.com

IFPEN presentation, March 30th, 2015

Outline

- Sensing
- Big Data
- What have we learned from compressive sensing, advanced matrix factorization?
- Machine Learning
- Two words

Sensing

Phenomena -> Sensor -> Making Sense of that Data

Phenomena -> Sensor -> Making Sense of that Data

Information rich and cheap sensors

- YouTube videos
- 18/04/11. 35hrs uploaded per minute
- 23/05/12. 60hrs uploaded per minute
- May 2012: 18 cells,

You Tube

- 29/11/14. $\quad 100 \mathrm{hrs}$
uploaded per minute
- 29/11/14. $\quad 100 \mathrm{hrs}$
uploaded per minute
- DNA sequencing cost
- Single cell sequencing
- 2011: 1 cell

- March 2015:~200,000 cells

Moore's law is not just for sensors

2005

2014

Algorithm-wise

- Some problems used to be NP-Hard, relaxations have been found.
- Parallel to Moore's law, algorithms and sensors have changed the nature of the complexity of the problem

Phenomena -> Sensor -> Making Sense of that Data

Sensing as the Identity

- $\mathrm{x}=\mathrm{I} \mathrm{x}$ for a perfect sensor
- $x=(A B) x$ and $A B=I$, ex Camera
- $x=L(A x)$, ex. Coded aperture, $C T$
- $x=\mathbf{N}(A x)$ or even $x=\mathbf{N}(A(B x))$, ex Compressive Sensing
- $H x=\mathbf{N}(A x)$, ex, classification in Compressive Sensing
- $x=\mathbf{N} 2(\mathbf{N 1}(x))$, ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders

Sensing as the Identity

- $\mathrm{x}=\mathrm{I} \mathrm{x}$ for a perfect sensor
- $x=(A B) x$ and $A B=I$, ex Camera
- $x=L(A x)$, ex. Coded aperture, $C T$
- $x=\mathbf{N}(A x)$ or even $x=\mathbf{N}(A(B x))$, ex Compressive Sensing
- $\mathrm{Hx}=\mathbf{N}(\mathrm{Ax})$, ex, classification in Compressive Sensing
- $x=\mathbf{N} 2(\mathbf{N 1}(x))$, ex autoencoders
- $\mathrm{Hx}=\mathbf{N 4}(\mathbf{N} 3(\mathbf{N} 2(\mathbf{N} 1(\mathrm{x})))$), deep autoencoders

Compressive Sensing

The relaxations and the bounds

Phase Transition: ($/ 1, l_{0}$) equivalence

The bounds as sensor design limits

http://nuit-blanche.blogspot.fr/2013/11/ sunday-morning-insight-mapmakers.html

(a) SNR 10 dB

Fig. 7: A depiction of the algorithms to be used for different calibration scenarios. Note that for each case L must also be sufficiently high depending on σ and p_{c}. The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery [20].

Convenience clouds the mind ex: least squares

Islands of knowledge

Islands of knowledge

Partial list of Contributions in Compressed Sensing
1991 Leahy \& Jeffs : ℓ_{p} minimization $(0<p<1)$ for sparse beamforming array
1992 Rao et al. : iterative reweighted least squares for Magnetoencephalography (MEG)
1995 Rao et al. : FOCUSS $-\ell_{p}$, relaxation $(0<p<1)$ using reweighted least-squares with equality constraints
1996 J.J. Fuchs: Sensor array processing using ℓ_{1}.
1996 Feng \& Bresler : spectrum blind sampling, guarantee of MUSIC for MMV, spark conditions
1996 Delaney \& Bresler : iterative tomographic reconstruction from sparse samples with non-convex relaxation and reweighting algorithms
1997 Harikumar \& Bresler: sparse solutions to linear inverse problems using convex and non-convex relaxations, and reweighting algorithms
1997 Feng : algebraic conditions for MMV
1998 Venkataramani \& Bresler : algebraic conditions (spark) for uniqueness
1999 Bresler, Gastpar, \& Venkataramani : "Image Compression on the Fly"
1999 Fuch et al : ℓ_{1} minimization
2000 Couvreur \& Bresler: guarantee for backward greedy
2000 Gastpar \& Bresler : information-theoretic analysis of compressive sensing with noise and with quantization

ℓ_{1} regularization-known empirically

- Geology/geophysics
- Claerbout and Muir (1973)
- Taylor et al. (1979)
- Levy and Fullager (1981)
- Oldenburg et al. (1983)
- Santosa and Symes (1988)
- Radio astronomy
- HOgbom (1974)
- Schwarz (1978)
- Fourier transform spectroscopy
- Kawata et al. (1983)
- Mammone (1983)
- Minami et al. (1985)
- NMR spectroscopy
- Barkhuijsen (1985)
- Newman (1988)
- Medical ultrasound
- Papoulis and Chamzas (1979)

Common elements:

- Sparsity assumption enables improved resolution of estimate (beyond bandwidth of acquisition)
- Sparsity in space or gradient with respect to space
- ℓ_{1} minimization to promote sparsity
- Sparse domain given by nature

Mathematical limits explored in
[Donoho (1992]

Beyond Compressive Sensing

Sensing as the Identity

- $\mathrm{x}=\mathrm{I} \mathrm{x}$ for a perfect sensor
- $x=(A B) x$ and $A B=I$, ex Camera
- $x=L(A x)$, ex. Coded aperture, $C T$
- $x=\mathbf{N}(A x)$ or even $x=\mathbf{N}(A(B x))$, ex Compressive Sensing
- $H x=\mathbf{N}(A x)$, ex, classification in Compressive Sensing
- $x=\mathbf{N} 2(\mathbf{N 1}(x))$, ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders

Advanced Matrix Factorizations

- Also Linear Autoencoders:
- $A=B C$ s.t B or C or B and C have specific features
- Examples: NMF, SVD, Clustering,
- Use: hyperspectral unmixing,....

Advanced Matrix Factorizations

- Spectral Clustering, $A=D X$ with unknown D and X, solve for sparse X and X i $\mathrm{i}=0$ or 1
- K-Means / K-Median: A = DX with unknown D and X, solve for XX^T $=1$ and $\mathrm{X} _\mathrm{i}=0$ or 1
- Subspace Clustering, A = AX with unknown X, solve for sparse/other conditions on X
- Graph Matching: $A=X B X \wedge T$ with unknown X, B solve for B and X as a permutation
- NMF: $A=D X$ with unknown D and X, solve for elements of D, X positive
- Generalized Matrix Factorization, W. ${ }^{*}$ L - W. ${ }^{*} U V^{\prime}$ with W a known mask, U,V unknowns solve for U, V and L lowest rank possible
- Matrix Completion, $\mathrm{A}=\mathrm{H} .{ }^{*} \mathrm{~L}$ with H a known mask, L unknown solve for L lowest rank possible
- Stable Principle Component Pursuit (SPCP)/ Noisy Robust PCA, A = $L+S+N$ with L, S, N unknown, solve for L low rank, S sparse, N noise
- Robust PCA : $A=L+S$ with L, S unknown, solve for L low rank, S sparse
- Sparse PCA: $A=D X$ with unknown D and X, solve for sparse D
- Dictionary Learning: $A=D X$ with unknown D and X, solve for spars

Table 1. Criteria which satisfy the EBD conditions (1)(2)(3).

	$f(Z)$	Ω				
SSC	$\\|Z\\|_{0}$ or $\\|Z\\|_{1}$	$\{Z \mid X=X Z, \operatorname{diag}(Z)=0\}$				
LRR	$\\|Z\\|_{.}$	$\{Z \mid X=X Z\}$				
SSQP	$\left\\|Z^{T} Z\right\\|_{1}$	$\{Z \mid X=X Z, Z \geq 0, \operatorname{diag}(Z)=0\}$				
MSR	$\\|Z\\|_{1}+\delta\left\\|^{2} Z\right\\|_{.}$	$\{Z \mid X=X Z, \operatorname{diag}(Z)=0\}$				
Other choices	$\left.\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i j}\left\|Z_{i j}\right\|^{P i t}\right)^{2}$ $\lambda_{i j}>0, p_{i j}>0, s>0$	$\{Z \mid X=X Z, \operatorname{diag}(Z)=0\}$				

Bounds on Advanced Matrix Factorizations

Fig. 2: Simulation results showing the region of success (ahite region) and failure (black region) of Program 1 with $\lambda=0.99 A_{\text {saxx }}$. Also depicted are the thresholds for saccess (solid red curve on the top-right) and failure (dashed green curve on the bottom-left) predicted by Theorem 1 .

Fig. 3: Simulation results showing the region of success (ahite region) and fuilure (black region) of Program 1 with $\lambda=2 E D_{\text {min }}^{-1}$. Also depicted are the thresholds for saccess (solid red curve on the top-right) and failure
(dashed green curve on the bottom-left) peedicted by Theorem 2 .

Figure 1. Empirical probability of integrality of convex relaxation-based clustering. Lighter color corresponds to higher probability of success. We consider 2 clusters in \mathbb{R}^{3}, $4 \leq N \leq 50,2 \leq \Delta \leq 3.5$. The k-median LP always provided an integral solution. These numerical results suggest superiority of the k-median LP vs k-means SDP, and of k-means SDP with respect to k-means LP, when $k=2$.

$$
\mathrm{k} \text {-medians LP }
$$

Figure 2. When we consider 3 clusters in $\mathbb{R}^{3}, 6 \leq N \leq 42,2 \leq \Delta \leq 3.5$, the k median and k-means SDP show a very similar behavior. These numerical results suggest the performance of the k-median LP degrades with k.

 2. whicm is agnotic of the support sime k. This indicates thut the 'dnta-drives' alporithm abo warks
when $k \leq e \sqrt{n}$ independeat of p. Note that these results are very similar to the ose of the Cownerianse Thresbolding alpoeithm of Flgure 1 . The problem does not appear to be significartly harder when
k is unknown.

20xas.

Sensing as the Identity

- $\mathrm{x}=\mathrm{I} \mathrm{x}$ for a perfect sensor
- $x=(A B) x$ and $A B=I$, ex Camera
- $x=L(A x)$, ex. Coded aperture, $C T$
- $x=\mathbf{N}(A x)$ or even $x=\mathbf{N}(A(B x))$, ex Compressive Sensing
- $H x=\mathbf{N}(A x)$, ex, classification in Compressive Sensing
- $x=\mathbf{N} 2(\mathbf{N 1}(\mathrm{x})$), ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders and more

Machine Learning / Deep Neural Networks

Bounds and Limits DNNs

- Currently unknown.
- DNNs could even be complicated regularization schemes of simpler approach (but we have not found which)

The Great Convergence ?

- Recent use of Deep Neural Networks structure to perform MRI reconstruction, Error Correcting Coding, Blind Source Separation.....

Two more words

Advanced Matrix Factorization

- Recommender systems

What happens when the sensor makes the problem not NP-hard anymore?

More infos

- http://nuit-blanche.blogspot.com
- Paris Machine Learning meetup, http://nuit-blanche.blogspot.com/p/paris-based-meetups-on-machine-learning.html

