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Outline

Sensing
Big Data

What have we learned from compressive
sensing, advanced matrix factorization

Machine Learning

Two words



Sensing

Phenomena -> Sensor -> Making Sense of that Data



Phenomena -> Sensor -> Making Sense of that
Data



Information rich ano
cheap Sensors



e Youlube videos

e 18/04/11. 35nrs
uploaded per minute e

e 23/05/12. o0hrs
uploaded per minute

e 29/11/14. 100 hrs
uploaded per minute

Cost per Genome

 DNA seqguencing cost
e Single cell sequencing

e 2011: 1 cell

T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

« May 2012: 18 cells,

e March 2015:~200,000 cells



Moore's law is not just for
SENsors




Algorithm-wise

 Some problems used to be NP-Hard, relaxations
have been found.

* Parallel to Moore's law, algorithms and sensors
have changed the nature of the complexity of the
poroblem




Phenomena -> Sensor -> Making Sense of that
Data



Sensing as the ldentity

X = (AB)x and AB=I[, ex Camera

X = L(AX), ex. Coded aperture, CT

X = N(Ax) or even x = N(A(Bx)), ex
Compressive Sensing

Hx = N(AX), ex, classification in
Compressive Sensing

X = N2(N1(x)), ex autoencoders

Hx = N4(N3(N2(N1(x)))), deep
autoencoders




e X = | xfor a perfect sensor

Sensing as the Identity

« X = (AB)x and AB=I, ex Camera

X =L(Ax), ex. Coded aperture, CT

o X = N(Ax) or even x = N(A(Bx)), ex
Compressive Sensing

 Hx = N(AX), ex, classification in
Compressive Sensing

 Xx = N2(N1(x)), ex autoencoders

 Hx = N4(N3(N2(N1(x)))), deep
autoencoders




Compressive Sensing

sparse
signal

nonzero
entries

SjEE  EE EEEEE EEE

X
=

0
+
-
)
=
@
W
=
0
©
)
=




The relaxations and the
bounds

Phase Transition: (/1. /0) equivalence

Combinatorial Search!
p=kin «

R, solves F,
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The bounds as sensor
design limits
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Fig. 7: A depiction of the algorithms to be used for different
calibration scenarios. Note that for each case . must also be
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calibrated compressed sensing recovery [20).
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onvenience clouds the mind
ex: least squares
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Fig. 9.  Through-the-wall radar image using conventional backprojection with 100% data Fig. 11, Reconstructed image using BOMP and 6.4% data. The model used is y = ®Wr



|slands of knowledge

Linear Linear

Systtems S}(sttems -

of o ¢ \
Equations Equations Structured .

Sparsity
lsolvers

I

underdetermined

. K
underdetermined

Linear R
Systtems Underdetermined ,
of Structured e L1 e
i ructured , Linear Equations :
Equations | Sparsity q solvers inducing
= L1 solvers ’solvers norms/
underdetermined: solvers
RIP, NSP
Measurement RIP, NSP

measurement
matrices

matrices




|slands of knowledge

Partial list of Contributions in Compressed Sensing

1996
1996

1996

1997

1997
1998
1999
1999
2000
2000

Leahy & Jeffs : £, minimization (0 < p < 1) for sparse beamforming array

Rac et al. - terative reweighted least squares for Magnetoencephalography
(MEG)

Rao et al. - FOCUSS - /,, relaxation (0 < p < 1) using reweighted least-squares
with equalty constraints

J.J. Fuchs: Sensor array processing using /£,

Feng & Bresler : spectrum blind sampling, guarantee of MUSIC for MMV, spark
concitions

Delaney & Bresler | iterative tomographic reconstruction from sparse samples
with non-convex relaxation and reweighting algorithms

Harikumar & Bresler @ sparse solutions to inear inverse problems using convex
and non-convex relaxations, and reweighting algorithms

Feng : algebraic conditions for MMV

Venkataramani & Bresler : algebraic conditions (spark) for uniqueness
Bresler, Gastpar, & Venkataramani : “Image Compression on the Fly'

Fuch et al. : £, minimization

Couvreur & Bresler : quarantee for backward greedy

Gastpar & Bresler : information-theoretic analysis of compressive sensing with
noise and with quantization

Micrseot! PasssrPoing - Goyal-2050-10-16 o ppt [Compatbiiny Wods]
rn 0 [ | wwwomath uducedutaugesenimahaiCigonal salk. paf -~ W

/, regularization—known empirically

o

- Geology/geophysics N
-~ Claerbout and Muir (1973)
~ Taylor et al. (1979)
- Levy and Fulkager (1981)
~ Oldenburg et al. (1883)

Common elements:

« Sparsity assumption enables

. Radi os:s':::::r:"d e improved resolution of estimate
¥ :
~ Hogbom (1974) . (beygqq bandwidth of
- Schwarz (1978) \_ acquisition)
+ Fourler transform spectrescopy 1% » Sparslty in space or gradient
~ Mammone (1983)
- Minami et al. (1985) . ¢, mln_lmization to promote
+ NMR spectroscopy sparsity
- Barkhulsen (1965) « Sparse domain given by nature
~ Newman (1988)
Mathematical limits explored in

« Medical ultrasound /
- Papoulis and Chamzas (1979) _/ [Doncho (1992)



Beyond Compressive
Sensing



Sensing as the ldentity

X = (AB)x and AB=I[, ex Camera

X = L(AX), ex. Coded aperture, CT

X = N(Ax) or even x = N(A(Bx)), ex
Compressive Sensing

Hx = N(AX), ex, classification in
Compressive Sensing

X = N2(N1(x)), ex autoencoders

Hx = N4(N3(N2(N1(x)))), deep
autoencoders




Advanced Matrix
Factorizations

Also Linear Autoencoders:

A=BCs.tBorCorB andC have specific
features

Examples: NMF, SVD, Clustering, ....

Use: hyperspectral unmixing,....



Advanced Matrix
Factorlzatlons

Spectral Clustering, A = DX with unknown D and X, solve for sparse
Xand X_i=0or 1

The Advanced Matrix Factorization Jungle

Welcome to The Advanced Matrix Factorization Jungle

K-Means / K-Median: A = DX with unknown D and X, solve for XXAT
=land X_i=0or 1

Subspace Clustering, A = AX with unknown X, solve for sparse/other
conditions on X

[ A fring document o the state of the an matnix facionzation 2igonithms 204 heir aumerous implementations ]

Teble of Content

Graph Matching: A = XBXAT with unknown X, B solve for B and X as
a permutation

v for UV 208 L fowest rack possdbie

NMF: A = DX with unknown D and X, solve for elements of D,X
positive

+ Stabia Deinminia Cnmnnnct Do (XDOTY Neins Rabes DA A =T.+ 3+ 1. % N mtsemmin wntm fne T S enote % smneen X omion

Method || D(X;BC) B C
T, ‘ — 2 T =Y B
Generalized Matrix Factorization, W.*L — W.*UV" with W a known i_\":)cnm K i gg;:i = I? : (CJ(C..: ¥ I\
mask, U,V unknowns solve for U,V and L lowest rank possible _ cij = 10,1}
k-medians || ||X - BC|, - cCh =1,
Matrix Completion, A = H."L with H a known mask, L unknown solve pLSI[27] || KL(X:BC) 17B1=1 P'l :( {'_l :}
for L lowest rank possible bi; >0 ci; =0
NMF (23] || KL(X;BC)  b; >0 cij =0
Stable Principle Component Pursuit (SPCP)/ Noisy Robust PCA, A =
L+ S+ Nwith L, S, N unknown, solve for L low rank, S sparse, N Table 1. Criteria which satisfy the EBD conditions ( 1)(2)(3).
noise
| 1(2) 7
Robust PCA : A = L + Swith L, S unknown, solve for L low rank, S SSC 1Z]lo or || Z]]x {Z|X = XZ, diag(Z) = 0}
sparse LRR Z]l. {Z|X = XZ}
_ SSQP |Z* Z||x {Z\X = XZ.Z > 0.diag(Z) = 0}
Sparse PCA: A = DX with unknown D and X, solve for sparse D MSR 1Z h + 0|2l i {ZIX = X Z,diag(Z) = 0}
. AiilZis|F9 ) =
Dictionary Learning: A = DX with unknown D and X, solve for spars ~ Other choices i 2 M) {Z|X = XZ,diag(Z) = 0}
Aq>0p.,>0.s>0




Bounds on Advanced Matrix

20 40

Npin (Minkmum cluster size)

100

Fig. 2: Simulation results showing the region of success (white region)
and faibere (black region) of Program | with A == 0.99A .. Also depicted
are the thresholds for saccess (solid red curve on the wp-right) and fmlure
(dashed green curve on the bottom-left) predicted by Theosem 1.
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Fig. 3: Simulation results showing the region of success (whise region)
and faibere (black region) of Program | with A = 2ED . Also depicted

are the thresholds for saccess (solid red curve on the wp-right) and fulure
(dashed green curve on the bottom-left) predicted by Theosem 2.

Factorizations

k-means SDP k-means LP o
50 "
45
o as
= 40 s
8 35 9 g os
5 30 -
2 25 i 4
£ 20 t
2 15" 02
10"
SR
2 25 3 35 35
distance aGistance
FIGURE 1. Empincal probability of integrality of convex relaxation-based clustering.
Lighter color corresponds to higher probability of success. We consider 2 clusters in R,
1< N <€50,2 <A < 3.5. The k-median LP always provided an integral solution. These
numerical results suggest superiority of the k-median LP vs k-means SDP, and of k-mecans
SDP with respect to k-means LP, when k = 2.
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FIGURE 2. When we consider 3clusters in R3, 6 < N € 42,2 € A < 3.5, the k-

median and k-means SDP show a very similar behavior. These numerical results suggest
the performance of the k-median LP degrades with k.
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Sensing as the Identity

« x = | x for a perfect sensor = —

« X = (AB)x and AB=I, ex Camera

X =L(Ax), ex. Coded aperture, CT

X = N(Ax) or even x = N(A(Bx)), ex
Compressive Sensing

 Hx = N(AX), ex, classification in
Compressive Sensing

 Xx = N2(N1(x)), ex autoencoders

 Hx = N4(N3(N2(N1(x)))), deep
autoencoders and more



Machine Learning / Deep

Neural Networks
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Bounds and Limits DNNSs

* Currently unknown.

 DNNs could even be complicated regularization
schemes of simpler approach (but we have not
found which)



The Great Convergence ?

 Recent use of Deep Neural Networks structure to
perform MRI reconstruction, Error Correcting
Coding, Blind Source Separation.....




Two more words



Users

Advanced Matrix
Factorization

« Recommender systems

Movies d

R

Sparse

de \/

0




What happens when the sensor makes
the problem not NP-hard anymore 7

SMRT View

PacBio RS 1

. Multibridging: near optimality for Chr 19
Simple model: 1.L.D. DNA, G ! 1 Rk i i ?
—
normalized # of reads (Motahari, Bresler & T. 12) i
N :
K i # of repeats ' e
lower /v:
= bound H
] SIMPLEBR|DGING
1 Current length E
flow ___j MULTIBRIDGING |
-— Human Chr 19 00 000 'OO 2(‘]00 00 00 00 0:0 00
g ‘ ‘ ‘ ’ Build'37 Lander—W{terman read length L
2 log G read length L g . coverage
Hrunyi
What about for finite real DNA? 2




More Infos

* http://nuit-blanche.blogspot.com

* Paris Machine Learning meetup, http://nuit-

blanche.blogspot.com/p/paris-based-meetups-on-
machine-learning.html
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