"Ca va être compliqué": Islands of knowledge, Mathematician-Pirates and the Great Convergence

> Igor Carron, https://www.linkedin.com/in/IgorCarron http://nuit-blanche.blogspot.com

IFPEN presentation, March 30th, 2015

Outline

- Sensing
- Big Data
- What have we learned from compressive sensing, advanced matrix factorization?
- Machine Learning
- Two words

Sensing

Phenomena -> Sensor -> Making Sense of that Data

Phenomena -> Sensor -> Making Sense of that Data

Information rich and cheap sensors

- YouTube videos
 - 18/04/11. 35hrs uploaded per minute
 - 23/05/12. 60hrs uploaded per minute
 - 29/11/14. **100 hrs** uploaded **per minute**
- DNA sequencing cost
- Single cell sequencing
 - 2011: 1 cell
 - May 2012: 18 cells,
 - March 2015:~200,000 cells

Moore's law is not just for sensors

Algorithm-wise

- Some problems used to be NP-Hard, relaxations have been found.
- Parallel to Moore's law, algorithms and sensors have changed the nature of the complexity of the problem

Phenomena -> Sensor -> Making Sense of that Data

Sensing as the Identity

- x = I x for a perfect sensor
- x = (AB)x and AB=I, ex Camera
- x = L(Ax), ex. Coded aperture, CT
- x = N(Ax) or even x = N(A(Bx)), ex
 Compressive Sensing
- Hx = N(Ax), ex, classification in Compressive Sensing
- x = N2(N1(x)), ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders

Sensing as the Identity

- x = I x for a perfect sensor
- x = (AB)x and AB=I, ex Camera
- x = L(Ax), ex. Coded aperture, CT
- x = N(Ax) or even x = N(A(Bx)), ex
 Compressive Sensing
- Hx = N(Ax), ex, classification in Compressive Sensing
- x = N2(N1(x)), ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders

Compressive Sensing

The relaxations and the bounds

The bounds as sensor design limits

<u>http://nuit-blanche.blogspot.fr/2013/11/</u> <u>sunday-morning-insight-map-</u> <u>makers.html</u>

Fig. 7: A depiction of the algorithms to be used for different calibration scenarios. Note that for each case L must also be sufficiently high depending on σ and p_c . The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery [20].

Convenience clouds the mind ex: least squares

Fig. 9. Through-the-wall radar image using conventional backprojection with 100% data.

Fig. 11. Reconstructed image using BOMP and 6.4% data. The model used is $\breve{y} = \Phi \Psi r$.

Islands of knowledge

Islands of knowledge

Partial list of Contributions in Compressed Sensing

- 1991 Leahy & Jeffs : ℓ_p minimization (0) for sparse beamforming array
- 1992 Rao et al. : iterative reweighted least squares for Magnetoencephalography (MEG)
- 1995 Rao et al. : FOCUSS ℓ_p relaxation (0 with equality constraints
- 1996 J.J. Fuchs: Sensor array processing using ℓ₁.
- 1996 Feng & Bresler : spectrum blind sampling, guarantee of MUSIC for MMV, spark conditions
- 1996 Delaney & Bresler : iterative tomographic reconstruction from sparse samples with non-convex relaxation and reweighting algorithms
- 1997 Harikumar & Bresler : sparse solutions to linear inverse problems using convex and non-convex relaxations, and reweighting algorithms
- 1997 Feng : algebraic conditions for MMV
- 1998 Venkataramani & Bresler : algebraic conditions (spark) for uniqueness
- 1999 Bresler, Gastpar, & Venkataramani : "Image Compression on the Fly"
- 1999 Fuch et al. : ℓ₁ minimization
- 2000 Couvreur & Bresler : guarantee for backward greedy
- 2000 Gastpar & Bresler : information-theoretic analysis of compressive sensing with noise and with quantization

Microsoft PowerPoint - Goyal-2010-10-16.c.ppt [Compatibility Wode]

ℓ_1 regularization—known empirically

Geology/geophysics

- Claerbout and Muir (1973)
- Taylor et al. (1979)
- Levy and Fullager (1981)
- Oldenburg et al. (1983)
- Santosa and Symes (1988)
- Radio astronomy
 - Högborn (1974)
 - Schwarz (1978)
- Fourier transform spectroscopy
 - Kawata et al. (1983)
 - Mammone (1983)
 - Minami et al. (1985)
- NMR spectroscopy
 - Barkhuijsen (1985)
 - Newman (1988)
- Medical ultrasound
 - Papoulis and Chamzas (1979)

Common elements:

- Sparsity assumption enables improved resolution of estimate (beyond bandwidth of acquisition)
- Sparsity in space or gradient with respect to space
- ℓ₁ minimization to promote sparsity
- Sparse domain given by nature

Mathematical limits explored in [Donoho (1992]

Beyond Compressive Sensing

Sensing as the Identity

- x = I x for a perfect sensor
- x = (AB)x and AB=I, ex Camera
- x = L(Ax), ex. Coded aperture, CT
- x = N(Ax) or even x = N(A(Bx)), ex
 Compressive Sensing
- Hx = N(Ax), ex, classification in Compressive Sensing
- x = N2(N1(x)), ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders

Advanced Matrix Factorizations

- Also Linear Autoencoders:
- A = B C s.t B or C or B and C have specific features
- Examples: NMF, SVD, Clustering,
- Use: hyperspectral unmixing,....

Advanced Matrix

Factorizations

- Spectral Clustering, A = DX with unknown D and X, solve for sparse X and X_i = 0 or 1
- K-Means / K-Median: A = DX with unknown D and X, solve for XX^T = I and X_i = 0 or 1
- Subspace Clustering, A = AX with unknown X, solve for sparse/other conditions on X
- Graph Matching: A = XBX^T with unknown X, B solve for B and X as a permutation
- NMF: A = DX with unknown D and X, solve for elements of D,X positive
- Generalized Matrix Factorization, W.*L W.*UV' with W a known mask, U,V unknowns solve for U,V and L lowest rank possible
- Matrix Completion, A = H.*L with H a known mask, L unknown solve for L lowest rank possible
- Stable Principle Component Pursuit (SPCP)/ Noisy Robust PCA, A = L + S + N with L, S, N unknown, solve for L low rank, S sparse, N noise
- Robust PCA : A = L + S with L, S unknown, solve for L low rank, S sparse
- Sparse PCA: A = DX with unknown D and X, solve for sparse D
- Dictionary Learning: A = DX with unknown D and X, solve for spars

The Adv	anced Matrix Factorizatio	n Jungle		
		Welco	me to The Advanced Ma	trix Factorization Jungle
8*1 ; 77				
			Carl Mark	
			N-104 255	
			a la ma	
			Salar Andrews	NT/COLORING
		[A living document	on the state of the art matrix factorizatio	n algorithms and their numerous implementation
			Table of Con	test
• Introdu	ction			
• C	ontributions			
o N	lotations	Time Make (Per 07 1))		
Kernel	Factorizations	A V unber Augebra (AznolyLA))		
- K-Mea	ns / K-Median: A = DX with unknown D and ns / K-Median: A = DX with unknown D :	and X, solve for XX^T = I and X_i = 0 or 1		
Graph I	Matching: A = XEX ⁺ T with unknown X, B	solve for B and X as a permutation		
General Materia	fired Matrix Factorization, W.*L - W.*UV	7' with W a known mask, U,V unknown solve for at 1 weberran solve for 1 formest cash counding	or $U_{s}V$ and L lowest rank possible	
- Stabi- T	Deleviela Component Durmit (SDCD): Main	The Reduct DCA $1 = 1.+2+N$ with $1.2 N$ under	orme solve for Liver each Success No	oire.
	Method	$\mathcal{D}(\mathbf{X}; \mathbf{BC})$	B	С
	SVD	$\ X - BC\ _{F}^{2}$	$\mathbf{B}^T \mathbf{B} = \mathbf{I}$	$CC' = \Lambda$
	k-means	$\ \mathbf{X} - \mathbf{BC}\ _{\mathrm{F}}^2$	-	$\mathbf{C}\mathbf{C}^T = \mathbf{I}$
		1		$c_{11} = \{0, 1\}$
	h madiana	IV DOI		CCT
	<i>k</i> -medians	$\ \mathbf{A} - \mathbf{B}\mathbf{C}\ _1$	-	CC = 1,
				$c_{ij} = \{0, 1\}$
	pLSI [27]	$KL(\mathbf{X}; \mathbf{BC})$	$1^T B 1 = 1$	$1^T \mathbf{C} = 1$
			$b_{ii} \ge 0$	$c_{ii} \ge 0$
	THE REPORT OF TH		- U	

Table 1. Criteria which satisfy the EBD conditions (1)(2)(3).

 $b_{ij} \geq 0$

 $c_{ij} \geq 0$

NMF [23] || KL(X; BC)

	f(Z)	Ω
SSC		$\{Z X = XZ, \operatorname{diag}(Z) = 0\}$
LRR	<i>Z</i> .	$\{Z X = XZ\}$
SSQP	$ Z^T Z _1$	$\{Z X = XZ, Z \ge 0, \operatorname{diag}(Z) = 0\}$
MSR	$ Z _1 + \delta Z _1$	$\{Z X = XZ, \operatorname{diag}(Z) = 0\}$
Other choices	$\frac{\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} Z_{ij} ^{p_{ij}}\right)^{s}}{\lambda_{ij} > 0, p_{ij} > 0, s > 0}$	$\{Z X = XZ, \operatorname{diag}(Z) = 0\}$

Bounds on Advanced Matrix Factorizations

Fig. 2: Simulation results showing the region of success (white region) and failure (black region) of Program 1 with $\lambda = 0.99\Lambda_{nucc}$. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed green curve on the bottom-left) predicted by Theorem 1.

Fig. 3: Simulation results showing the region of success (white region) and failure (black region) of Program 1 with $\lambda = 2ED_{min}^{-1}$. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed green curve on the bottom-left) predicted by Theorem 2.

Fig. 2. Empirical success rates for reductes completion of an $M \times L$ matrix sampled uniformly at random, as a function of sampling ratio $J = \frac{M}{M_H}$ and rate N. Here, "success" is defined as (MSE) < -100 dB, success rates were compated from 10 tandem rationaises, and M = L = 3000. Points above the red rates are indeable as develobed in the rate.

FIGURE 1. Empirical probability of integrality of convex relaxation-based clustering. Lighter color corresponds to higher probability of success. We consider 2 clusters in \mathbb{R}^3 , $4 \le N \le 50$, $2 \le \Delta \le 3.5$. The k-median LP always provided an integral solution. These numerical results suggest superiority of the k-median LP vs k-means SDP, and of k-means SDP with respect to k-means LP, when k = 2.

FIGURE 2. When we consider 3 clusters in \mathbb{R}^3 , $6 \le N \le 42$, $2 \le \Delta \le 3.5$, the *k*-median and *k*-means SDP show a very similar behavior. These numerical results suggest the performance of the *k*-median LP degrades with *k*.

Fig. 8. Empirical success rates for RPCA with a 200 × 200 matrix of rank N computed by a fraction δ of outliers with amplitudes uniformly distributed on [-10, 10]. Here, "success" is defined as NMSE < -80 dB, and success rates were averaged over 10 problem realizations. Points above the red curve are infeasible, as described in the text.

Figure 2: The support recovery phase transition for the 'data-driven' algorithm described in Section 3, which is agnostic of the support size k. This indicates that the 'data-driven' algorithm also works when $k \leq c\sqrt{n}$ independent of p. Note that these results are very similar to the one of the Covariance Thresholding algorithm of Figure 1. The problem does not appear to be significantly harder when k is unknown.

[17] R. Easheran, A. Montanari, and S. Oh, "Infatrix completion from a law minics," *Information Theory*, IEEE Transactions on, vol. 36, no. 6, pp. 2008–2008. doi:10.1016/j.

Sensing as the Identity

- x = I x for a perfect sensor
- x = (AB)x and AB=I, ex Camera
- x = L(Ax), ex. Coded aperture, CT
- x = N(Ax) or even x = N(A(Bx)), ex
 Compressive Sensing
- Hx = N(Ax), ex, classification in Compressive Sensing
- x = N2(N1(x)), ex autoencoders
- Hx = N4(N3(N2(N1(x)))), deep autoencoders and more

Machine Learning / Deep Neural Networks

Bounds and Limits DNNs

- Currently unknown.
- DNNs could even be complicated regularization schemes of simpler approach (but we have not found which)

The Great Convergence ?

 Recent use of Deep Neural Networks structure to perform MRI reconstruction, Error Correcting Coding, Blind Source Separation.....

Two more words

Advanced Matrix Factorization

• Recommender systems

What happens when the sensor makes the problem not NP-hard anymore ?

PacBio RS II

Simple model: I.I.D. DNA, G ! 1

More infos

- <u>http://nuit-blanche.blogspot.com</u>
- Paris Machine Learning meetup, <u>http://nuit-blanche.blogspot.com/p/paris-based-meetups-on-machine-learning.html</u>