

Volume-Based Shape Analysis for Internal Microstructure of Steels

Image Processing Research Team, RIKEN

Norio Yamashita Shin Yoshizawa Hideo Yokota

2014/10/30 (Thu) IEEE International Conference on Image Processing (ICIP2014)

Importance of microstructure

Micro-structures significantly affect properties.

New global trend

Computer-aided material designing:

Simulate and design microstructures and properties

Materials genome initiative in USA [OSTP 2011]

Japan has also started project "Materials integration". [2014]

What's our chance?

Image-based materials genome

4

We propose a new framework for 3D micro-structure evaluation based on image processing.

Focus on bearing steel

Bearing : Mechanical element to support rotating shaft.

High strength requirement than normal steel.

Fatigue failures of bearing High stress condition Contamination

→ Crack initiation & propagation

Huge real-world applications.

What shape features of inclusion will affect?

Complex shapes: Anisotropy and surface roughness of inclusions will cause crack initiation. [Cyril2008]

Our goal : 3D imaging and shape analysis technique.

Related imaging technique of steels

Require 100 nano resolution & millimeter region !

Difficulty

3D imagings have been developed.

But, not enough in resolution, view range, or labor cost.

For example, X-ray CT is unavailable to steels unfortunately.

Related 3D shape analyses of steels

Topology [Adachi 2010]

3D morphology [Morito2013]

genus, Euler number

volume ratio of micro-structures

Difficulty

3D shape characterization of steels are at early stage. Only a few frameworks exist for dealing with steel volumes.

Our approach

Framework

Imaging device Segmentation 3D shape analysis

3D, Precise Automatic Automatic labeling

Multi-resolution analysis

Shape:

Anisotropy, Roughness, + Other features

Our imaging technique

3D internal structure microscope

Automatic serial-sectioning device

Automatic serial-sectioning

Feature: Automatic: Labor-saving Precise: High resolution Sufficient image alignment Efficient : Months → Hours or days

Segmentation

Limited in simple method.

Threshold of intensity & Manual segmentation

Future work to incorporate, ...

Supervised Segmentation

- Pattern recognition
- Machine learning

[Straehle 2013]

Unsupervised Segmentation

- Otsu's method [Otsu 1979]
- Snake (Active Contour)
- Graph Cuts
- Mean Shift
- Water Shed (Region Growing)

Multi-resolution analysis

Labeling and analysis in each resolution.

Multi -resolution & -material methods

Laplacian pyramid [Burt 1983] + Sethian's method [Sethian 1996] Detail to Global feature

Anisotropy analysis

Principal component analysis (PCA)

PCA results corresponds to axes of ellipsoid fitting.

Eigen values: λ_1 , λ_2 , λ_3 Eigen vectors: \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3

Application

Ratios of Eigen values $(\lambda_1 / \lambda_2, \lambda_1 / \lambda_3, \lambda_1 / \lambda_3) \longleftrightarrow$ Crack give anisotropy of inclusions.

Roughness analysis

Surface curvatures

- > Principal curvatures κ_1 and κ_2
- > Gaussian curvature $\kappa_1 \kappa_2$
- Mean curvature
- Total curvature

$$(\kappa_1 + \kappa_2)/2$$

 $\kappa_1^2 + \kappa_2^2$

+ Their statistical values (Max, Min. Mean, Histograms, etc)

e.g. Gaussian curvature and 3D shapes

$$\kappa_1 \kappa_2 < 0 \quad \kappa_1 \kappa_2 = 0 \quad \kappa_1 \kappa_2 > 0$$

Discrete algorithm

Least-squares polynomial fitting Method [Yoshizawa 2008]

Application

Inclusions Surface roughness

Initiating points Existence of cracks

Cracks

Experiment

- 3D Imaging & segmentation
- Labeling
- Anisotropy analysis (PCA)
- Roughness analysis (Curvature)

of

real-world bearing steels provided by a steel company.

Detailed images of Inclusions and micro-cracks. Automatically labeled images.

Experiment -Anisotropy (PCA results) -

Axis length ratio of inclusions

Anisotropy was characterized from three axes.

Discussion

Previous literatures use anisotropy,

but difficult to characterize crack-initiating inclusions.

Experiment -Roughness-

Principal curvature (maximum)

Multi-resolution

Roughness was calculated from 3D images.

Statistics

Maximum, minimum, mean, median, histograms are also calculated.

Experiment -Histogram of max principal curvature-

Specimen with cracks

slope in negative region \rightarrow concave

Specimen without cracks

Almost no slope in negative region

New hypothesis based on quantitative analysis Additional histogram analysis of curvature implied concave regions were important for initiating cracks.

Limitations & Future work

Limitations

- Simple segmentation
- Limited shape parameters

Future work

- Incorporating sophisticated segmentation
- Using other shape parameters & features

Distance field Streamline Min

Min. distance Multi-resolution

More specimens, other materials

etc.

Conclusion

- > We proposed image-based materials genome.
- We constructed a novel framework with efficient
 3D imaging and shape characterization of steels.

Labeling Shape analysis

Imaging Segmentation

Curvature analysis implied concave regions was important for initiating cracks.