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ABSTRACT

The Markov Random Field (MRF) has been used exten-
sively in Image Processing as a means of smoothing inter-
faces between differing regions in an image. The MRF ap-
plies a total boundary length ‘energy’ penalty that is sub-
sequently minimized by an inversion algorithm. Minimum
energy implies a force associated with boundaries, the sum
of which must equal zero at every point at equilibrium. This
requirement leads to long range structures, resulting from
the short-range interactions of the MRF used to bias seg-
mentation results. This work uses a simple Bayesian MRF
regularized segmentation method to show that classical re-
sults from Surface Science are reproduced when segment-
ing regions of low contrast. This has implications, both in
the Materials Science and Image Processing fields.

Index Terms— segmentation, priors, context-sensitive
segmentation, materials science

1. INTRODUCTION

In Materials Science, properties of materials are modi-
fied by changing the 3-D texture (‘microstructure,’ in the
Materials literature). Much attention has been histori-
cally directed towards characterizing this microstructure
via various modalities of microscopy. Script-driven image
collection makes it possible to collect large datasets over
night, from which more complete characterizations can be
made. Consequently, attention has been directed towards
automating the analysis of the image data. To this end, we
have begun to work with regularized methods, typically us-
ing the Markov Random Field (MRF)[1] and the Generalized
Gaussian Markov Random Field (GGMRF).[2, 3, 4]

MRF regularization is based on the Ising model, which
was originally developed to describe physical systems. This
introduces a double edged sword of providing ‘good’ seg-
mentations of an image, while introducing a bias that can
produce physically justifiable erroneous results. This paper
introduces the concepts of Surface Science, which are im-
plicit in the Ising model, and can produce unexpected re-
sults. Several of the classical results from Surface Science

are shown that are reproduced in MRF regularized segmen-
tations.

The parallel development of the MRF in Solid State
Physics, Materials Science, and Image Processing are de-
scribed in the Prior Work section. The segmentation method,
introductory Surface Science, and specific segmentation
methods are discussed in the Methods section. The Re-
sults, Discussion, and Conclusion sections follow suite. We
discuss the implications of Surface Science in both Materi-
als Science and Image Processing fields in the Discussion.

2. PRIOR WORK

The Ising Model was developed in Physics by Ernst Ising[5,
6] as a means of analyzing the phase transition behavior of
a 1-D ferromagnet. This was extended to a 2-D ferromag-
net by Onsager.[7] By hypothesis, at equilibrium, the prob-
abilities of states of points in Ising lattices are Gibbs dis-
tributed (Boltzmann distributed in the Physics literature).
The Ising model has only two possible spin states, a limita-
tion that was lifted with the Potts model,[8, 9] which allowed
multiple states. Binder, developed Monte Carlo methods
for computation of thermodynamic properties of these sys-
tems, using Metropolis importance sampling.[10]

In parallel, MRFs have become ubiquitous in the image
processing and computer vision literature. The Hammersley-
Clifford theorem[11] showed that a random field is an MRF
if and only if it has a Gibbs distribution. This allows an MRF
to be constructed using localized conditional probabili-
ties, with a joint distribution that can be written in terms
of an energy function. This theorem was never published,
but Besag[12] published a proof. Geman and Geman[13]
proposed a Markov chain Monte Carlo sampling approach
(Gibbs sampler), that allows determination of the maxi-
mum a posteriori (MAP) estimate of an image. Marroquin,
et al.,[14] proposed a method based on the Gibbs sampler
for approximating the maximum of the posterior marginals
(MPM) estimator.

In the Materials literature, the Ising and Potts mod-
els were developed into evolution models that described
mesoscale structures, i.e. collective patterns of aggregates of



pixels on a scale intermediate between the pixel and con-
tinuum scales. Principal developers of these techniques
included Liebowitz, et al.[15] and Srolovitz, et al.,[16][17]
although the technique has been used extensively by many
authors. Miodownik, et al.[18] used Monte Carlo meth-
ods to validate a mechanism proposed by Zener (Zener
pinning) by which interfaces become trapped by small par-
ticles. The reviews by Landau and Binder[19] and by Rollett
and Manohar[20] summarize key developments.

To the best of the authors’ knowledge, this is the first
time mesoscale structure implications of the MRF and their
influence on MRF-regularized segmentation have been in-
vestigated.

3. METHODS

Mesoscale structures originate from the collective behav-
iors of local interactions in solids and have also been shown
to develop in simulations involving Potts models.[15, 16]
The MRF, being one of the most common forms of smooth-
ing and having been derived from these models, is expected
to bias the results of a segmentation to produce mesoscale
structures. This section describes the MRF regularized seg-
mentation method used here and gives a brief description
of mesoscale structures predicted by Surface Science.

3.1. Regularized Segmentation

The EM/MPM algorithm[21] is a Bayesian method that uses
a mixture of Gaussians to model the observed image and
an MRF for regularization and uses minimization of the ex-
pected number of misclassified pixels as an estimation cri-
terion. Built on the MPM[14] model, it uses an EM algo-
rithm to estimate the parameters in the image model. It
has been applied to Materials Science images in previous
work.[1] The codes we used here are available online as the
EM/MPM Workbench at www.bluequartz.net.

Let X and Y be the segmentation label field (to be esti-
mated) and the observed image, respectively. Both are de-
fined on rectangular lattice, S, such that the random vari-
ables Xs ∈ X and Ys ∈ Y occur at the spatial location s ∈ S.

In this paper, x , (x1, x2, · · · , xN ) represents a sam-
ple realization of X , (X1, X2, · · · , XN ) and, similarly for
y , (y1, y2, · · · , yN ), where N is the number of points in
S. The MRF model used here is a K -level Ising model:
xs ∈ {1,2,3, . . . ,K }, where K is the number of possible
classes, with probability mass function of X modeled as:

pX(x) = 1

z
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where C is a collection of cliques, βxr ,xs are spatial inter-
action parameters (dimensionless exchange energies in the
Physics literature), and δxr ,xs is Kroneker’s delta function of
xr and xs .
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where θ is the set of parameters to be estimated for the
Gaussians: mean (µk ) and variance (σ2

k ) for every class k.
Using Equations (1) and (2), Bayes’ rule gives:
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where z is the partition function and fY(y|θ) is the marginal
probability of y for parameters θ.

The EM/MPM algorithm is implemented by alternately
executing the MPM algorithm for segmentation and the EM
algorithm for the parameter estimation until some stopping
criterion has been met.

3.2. Surface Science

Thermodynamics includes the study of properties of ho-
mogeneous volumes of materials, or phases, as well as the
boundaries between them. The later subject is a well devel-
oped field: Surface Science (for recent reviews, see[22, 23,
24]). The classical topic of Surface Science was developed
by Gibbs[25] and contemporaries and involves the interplay
between interfaces with other interfaces, as well as phases.
When a length penalty is used on an interface, all of these
factors come into play.

One key result can be seen by considering a 2-D image
containing a junction of interfaces that can migrate in or-
der to establish equilibrium. If the junction is located at a
point (x, y), by hypothesis, the energy (E(x, y)) is single val-
ued with an equilibrium state described by:

E eq = {E eq |E(x, y)−E eq ≥ 0, ∀(x, y) ∈ R2} (4)

Far from a critical point, E(x, y) may be expanded in a Tay-
lor’s series about E eq :

E = E eq +
3∑

i=1
∂E/∂si∆si +O(||∆r ||22) (5)

where s1 are variables that parameterize the intersecting
curves and ∆r , (x − xeq , y − yeq ), is a deviation from the
equilibrium position.

Changing the partials in Equation (5) to directional
derivatives, ∂/∂si , t̂ · ∇, where t̂i , d

d si
Ri (x(si ), y(si )) are

the tangent vectors to the curves. Recognizing that ∆si is



just t̂i ·∆r , and retaining only the principal linear parts of
the increments (δE and δr ), Equation (5) becomes:

δE = δr ·
(

3∑
i=1

t̂i t̂i ·∇E

)
= 0 (6)

Defining t̂i · ∇E , Γi as interface tensions that are implic-
itly defined by the regularization parametersβi j , we can see
that they are forces, being derivatives of energies. Substitut-
ing into Equation (6), and recognizing that δr being arbi-
trary requires the sum vanish identically, the sum becomes:

3∑
i=1

t̂iΓi = 0 (7)

Equation (7) is a classical relationship that must be obeyed
by all interface junctions in 2-D at equilibrium. One in-
teresting case is wetting, where Γ1 > Γ2 +Γ3. In this case,
boundary 1 is unstable and will be consumed by the others.

The interplay between interfaces and phases is illus-
trated by the classical capillarity phenomenon. Consider a
“tube” in 2-D, as shown in Figure 1(a). If this were filled with
a fluid, equilibrium would obtain when the “volume force”
due to gravity on the fluid in the cavity equaled the jump in
interface tensions at the junction of the fluid interface with
the walls of the tube:Ï

ρg dh dr = 2�Γ� (8)

where ρ is the “density” of the fluid, g is a “gravitational
force,” h is the hight above “equilibrium surface height” of a
reservoir, 2r is the thickness of the tube, and �Γ� is the jump
in interface tensions at the junction. In an image analogy,
ρg would describe the mismatch of forward models and �Γ�
is implicitly defined by the mismatch inβhyperparameters.

Finally, interfaces can combine by intersection with
others, leading to “binding energy” of an interface to a
small region, if some length of interface can be consumed
with the intersection. Zener[26] pointed this out and pro-
posed a mechanism by which boundaries of crystallites can
be “pinned” by small particles because, when a boundary
intersects a particle, the total boundary area is reduced by
the cross sectional area of the particle. This is commonly
referred to as Zener pinning.

3.3. Regularized Segmentation with Low Contrast

Regularized segmentation is a balance between the obser-
vation and the regularization. In the extreme where there
is very little intensity difference between regions, the reg-
ularization dominates. This work exploits an artifact in the
forward model: being a mixture of Gaussians, a shallow gra-
dient will segment as two regions, each region being de-
fined by its respective Gaussian. Since there is almost no
contrast in the original image, the (hallucinated) boundary

between these regions should show the mesoscale behavior
dictated by Surface Science. Inputs were prepared, either
as phantoms with gentle gradients and some Poisson noise
added to simulate detector noise, or from real images of
a Silicon Carbide fiber/matrix composite, where the fibers
had a coating material. The background (matrix) in those
images often have small gradients in intensity due to imag-
ing irregularities. These were cropped and used for inputs.

Four phenomena were investigated: capillarity eleva-
tion, contact angles, wetting, and Zener pinning, as de-
scribed above. Only qualitative features were sought be-
cause of the difficulties of evaluating Γ values from β values
(discussed below). In all cases, at least 5 segmentations
were performed under the same conditions and the results
reported were typical of the set.

4. RESULTS

Figure 1(a) shows the phantom used for to show capillar-
ity effects. The darker outside regions segment as the same
class and the central portion (the ‘tube’) is designed to seg-
ment as two classes. Figure 1(c) shows an ‘unbiased’ seg-
mentation for whichβ for all interfaces are equal to 0.9. The
low contrast boundary is half way up the tube.

Choosing a larger value (2.0) for β for the lower por-
tion of the tube wall and a smaller value (1.4) for the up-
per portion produced the predicted result: depression of
the meniscus, as shown in Figure 1(b). Reversing the β val-
ues had the opposite effect (Figure 1(d)).

None of the segmentations reliably reproduced Equa-
tion (7), presumably because of the ill-defined values of Γ
for small systems (discussed below).

Figure 2(a) shows a SiC/SiC composite with a slight gra-
dient in the intensity of the background (inset). Figure 2(b)
shows a three class segmentation of the inset, where classes
0, 1, and 2 are the red, light gray, and dark gray regions,
respectively. Increasing β1,2 favors interfaces with class 0,
which completely wetted the interface, See Figure 2(c).

Figure 3 shows a segmentation of the same sample with
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Fig. 1. Capillarity induced segmentations observed when a
gentle gradient exists in intensity of the center region. (a)
phantom, (b-d) effects of boundary penalty differences.



(b) (c)(a)

Fig. 2. Regularization induced wetting of an interface. (a)
original image, (b) β0,1 = 0.9, β0,2 = 0.5, β1,2 = 0.9, (c) β0,1 =
0.9, β0,2 = 0.9 and β1,2 = 1.8.

a low contrast boundary. The circled areas indicate inclu-
sion particles that segment as a dark gray class, which, ap-
parently, pin the boundaries as Zener predicted.

5. DISCUSSION

The results of the segmentation show qualitative agreement
with the predictions of Surface Science. It is likely that true
quantitative agreement will not be possible for several rea-
sons. Most importantly, Surface Science is an asymptotic
theory, which applies in the limit as the discretization scale
tends to zero. For the results shown here, the pixel size
was significant in comparison with the feature size. In this
case, {Γi } are stochastic properties that are parameterized
by {βi }, fluctuating from one segmentation to another. Pos-
sibly, {Γi } can be estimated, as has been done by Mon, et
al.,[27] but this requires identification of a characteristic
energy and a temperature to be defined.

The implications of mesoscale behavior of boundaries
affects image processing in Materials Science directly be-
cause materials behavior is typically dominated by multiple
length scales. For example, fracture behavior is often deter-
mined by the properties of the interfaces between phases,
which is dominated by the atomic scale, typically 0.1nm.
On the other hand, strength is often determined by tex-
tures, whose characteristic length scale is typically 0.5µ or
larger. In evolution simulations, segmented structures form

Fig. 3. Segmentation showing the Zener pinning mecha-
nism with a low contrast boundary.

boundary conditions for Partial Differential Equation (PDE)
based simulations, so interface detail is critically important.

Analysis of mesoscale behavior is important in image
segmentation because it explains some of the global effects
of MRF regularization, particularly when the results of a
segmentation do not match expectations, e.g. Figure 3. For
inpainting,[28] if the boundary between two inpainted re-
gions is important, the values of {β} can be used to control
the characteristics of extrapolations. The wetting behavior
presented above shows promise for cases where it is desired
to keep objects from aggregating in segmentations, though
further development is needed to separate same-class ob-
jects.

6. CONCLUSIONS

It was shown that longer range ‘mesoscale’ structure de-
velopment can occur with MRF regularized segmentations
that mirror known phenomena in Surface Science. It was
argued that these effects can be exploited for inpainting,
with applications in both Materials Science and Image Pro-
cessing.
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