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Why understand plastic deformation? 

E.g. hot spots in orientation 
gradients nucleate 
recrystallization 
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We need to understand plastic deformation down to the scale of individual grains 
because the extreme values of stress, strain and orientation gradients control many 
phenomena. 
 

Cerreta, Fensin, Lieberman … Wang, Acta mater. 59 3872 (2011) 

E.g. Hot spots in 
normal tractions 
(plus other 
components) 
generate voids: 

Orientation map of 
shocked copper 

Voids are easy to find by 
thresholding a CT image, 
except when they approach 
the resolution limit! 



High Energy X-ray Diffraction 
Microscopy (nf-HEDM) 

Advanced	  Photon	  Source	  Measurements	  
	  

•  1-‐ID	  high	  brilliance,	  high	  energy	  x-‐rays	  
•  Millimeter	  samples	  probed	  with	  micron	  

spa;al,	  <	  0.1	  deg	  orienta;on	  resolu;on	  
•  Tera-‐byte	  data	  sets	  
•  >	  3	  x	  106	  Bragg	  peaks	  	  
•  103	  core	  parallel	  processing:	  2D	  images	  

to	  3D	  orienta;on	  maps	   Stack	  of	  layers	  =	  3D	  microstructure	  
Colors	  based	  on	  crystal	  orienta;ons	  

HEDM	  measurement	  schema0c	   Reconstruc0on	  via	  Forward	  Modeling	  

Image	  diffracted	  beams	  	  
•  360	  images/layer	  
•  ~100	  	  successive	  cross-‐

sec;ons	  

Op;mizes	  orienta;ons	  
in	  >	  107	  voxels	  (volume	  
elements)	  

3D	  copper	  microstructure	  

0.4 mm3 
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Poulsen,	  Springer	  	  2004	  
Suter	  et	  al.,	  Rev.	  Sci.	  Instruments,	  2006	  

Li	  and	  Suter,	  J	  Appl.	  Cryst.	  2013;	  LLNL-‐CODE-‐657639	  
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Detector Images: Experimental Set-up 

Each illuminated layer is reconstructed using 
the Forward Modeling Method (FMM) to a 2D 
orientation field; layers are then stacked 
together to obtain a 3D orientation map 

Li & Suter, J. Appl. Cryst. 46 512 (2013) 

Loss of peaks at high 
order; smearing of 

intensity 



Image Refinement 
�  Previous : Simple threshold (baseline + ratio) 
�  Risk of peak overlap, esp. strong adjacent to weak, esp. smeared peaks 

from plastic strain. 
�  Added Laplacian of Gaussian (LoG) filter 
�  Use Δ[Im] == 0 (crossing points) to define peak extent 
�  Current : Previous with low baseline + local intensity variation edge 

detection 
�  Will further segment merged peaks 
�  Sensitive to internal peak variations (twins) 
�  Improved peak segmentation aids Forward Modeling Method because 

larger fraction of peaks fitted 
�  References: Jonathan Lind, PhD thesis in Physics, Carnegie Mellon 

University (2013); “Tensile twin nucleation events coupled to 
neighboring slip observed in three dimensions”, J. Lind et al.  Acta 
mater. (2013) 74 213-220. 
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Segmentation of Peaks 

� Previous : Simple threshold (baseline + ratio) 
�   Added Laplacian of Gaussian (LoG) filter 
� Use Δ[Im] == 0 to define peak extent 
�   Current : Previous with low baseline +  local 

intensity variation edge detection 
� Will further segment merged peaks 
�  Sensitive to internal peak variations (twins) 
�  Faithful peak representation with aid FMM   
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Diffractogram example 
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Standard segmentation steps: 
Background subtraction 
Median-filter smoothing 

Binarization 
 

New segmentation steps: 
Background subtraction 

Gaussian-filter smoothing 
Compute Laplacian 

Find edges at zero crossings 



Segmentation: Original vs. LoG  
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Original Method − Baseline of 5
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Old method (threshold) 
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Inset evaluates the change 
(µm) in GB position from 
adjustments to the 
segmentation parameters: 
strong shading indicates 
sensitivity 



Old method (threshold) 
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Map on right indicates the 
extent of changes in boundary 
position (significant) from 
parameter changes 



New Method (LoG) 
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Inset evaluates the change (µm) 
in the result from adjustments 
to the segmentation 
parameters: light shading 
indicates lesser sensitivity 



LoG – Quality map 
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Map on right indicates the 
extent of changes (µm) in 
boundary position (minor) 
from parameter changes 



Compare Old vs LoG methods 
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HEDM of Tensile Test on Zr	 
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• Dogbone 
design but with 
rectangular 
cross-section 
 
• HEDM 
snapshots at:  
0 %, 0.1 %, 13 % 
and 17 % 
 
• Note near-
plane strain 
	 

Mechanical Twins	 

“Tensile twin nucleation events coupled to neighboring slip observed in 3D”, Lind et al., Acta mater., 74 213-220 (2014)  
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�  Initial goal was to correlate void formation 
with microstructural features {101̄0} (0001)



Zr: Rotation axes, twinning	 
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Misorientation from origin	 

Magenta: twin 
Yellow line:  
{1012} twin plane	 

Edges of deformation 
bands (jumps in 
orientation) = local 
misorientation axis  
is // 0001, consistent with 
prismatic slip.	 



Schmid factors, Resolved Shear Stress	 

Schmid factors at 0 % - Schmid factors at 13 % – Resolved Shear Stress	 
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�  Each line = an observed twin 
�  Green zone: positive Schmid factors 
�  Red zone: negative Schmid factors 
�  Set of 6 marks indicates the variants; white mark = observed twin variant 
�  Full field elastic stress calculation provides resolved shear stresses; little change 

compared to simple Schmid factors 
�  Several variants occur with negative Schmid factors ⇒ Plasticity influences twinning	 

-         0     +	 -         0     +	 -         0     +	 

(Anisotropic) elastic stress-strain 
fields computed with FFT method 



Other Image Challenges 
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Measured versus Simulated Surface Strains 
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Pixellated Mesh, One Orientation per Element 

The striations are “slip bands” i.e. 
concentrated surface displacement 
from dislocation motion: how best 
to quantify such features?	 

Deformed metal reveals a grain 
structure but the boundaries 
(white lines) are incomplete: how 
to complete the network?	 

One complete crystallite (grain) 
visible. Many platy (anisotropic) 
precipitates (2nd phase particles) 
visible.  How to segment and 
measure the particles?	 



Software … 
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Many of the algorithms that we use to analyze 3D microstructures 
are available in Dream3D (open source, Mac/PC/Linux); also ITK.	 



Summary 
�  The Forward Modeling Method for indexing diffractograms from x-ray 

diffraction experiments at synchrotrons depends on identifying peaks.  
Simple thresholding works for well annealed samples and isotropic intensity 
peaks. For smeared anisotropic peaks from plastically deformed materials, 
the Laplacian-of-Gaussians works significantly better. 

�  Comparisons do not show good agreement between experiment and 
simulation; statistical comparisons look reasonable (e.g. texture 
development, orientation gradients). 

�  A tensile test on Zr showed several twinning events, despite unfavorable 
texture.  Some twins appeared in grains with negative Schmid factor. Links to 
slip activity also evident. 

�  Recent review of literature suggests that lack of agreement is the general 
result (with no known exceptions). 

�  Orientations and orientation gradients evaluated in a Cu specimen; 
compared with vpFFT simulation. 

�  KAM is higher near to grain boundaries; correlated with gradients in stress. 
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Prospects 
�  Direct comparison with 

diffraction data sets 
�  We need maps of the elastic 

strain tensor 
�  Simulations that include finite 

strain 
�  Test various concepts such as 

latent hardening, strain gradient 
etc. 

�  Model polycrystal problems with 
dislocation dynamics 

�  Use better constitutive 
descriptions 
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Stress from dislocation 
loops, calculated with FFT 
method. 


