
ABSTRACT
This paper shows how to design good biorthogonal FIR

filters for wavelet image compression by balancing the space
and frequency dispersions of analysis and synthesis lowpass
filters. A quality metric is proposed which can be computed
directly from the filter coefficients. By optimizing over the
space of FIR filter coefficients, a filter bank can be found
which minimizes the metric in about 60 seconds on a high
performance workstation. The metric contains three
parameters which weight the space and frequency
dispersions of the low pass analysis and synthesis filters. A
series of biorthogonal, symmetric wavelet filters of length 10
was found, each optimized for different weightings. Each of
these filter banks was then evaluated by compressing and
decompressing five test images at three compression ratios.
Selecting each optimum provides fifteen sets of parameters
corresponding to filter banks which maximize the PSNR in
each case. The average of these parameters was used to
define a ‘mean’ filter bank, which was then evaluated on the
test images. Individual images can produce substantially
different weightings of the time dispersion at the optimum,
but the PSNR of the mean filter is normally close to the
optimum. The mean filter also compares favourably with a
maximum regularity biorthogonal filter of the same length.

1.  BACKGROUND

The theory of continuous and discrete wavelet
transforms [1, 2] has inspired much basic and applied
research in signal and image processing, as well as
revitalizing the study of sub-band filtering [3, 4, 5]. The
Discrete Wavelet Transform (DWT) is obtained by repeated
filtering and sub-sampling into two bands with low- and
high-pass Finite Impulse Response (FIR) filters called the
analysis filters. The inverse process makes use of the
synthesis FIR filters, and gives perfect reconstruction if the
wavelet is biorthogonal. This is easily shown to be the case
[4] if the lowpass analysis filter coefficients {c0 ,…, cL−1}

and synthesis filter coefficients {u0 ,…, uL−1} satisfy
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The lower limit on the time-frequency resolution that
can be obtained with wavelet transforms is given
theoretically by the Heisenberg uncertainty relation [6]
which, applied to the signal  f(t) ,  is expressed by the
inequality:

∆ω ∆t   ≥ 1/2 
where
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 is the bandwidth,

and F(ω) is the Fourier transform of f(t).
 The uncertainty inequality quantifies the fact that the

time and frequency localization of information cannot
simultaneously be arbitrarily small. It can be shown that the
continuous, infinite time, Gabor wavelet [6] is the only
wavelet which achieves this minimum. The lower the
Heisenberg uncertainty, the better is the resolving power of
the wavelet. The uncertainty is invariant over the scales used
in the DWT; as data is filtered and subsampled, the time
resolution is successively halved and the frequency
resolution is doubled, preserving their product ∆ω ∆t.

We can compute the bandwidth ∆ω and time dispersion
∆t directly for a FIR filter from its coefficients 
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2.  A BALANCED UNCERTAINTY METRIC

The Heisenberg uncertainty product ∆ω ∆t is not itself
a useful figure of merit for wavelet design. In our earlier work
[7] we introduced an uncertainty metric for the orthonormal
case, which forms a weighted balance between  ∆ω and ∆t.
We showed that orthonormal wavelets giving good MSE and
visual quality could be designed by appropriate trade-off
between frequency and time dispersion. The results were
superior to those of maximum regularity wavelets, both in
MSE and organized visual trials.

We now propose the following balanced uncertainty
metric for biorthogonal wavelets:

M(k2 , k3 , k4)  =  ∆ω2
a + k2 ∆t2a + k3 ∆ω2

s + k4 ∆t2s

where subscripts a and s refer to the analysis and
synthesis filters respectively, and the parameters k2, k3 and

k4 specify the relative importance attached to the time and

frequency resolutions. To design a wavelet for any desired
balance, we choose values for k2, k3 and k4, and minimize

M(k2 , k3 , k4) directly from the FIR filter coefficients using

equations 1 and 2. This enables us to search for good wavelets
without the cost of repeated compression and decompression
cycles.

3.  DESIGN OF BIORTHOGONAL 
BALANCED  UNCERTAINTY WAVELETS

Wavelets were designed for 512 different uncertainty
balances by allowing  k2 , k3 and k4 each to assume eight

discrete values and minimizing M(k2 , k3 , k4) for each

combination of parameter values.  Minimization was done
by simulated annealing [8] over the FIR filter coefficients.
The analysis and synthesis filters were both symmetric with

Wavelet Gold Hill Barbara 1 Barbara 2 Boats Lenna

Optimum for image 31.85 28.70 28.29 33.32 33.84

‘Mean’ 31.69 28.41 28.24 33.04 33.80

Maximum Regularity 31.44 27.68 27.35 33.26 33.76

Optimum for Boats image 31.53 27.72 27.43 33.32 33.72

Optimum for Lenna image 31.66 28.31 28.19 33.02 33.84

Table 1. PSNR performance of the ‘mean’ wavelet at 20:1 compression (0.4 bpp) compared with the individual
optimum wavelets, and the maximum regularity wavelet of the same length.
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Figure 1. The variation of the MSE with the
space dispersion parameters k2 and k4, on the

Boats image with  k3 = 1.32.

i Analysis ci Synthesis ui

0,1 0.714164424 0.675200974

-1,2 0.070679818 0.120013751

-2,3 -0.105948358 -0.08794428

-3,4 0.016675933 -0.00053087

-4,5 0.011534965 0.000367208

Table 2. Filter coefficients for the ‘mean’ wavelet.



10 taps. Each minimization took approximately 60 seconds
on a Sun Ultra 170 workstation.

Using our implementation of Shapiro’s zerotree coder
[9], each of the 512 wavelets was used to compress the five
test images listed in Table 1 at compressions of 20:1, 40:1
and 80:1, and the resultant errors were recorded. 

As an example, Figure 1 shows the variation of the
PSNR error as a function of the space dispersion parameters
k2 and   k4, for fixed k3 for the boats image at 20:1.

The parameter values yielding lowest error for each of
the 15 test image / compression ratio combinations were
obtained. A compromise wavelet intended to give good
performance over all test images was obtained by averaging
the above 15 sets of k−parameter values, to get k2 = 0.61,

k3 = 1.33, and   k4 = 0.55. The wavelet coefficients found by

optimizing  M(k2 , k3 , k4) are given in Table 2.

Additionally, a maximum regularity 10/10 wavelet
(wavelet D of [10]) was used to compress each of the 5 test
images at the three compression ratios. It was found that the
best of the 512 balanced uncertainty wavelets gave lower
error than the maximum regularity wavelet in every case. The
‘mean’ wavelet improved over maximum regularity in 12 out
of 15 cases. Table 1 compares the PSNR performance of the
‘mean’ wavelet at 40:1 compression with the individual
optimum wavelets, and the maximum regularity wavelet of
the same length. Also included in the table are the best
wavelets for Boats and Lenna applied across all five images.

4.  APPLICATION TO FINGERPRINTS

The use of wavelets for compressing fingerprint images
for use in Automated Fingerprint Identification Systems
(AFIS) is of considerable commercial importance because
the US Federal Bureau of Investigation (FBI) has specified
the use of a wavelet technique for fingerprint image

compression, as well as a particular wavelet for use within
this technique. The FBI wavelet is a maximum regularity
spline wavelet of length 9/7 [11].

In our earlier work [12], we searched the space of
biorthogonal wavelets to find wavelets which are optimal for
the compression of fingerprint images. This work produced
a length 10/10 wavelet, called S10, which minimized the rms
error between original and reconstructed fingerprint images
at 20:1 compression.

We compressed fingerprint images using the ’mean’
wavelet, the FBI wavelet and the S10 wavelet. Table 3 shows
typical rms errors as well as a psychovisual ranking of the
reconstructed images by two police fingerprint experts.
Figure 3 shows detail from one of the three fingerprints used
in the trial.

Wavelet
rms error
at 20:1

psychovisual
ranking

’Mean’ 7.26 1 (best)

S10 6.88 2

FBI 7.20 3 (worst)

Table 3. Wavelets compared on fingerprints

The fact that the ’mean’ wavelet achieves the best
psychovisual results is remarkable, because the other  two
wavelets were specifically designed for optimal performance
on fingerprint images. This result illustrates the validity of
the balanced uncertainty metric, and vindicates the use of
uncertainty as a powerful tool for the design of wavelets.

5.  DISCUSSION

Previous work showed that significant PSNR and visual
improvement over maximum regularity wavelets was
obtained by selecting orthonormal wavelets for the balance
of their time and frequency dispersions [7]. Here we have

Figure 2. Results at 40:1 (0.2bpp) for a fragment of ‘Gold Hill’ using 10th order biorthogonal symmetric wavelets.

(a) Optimum wavelet for 
Gold Hill, PSNR= 29.52

(b) ’Mean’ wavelet, 
PSNR = 29.49

(c) Maximum regularity,  
PSNR = 29.46



extended this result to biorthogonal wavelets. The
space-frequency characteristics of wavelet filters are often
held to be an important attribute [5], but in practice
consideration of these characteristics in designing wavelets
is largely ignored. We use a metric which balances scale and
frequency to design wavelet filters, and examine the PSNR
of the filter banks in image compression using a specific
family of wavelets on several test images. The results show
this to be a good approach.

6.  CONCLUSIONS

We have introduced a metric based on balanced
uncertainty for the design of biorthogonal wavelets.
Minimization of the metric balances the time and frequency
spreads of the analysis and synthesis filter responses.
Because the metric can be computed directly from the filter
coefficients, it can be used to optimize wavelets for image
compression without the cost of repeatedly compressing and
decompressing images.

Perhaps the most important comparison is with the
‘maximum regularity’ approach, which tends to give the
filter a flat response and sharp cutoff in the frequency
domain, at the expense of ringing. Our results show this to
be a suboptimum design principle in selecting wavelets for
image compression. With suitably chosen parameters, the
use of balanced uncertainty delivers significantly higher
PSNR than is obtained with a wavelet chosen for maximum
regularity.

Since the ‘mean’ wavelet performs considerably better
than a wavelet optimised for the Boats or Lenna images (see
Table 1), an important conclusion is that wavelets should not
be designed on the basis of their performance on a single
image. Several of the trials using Lenna produced k2, k3, k4

parameters near the extremes of their ranges. Despite its

popularity, if a single test image is to be used for designing
and comparing wavelets for compression, we suggest it
should not be this one.
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Figure 3. Compression results at 20:1 (0.4bpp) for a 200x200 pixel fragment of a typical fingerprint.

(a) Original (b) Compressed by FBI wavelet (c) Compressed by ‘mean’ wavelet


