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DECOMPOSITION OF HARDY FUNCTIONS INTO
SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE*

A. GROSSMANNt AND J. MORLET*

Abstract. An arbitrary square integrable real-valued function (or, equivalently, the associated Hardy
function) can be conveniently analyzed into a suitable family of square integrable wavelets of constant shape,
(i.e. obtained by shifts and dilations from anyone of them.) The resulting integral transform is isometric and
self-reciprocal if the wavelets satisfy an "admissibility condition" given here. Explicit expressions are ob
tained in the case of a particular analyzing family that plays a role analogous to that of coherent states
(Gabor wavelets) in the usual Lz-theory. They are written in terms of a modified f-function that is
introduced and studied. From the point of view of group theory, this paper is concerned with square
integrable coefficients of an irreducible representation of the nonunimodular ax +b-group.

1. Introduction.

1.1. It is well known that an arbitrary complex-valued square integrable function
l/;(t) admits a representation by Gaussians, shifted in direct and Fourier transformed
space. If g( t ) =2- 1/271'- 3/4e - t2 /2 and to' Wo are arbitrary real, consider

(1.1) g(to,wo)( t) =e-iwoto/2eiwotg( t - to)

and form the inner product

(1.2)

Then

'!t( to, wo) =j g(to,wo)( t )l/;( t) dr.

(1.3) j jl'l'( to, wo) 12dtodwo =jll/;( t )12 dt.

The function \flU) can be recovered from the function '!t(to' wo) through

(1.4)
\fI(t)= jj g(to,wo)(t)'!t(to,wo)dtodwo.

The above statements remain true if the Gaussian g is replaced by an arbitrary
square integrable function. The advantages of the Gaussian are (i) maximal concentra
tion in direct and Fourier transformed space and (ii) the possibility of a simple intrinsic
characterization of the space of functions 'l'(to, wo)'

This representation of functions has been used in quantum mechanics, quantum
optics and signal theory. (See e.g. [1], [4],[5],[6].)

1.2. Consider now the case where the object of interest is not a complex-valued
function ~(t), but a square integrable real-valued function s( t), say the wiggle of a
seismograph. It has been known for a long time that it is very useful to consider set) as
the real part of a complex-valued square integrable function h( t) which has the special
property that its Fourier transform vanishes on a half-line (say h(w)=O for w<O). The

*Received by the editors September 21, 1982.
tCentre de Physique Theorique, Section II, Centre National de la Recherche Scientifique, Marseille,

France.

iElf Aquitaine Company, O.RJ.C. Lab., 370 bis Av. Napoleon Bonaparte, 92500 Rueil-Malmaison,
France.



724 A. GROSSMAN AND J. MORLET

space of such functions h(t) is denoted by H2 and called the Hardy space on the line. It
is a closed subspace of the space L2 (rR, dt) of all square integrable functions. The
functions sand h are in a natural one-to-one correspondence, and special properties of

the function h(t) (in particular its phase) make it a valuable tool.

1.3. This paper is concerned with the decomposition of functions hE H2 into
square integrable "elementary wavelets", and with the corresponding reconstruction
problem. One can of course analyze the function h( t) by applying to it the general
results described in §1.1, applicable to any function in L2• This is indeed what is done

traditionally (see e.g. the famous paper [4]). It is however clear that, when we follow
this procedure, we are not taking advantage of the special features of the function h(t)
which led us to introduce it in the first place; we are analyzing a function that belongs

to the subspace H2 eL2 in terms of wavelets that do not belong to this subspace (the
Fourier transform of a Gaussian does not vanish on a half-line). It will not help (at

least in principle) to replace the Gaussian by an elementary wavelet that belongs to H2,

since we have to consider all of its shifts in Fourier transformed space, and these are

sure to bring it out of H2.

1.4. In several papers devoted to the study of seismic traces [7], [8], one of us has
suggested analyzing them in terms of wavelets of fixed shape, and has produced strong
numerical evidence for the soundness of such analysis. The aim of the present paper is
to give mathematical underpinnings for this procedure, which also avoids the objections
that were raised in §1.3. The main idea is to analyze functions in terms of wavelets
obtain\~d by shifts (only in direct space, not in Fourier transformed space) and dilations
from a suitable basic wavelet.

1.5. The group G2 of shifts and dilations (which is the only two-parameter Lie
group and thus the "smallest" noncommutative Lie group), acts on H2 through a
natural irreducible unitary representation U( y) (y EG2). If we fix a function g EH 2

(" the analyzing wavelet"), we obtain a correspondence between an arbitrary hE H2,

and the matrix element m~g)(y)=(U(y)g,h) considered as a function on the group G2•

The main question, both from a conceptual and practical point of view, is whether the
correspondence h ~ m~g) has a well-behaved inverse, allowing a "stable" reconstruction
of h from m1g). Stated somewhat differently, the question is whether, for a suitable
invariant measure dy on G2, one has

(1.5)

in analogy to (1.3).

flmhg)( y )12dy= flh( t )12dt

1.6. It turns out that the answer depends on the choice of the analyzing wavelet g.
For (1.5) to hold, the wavelet g, in addition to being in H2, has to satisfy an "admissi
bility" condition.

The main general result, proved in §3, can be stated without reference to group
theory:

Let h(t) (the function to be analyzed) satisfy

(i)
flh( t )!2dt< 00
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h( W) =0 for w<O.

725

(Conditions (i) and (ii) say that h EHz.)

Let get) (the analyzing wavelet) satisfy (i), (ii), and also the "admissibility condi-
tion"

(iii) f dueUfoOOlg(w)g(euw)!2dw<co. Associate to h the function ((3h)(u,v) of two
variables, defined by

(1.6)

where

(1. 7)

and

Then

(a)

(1.8)

I j_
(8h)(u,v)= .r::- eu/2 g(eUt-v)h(t)dtVCg

Cg=_2_'TTZf dueU flg( w )g( eUw )jZdw = 2'TT1°O _Ig_( w_)_12dwIlgll 0 w

2 f 2IIgli = Ig(t)1 dt.

j fl( 8h)( u, v )12dudv= flh( t )/2dt

·1' .....'.'....

',:".:f
,; ,:;.

11
11 '~..r~, ~
iI~

and

(b) h ( t) can be recovered from (8h )( u, v) through

h(t)= ~jjeu/2g(eUt-v)(8h)(u,v)dudv.yCg

If g is not admissible, then cg= co, and the transformation (1.6) is not defined.
The need for an admissibility condition may seem surprizing. It stems from the

fact that G2, in contrast to all other "everyday" groups, is nonunimodular (i.e. has no
right-and-Ieft-invariant measure) (compare [2],[3]).

Section 4 is devoted to a more detailed study of the transformation 8in the special
case where g is a "particularly good" wavelet which plays a role analogous to that of
the Gaussian in the conventional theory. We find it convenient to introduce a special
function fa< z) which may be of independent interest. In §4 we gather the results
necessary for an intrinsic characterization of the range of 8, which will be given in a
forthcoming paper.

This paper can also be viewed as the description of a natural quantum-mechanical
representation for particles that "only know how to move in one direction".

This interpretation and further developments will also be found in forthcoming
papers.

"1Ii
Ui

II

II
iil



726 A. GROSSMAN AND J. MORLET

2. Notation and preliminaries.
2.1. The inner product of square integrable functions is written as

(f, g) =f j (t ) g( t ) dt

i-;

where j is the complex conjugate of f.
The Fourier transform off(t) is

j( w) = (2'7T) -1/2f e-iwtj( t) dt

inverted by

f( t ) = (2 '7T ) - 1/2f e iw tj( W ) d w .

We also write

f=C[J-Ij.f=C[Jj,

The shift operator TV is defined by

( TV f) ( t ) =f ( t - v ) (vEIR).

The corresponding multiplication operator is EV;

(Evj)( w) =eiVwj( w).

The dilation operator ZU is defined by

(ZUf)(t) =e-u/2f( e-Ut).

The relations

(2.1) TVZU= ZUTv/expu ,
ZUTv = Tvexpuzu,

EVZu= ZUEvexpu,

ZUEv=Ev/expuzu

will be basic for all that follows. They correspond to

(TVZUf)( t) =e-u/2j( e-ut - e-uv),

(zuTVj)( t) = e-u/2j( e-Ut-v).

The commutation properties with GJ are

We have TVITV2= TV\+V2, and ZUIZU2=ZUl+U2. The operators GJ, TV, EO, ZU are
unitary in LilR).

2.2. We say that a function hELifR,dt) belongs to the Hardy space H2CL
11(w)=O for w<O.

H2 is a closed subspace of L2•

A real-valued function cannot belong to H2•

If hEH2 then h and Ii (where Ii(t)=h( -t)) are orthogonal to all of H2• Howe
h* EH2, where h*(t)=h( -t).

-

(2.2)

(2.3)

GJTV=E-VGJ,

<JZu= Z-u<J.
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The Hilbert transform in L2(~' dt) can be defined as H = - iJ- IeiJ, where e is the
operator of multiplication by sgn w (the sign of w). We have H2 = - 1; H is unitary,
anti-Hermitian and real (commutes with complex conjugation). If hEH2, then h=iHh,
giving Imh=HReh and Reh= - Hlmh.

If set) is any real-valued, square integrable function then

hs=s+iHs

belongs to H2. We have

(2.4)

for every g E H2• Also

(2.5)

(hs,g) =2(s,g)

IIhsl12 = 211s112

where 11il12=(f,j)

2.3. Shifts and dilations in H 2. If h EH2, then TVh EH2 and ZUh EH2 for all u, v.
For our purposes it is crucial to remark that the family TV, ZU acts irreducibly in

H 2. That is: If V is a closed subspace of H 2, containing at least one nonzero vector; if
V is stable under all ZU, TV (which means Tuzvh E V whenever h E V), then V is all of
H2, For a proof see e.g. [9].

Another important, if obvious, remark is that shifts and dilations are "real", in the
sense that

(2.6)

and

(2.7)

Re(TVh) = TV(Reh)

Re( ZUh) =ZU(Reh).

3. The e.transform: arbitrary admissible wavelet.
3.1. Admissible analyzing wavelet. We shall say that a function g, not identically

zero, is an admissible analyzing wavelet, if
(i) g belongs to H2

and

(ii) g satisfies the condition

(3.1) !!1(Z-UTVg,g )I2dudv< 00.

By (2.2) and (2.3), the condition (3.1) can also be written as

(3.2) f fl( ZUE-Vg,g)/2dudv=2'1T f dueUflg( w )g( eUw)12dw< 00

=27Tllg//2 (00 Ig( w )/2 dw.Jo w

Examples. 1) Let O<a<b< 00. Define get) through its Fourier transform: g(w)= 1
if a<w<b, and 0 otherwise. Then g(t) is an admissible analyzing wavelet, as can be
shown by a simple calculation.

2) Let a> O. Define ga( t) through its Fourier transform ga( w) =exp( - (aj2)1n2 w)
=w-alnw/2 for w>O, and ga(w)=O for w<O. Then ga(t) is an admissible analyzing
wavelet which will be studied in §4.
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Remarks. 1) There exist functions in HZ that are not admissible analyzing wave
lets; this is the case e.g. if the Fourier transform of g is defined by

g( w) = {W-I/2+£W-1/2-£

(O<w< 1)

(1<w<oo)
(e>O)

(3.3)

and g(w)=O for w<O.
2) A Gaussian cannot be an admissible analyzing wavelet since it does not belong

to H2. However, if Wo is positive and sufficiently large, the function eiwot exp( - t2/2) is
very close to an admissible analyzing wavelet.

3) From (3.2) we see: If g( w) is the Fourier transform of an admissible wavelet
then, for any real-valued <pC w), the function ei<:p(w)g( w) is also the Fourier transform of
an admissible wavelet.

3.2. The number eg• If g is an admissible analyzing wavelet, we denote by C g the
number

Cg= 11:112 f jl(Z-UTVg,g )12dudv.

By (2.2), cg can also be written as

Cg=~ j jl(ZUE-Vg,g)!2dudvIlgll

which gives

Cg=-2-'lTz1OO dwfdueUlg( w )g( eUw )12 =2'lT 100 _Ig_( w_)_12 dw.Ilgll 0 0 w

3.3. The <3-transform. Let g be a fixed admissible analyzing wavelet. For arbitrary
real u, v, define

For every h EH2, define the function 8h of variables u, v by

In words: (8h)( u, v) is obtained by "testing" the function h with the help of
dilated and shifted analyzing wavelet. The dilation parameter is u, and the shift
parameter is v. The result of testing is multiplied by a normalization factor which
depends on the choice of the admissible analyzing wavelet.

We call 8h the <3-transform of h (with respect to g). By (2.4) we have, with
s(t)=Reh(t),

(3.4)

(3.5)

l.e.

(3.6)

g(U,V) = Z-UTvg.

1

(eh)(u,v)= .r::- (g(U,V),h)yCg

( e h ) ( u, v ) = .~ e u/2!g(eUt - v )h ( t ) dt.yCg

(8h)(U,V)=F;2 eU/2!g(eUt-v)s(t)dt.c"o
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Alternative ways of writing (8h)( u, V) are, by (2.2), (2.3),

(3.7) (8h)(u,v)= ~ (Z-UTVg,h)= ~ (zuE-Vg,h)yCg yCg

1 (00_
=.r;:-e-U/2Jr g(e-Uw)h(w)exp[ive-Uw]dw.yCg 0

From (3.7) one sees that
1

1(8h)(u,v)l< r;:-llhllllgliyCg

729

for all u, v.
The correspondence h ---> 8h -is linear.

3.4. Isometry of e. We claim: For every hE H 2, the function (8h)( u, v) is square
integrable, and

(3.8) f fi( 8h)( u, v )12dudv= Ilh112.

Proof. (i) The equality (3.8) holds for h =g, since, by (3.5),

if 2 1 if Z Cu Z
1(8g)(u,v)1 dudv=- I(Z-UTVg,g)1 dudv=~llgll .

Cg Cg

(ii) Equation (3.8) also holds for every h of the form h = Z - UoTVog. Indeed,

(8h )(u, v) =_l_(Z-UTVg, Z-UOTVog) =_1_ (rVoZUo-UTVg,g)
{C; V;;;

1=_ (zuo-uTv-voexP(U-uo)g, g)
{C;

= (8g)( u- uo, v -voeu-uo),

by (2.1), (3.5) and (3.7).
Now

f fl( 8g)( U-Uo, v-voeU-Uo )!2dudv= f fl( 8g)( u', v-voeU')(du' dv

=f fl( 8g)( u', v')12du' dv'= IIgll2

with u'=U-Uo, v'=v-voeU-Uo.
(iii) By standard arguments, (3.8) is extended to all finite linear combinations of

vectors of the form ZUTVg. By irreducibility (§2.3.), these vectors are dense in HZ, and
so (3.8) is extended by continuity to all of HZ. This completes the proof.

By the polarization identity, one has

(3.9)

for all hi EH2, hz EH2.

(8hl, 8hz) Lz(RZ,dudv)= (h I' hz)
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3.5. Inversion of e. We now sketch a verification of the fact that 8, considered as

an integral transform, is self-reciprocaL In other words: If 8h is given by (3.6), then h
can be recovered from 8h through the formula

(3.10)
h(t)= .~ ffeu/2g(eUt-v)(8h)(u,v)dudv.yCg

Since the integral (3.10) cannot converge for every h and every t, the formula (3.10) has
a sense that is familiar from the L2-theory of Fourier transforms or from [1].

In order to obtain (3.10) we write, with a slight stretching of notations, and using
(2.4), (3.9),

(3.11) h(to)=(Oto,h)L2(R,dt)=~ (Ot~+),h)H2=~ (8ot~+),8h)L2(R2,dUdV)

where 0to(t)=o(t-to) (Dirac measure) and o(+)(t)=o(t-tO)+(i/7T)P/(t-to) (prin
cipal part). The function (8ot~+»)(u, v) can be found by using (2.4):

(3 .12) (8Ot~+ )) ( u, v ) = ~ e U/ 2 f g(e Ut - v ) Ot~+) ( t) dtyCg

= 2-l-eu/2f g( eUt- v )o( t- to) dt= 2-1-eu/Zg(eUto - v).
{C; F;

Inserting (3.12) into (3.11) gives (3.10).
Remark on redundancy. Equation (3.10) is a way of recovering the function h(t)

(and s(t)=Reh(t)) from the function (8h)(u,v). The function h(t) can also be re
covered from values of (8h)( u, v) on suitable subsets of the plane, e.g. from the
function

(8h )(0, v) = .~ 100g( w )ii( w )eiVw dw.yCg 0

We see that h( w) can be obtained from (8h )(0, v) through Fourier transformation and
division by g( w). The last step, however, corresponds-at best-to an unbounded
operator. This makes the recovery of h(t) from (8h)(0, v) an impractical proposition in
general, and shows the advantage of working with the isometric transformation (3.10)
or with suitable discrete approximations to it.

Covariance of8. By the construction of 8, we have: If hI =ZU1h, then

(ehl)( u,v) = (eh)( u+ul,v).

If h2 =TV1h, then

(ehz)(u,v) = (eh)( u, V-V2eU).

3.6. Reproducing equation. The range of 8 is not all of L2(1R z, du dv). In this
section we derive a condition that has to be satisfied by all functions of the form eh,
with h EH 2. More specific results are given in §4, for a particular analyzing wavelet.

Define a kernel G(u, v; u', v') by

(3.13) G( u, v; u', v') = (g(U,V), g(u',v'») = (Z-UTvg, Z -U'TV'g)

= (zuE-Vg, ZU'E-V'g) = (zulE-Vlg,g)
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(3.14) ur =u-u' and VI =v-v'eu-u'

Then a functionf( u, v) that belongs to the range of e must satisfy

(3.15) feu, v) =f f f G( u, v; u', v')f( u', v') du' dv'.g

Indeed, by the definition and isometry of e,

1 1
(eh)( u, v) =- (g(U,v),h) =- (eg(U,V) ,eh)

{C; [C;

= ~ ff(8g(U,V))(u',v')(8h)(u',vl)du'dv'.VCg

Now

( e g(u,V))( u', v') = [C;1 (g(U',V'), g(U,v))c"
'"

giving (3.15).

3.7. Cycle-octave representations.
THEOREM. Let s( t) be any real-valued square integrable function, and g an admissible

analyzing wavelet. Associate to s the function S( u, T) defined by

(3.16)
S(U,T)= .~ fg(eUt-e-UT)s(t)dt.yCg

Then s( t) can be recovered from S( u, T) through

(3.17)

where

(3.18)

One has

(3.19)

s ( t ) = Re h ( t )

h(t)= ~ffg(eUt-e-UT)S(u,T)dUdTyCg

f flS( u, T)!2dudT=2 f s( t )2dt.

The function h(t) defined by (3.18) belongs to H2•

An approximate discrete version of (3.16), (3.18), was discovered by one of us [7].
The statements of this theorem are an immediate consequence of the results

proved so far, if we introduce the variable

T=euv.
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3.8. Group-theoretical comments. The objects that we study, namely

F;(eh) ( u, - v ) = (g, TV Z Uh),

are matrix elements (coefficients, in another terminology) of the irreducible representa
tion, in H2, of the two-parameter group of shifts and dilations. We have shown that
these coefficients, considered as functions on the group, are square integrable with
respect to the right Baar measure dx R =du dv, if the vector g is suitably chosen.

If the standard theory of square integrable representations were applicable here
(see e.g. [2]), it would follow that all coefficients of this representation are square
integrable i.e. that all wavelets are admissible. However, the standard theory holds only
for unimodular groups (i.e. groups possessing a right- and left-invariant Haar measure),
while the group here is the prime example of nonunimodularity. (The left-invariant
Haar measure is dXL =e-ududv). Our results fit into the general theory of square
integrable representations of nonunimodular groups, developed by Duflo and Moore
[3].

4. The <3-transform: wavelet ga'

4.1. The function g{J.' Among all admissible wavelets there is one that plays-in
the H2-theory that we are concerned with-the same privileged role that the Gaussian
plays in L2-theory. The Fourier transform of this wavelet is just the image of a Gaussian
under a natural map.

Let a>O. Consider the function ga( w) defined by

I
!
t

!
I
!

I
J

(4.1)
g.(W)={~XP( - ~ln2w)

for w>O,

for w<O.

Notice that ga( w) is infinitely differentiable everywhere, in particular at w =O. Further
more, ga( w) tends to zero at infinity faster than any inverse polynomial.

We shall first verify that ga is admissible, by using the criterion (3.2): one has

lOO/ga(W)ga(eUw)I2dw=y'lT el/8ae-au2/2-u/2o 2a

and consequently

f dueUl°Ojga(w)ga(eUw)!2dw= 'ITe1j(4a)o a

which shows admissibility, and also gives

(4.2) Cg =2'lT3/2a-lj2.

The basic functional equation satisfied by ga( w ) is

It corresponds to the equation relating a shifted Gaussian to the Gaussian multiplied
by an exponential.

(4.3) (ZUga)( w) = e-au2 /Z-u/2wauga( w).
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4.2. Condition satisfied by functions in the range of 8. We can use (4.3) to derive
conditions satisfied by all functions in the range of 8. Writing

(8h)(u,v)= .~ (zuE-Vga,li) = (E-vexp(-U)ZUga,ii) .~yCg yCg

and evaluating ZUg by (4.3), we obtain

(8h)(u,v)= ~ e-au2/2-U/21OOexp(ive-Uw)waug(w)h(w)dw.yCg 0

Introducing variables

z=au-l and q=ve-u

and writing

'Ir(z,q)=(8h)(u,v),
1

Ii
I

we see that

(4.4)
'¥(z,q)= ~e-(ZLz)/2alOOeiqWWz-rga(W)h(w)dw.yCg 0

i

It follows from (4.4) that 'Ir( z, q) satisfies

~~= iez/a'l'(z + l,q),

and, more generally

'l'(z+n,q)=( -ife-(nz+(n-l)n)/2a ~:: .

4.3. The function ra(z). The wavelet ga(t) is given by the inverse Fourier trans
form

ga( t) = (277) -1/2100 eiwtga( w) dw,o

which does not seem expressible in closed form through special functions known to us.
In order to evaluate it and related quantities we have found it convenient to introduce
the function fa(z) which will now be discussed and which, we believe, is also intrinsi
cally interesting.

If a> 0 and if z =x + iy is arbitrary complex, define raC z) by

(4.5) ra(z)=ioo wZ-1e-Wexp( - ~ln2w )dw.o

This definition is modeled on the definition

r(Z)= ~oowZ-le-wdw (Rez>O)

of Euler's gamma function. Because of the factor exp( -aln2w/2), the function fa(z) is
entire analytic in z, in contrast to f( z). If the factor exp( - a In2w/2) were replaced by a
step function, the resulting integral would be an incomplete gamma function.
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The substitution w = eS brings faCz) to the form

(4.6) fa(z)= f_ooooezsexp( -es-; S2) ds.

We may think of faCz) as being a hybrid between a Gaussian and the f-function.

This is made precise e.g. through the following statement:
If Rez >0, then

(4.7) f ( )- 1 fooa Z _ -u2/2
v2'1Ta _ooe af(z-iu)du.

The function fa( z) satisfies a functional equation that goes over into the classical
f(z)=(z-l)f(z-l) in the limit a~O. Denote by f~n) the nth derivative of fa with
respect to z. We have then

(4.8) fa(z) = (z -l)fa(z -1) - af~I)( z -1)

and, more generally,

(4.9)

f~n)( z) = (z - 1)f~n)( z -1) - af~n+ 1)(z - 1)+ n f~n-I)( z - 1) (n=1,2,···).

(4.11)

(4.12)

The function fa(z) has asymptotic expansions for large Izi. For instance, we shall
write the analogue of the formula f(z)c:::(2'1T)1/2e-z+(z-I/2)lnz(l + 1/12z):

Denote by z 1 the solution of

Zl =z-alnz1,

which is positive when z is large and positive. Then

(4.10) fa(z)c:::: ~e-Zl+(z2-Zr)/2a[l_ ZI 2+ 5z1 3]'V Zl +a 8(Zl +a) 24(Zl +a)

The expression (4.10) is numerically quite accurate even for small values of Izi.

If for fixed y, x is let go to - 00, one has

fa(X+iY)~V2: e(x+iy)2/2a.

We consider next the variation of faCz) with a. From (4.6) we see that faCz)
satisfies

afa _ 1 a2fa
aa - - 2 az2 .

Notice the minus sign in C4.11 ). We obtain the usual heat equation if we consider
fa(x+ iy) as function of y for fixed x:

afa(x+iy) 1 a2fa(x+iY)

aa 2 oy2

The function faex+ iy) is bounded by its values on the real axis: \faex+ (y)\<fa(x).
Along parallels to the imaginary axis, it decreases faster than any inverse polynomial.
Considered as a function of a, fa(x) is monotonically decreasing. On the positive real
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axis, fa(x) is bounded by Euler's f-function to which it tends as a -'> 0. For every x,y,

we have Ifa(x+iY)I<yl27Tja ex"/2a. If we let a tend to + 00 while keeping z fixed, then
[a( z) behaves as "j27Tj a eaz2/2•

Details and further results will be given elsewhere.

4.4. A class of integrals. With the help of the function f,i z) one can evaluate
integrals of the form

(4.13)
ha,f3(q)= ~CQwf3-1exp(- ~ln2w )elWqdw

(4.14)

which will be needed below. Here f3 is complex and arbitrary, a>O, q=l:O, and Imq>O.
It is convenient to introduce the variable

K =In ( ~q ) =In Iql + i arg q - i ; .

If q is real, then 1mK = - (7Tj2)sgn q.
The integral (4.13) is first transformed into

ha,f3(q)= 1_0000 exp( -eK+S- ~ S2+fJS) ds

by the substitution w=eS• Then the substitution S/=S+K and a shift of the path of
integration back to the real axis bring it to the form

ha,f3(q)=exp( -; K2-fJK )fexp[ -es+(aK+fJ)s- ;s2]dS,

giving the result

(4.15) ha,j3(q)=exp( - ~ K2-f3K )ra(aK+f3).

Remarks. The value of the integral (4.13) for q=O can be computed directly. It is

{2ii ( 132 )ha,j3(O) = V -;;- exp 20: .

The function h a,j3( q) defined by (4.15) and (4.16) is infinitely differentiable on the real
axis, and it decreases at infinity faster than any inverse polynomial. Furthermore, h 0.,13

belongs to H 2•

As a function of f3, h 0.,13 is entire analytic, and square integrable on every parallel to
the imaginary axis. We have, from (4.13)

dn-h -'nh
dqn 0.,/3-[ a,/3+n'

4.5. Explicit expressions. We can now write down expressions for various quanti
ties of interest:

1) The wavelet ga(t) is given by

ga( t) = (21T) -1/2 e-o.82/2-8[0.( 0:8+ 1) (8=1n(~t)).
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2) The 8-transform of ga is given by

(e ga)( U, v) = 2 -1/2'17 - 3/4aI/4e -u2a/4e --a1)"-1) f2a(2al1 + 1)

where TJ = In«(l/i)ve-u/2).
3) The kernel of the integral equation satisfied by the functions in the range of 2 is

(compare (3.15»)

G( u, v; u', 0') = e-auf /4-a1/T-1/1 f2)2a1h + 1)

where UI =u-u' and

111 =In( ~ve(u-uJ)/2_ ~v'e-(U-U')/2)1 1 .
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