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ABSTRACT

We present steerlets, a new class of wavelets which allow us to define wavelet transforms that are covariant with
respect to rigid motions in d dimensions. The construction of steerlets is derived from an Isotropic Multiresolution
Analysis, a variant of a Multiresolution Analysis whose core subspace is closed under translations by integers
and under all rotations. Steerlets admit a wide variety of design characteristics ranging from isotropy, that is the
full insensitivity to orientations, to directional and orientational selectivity for local oscillations and singularities.
The associated 2D or 3D-steerlet transforms are fast MRA-type of transforms suitable for processing of discrete
data. The subband decompositions obtained with 2D or 3D-steerlets behave covariantly under the action of the
respective rotation group on an image, so that each rotated steerlet is the linear combination of other steerlets
in the same subband.

1 Introduction

The concept of steerlets introduced in this paper presents us with a new class of multidimensional wavelets
implementable with fast wavelet transforms. These new wavelets aim at encompassing several properties desirable
for data transforms which can be used in texture and shape analysis of 2D and 3D images:

1. The transform should encode typical features in a sufficiently sparse fashion to allow clustering of the
feature vectors with sufficiently non-overlapping clusters for most features of interest.

2. The transform must respond predictably under 2D or 3D rigid motions of the entire image or of image
patches.

In this paper we want to illustrate the basic ideas and methods of constructing a class of new wavelet
transforms that address Property 2. Property 1 is rather more general and it simply says that a transform that
does not allow clusters to be formed or if they are formed they overlap in way that leads to misclassification
is rather undesirable for the kind of data under consideration. However, Property 2 is not totally unrelated to
Property 1. If the transform behaves unpredicatbly when a rigid motion is applied to an image or to an image
patch, then the variability of the output data may force clusters to overlap.

The necessity for wavelet transforms to be respond predictably under rigid motions was realized early enough
in the wavelet era when the lack of shift-invariance in the lower subband outputs was considered to be a problem
in some applications such as noise removal. The fix was easy to discover: shift-invariant wavelet transforms,
which are redundant, see e.g., Refs. 10, 20. Although this fix appears to be easy, it required some serious
mathematical work to establish that shift-ivantiant fast wavelet transforms are invertible (stability, equivalently
boundedness of the inverse transform). Some very nice mathematical studies have been devoted to this subject,
e.g., as in Refs. 10, 20. However, rotations still remained a problem. Some partial solutions to this problem,
not directly related to wavelets were proposed as early as in mid-1980’s as yet there is no general solution of
the problem ntiher does exist a mathematical theory of steerable representations. The concept of ‘steerable
pyramids’ was proposed to the image processing community in a series of papers Refs. 14, 21, 27. This approach
has since been taken up for several image processing applications, for example image denoising5, 25 and for texture
recognition Refs. 9, 28. Attempts of generalizing and characterizing this approach, particularly in 2D have also
been made Refs. 18, 24. One way to address the problem of ‘steerability’ of multiscale representations is to use
representations that are covariant under rigid motions. This is a recipe followed by many authors all, notably in
2D, Refs. 13, 14, 17, 29–33. Most recently the use of the Riesz transform has shown provide steerability rules for
2D and 3D-image representations Refs. 19, 30. Approaching 3D-image analysis from the viewpoint of moments



as descriptors of textures and corners, Fickus and coworkers proposed a very different way to obtain steerability
rules for moment-based representations of images, Refs. 11, 12. Despite those recent developments, 3D-rigid
motion covariant multiscale representations still seem to leave a lot to be developed. This was also true for the
mathematical formulation of the concept of steerability described in Ref. 1. The new class of wavelets, called
steerlets, we present in this paper gives rise to discrete wavelet transforms that are steerable in a particular
fashion which takes into account that every image is digitized.

Before stating the main results of this paper we introduce some notation. The Fourier transform f̂ : Rd −→ C
of f ∈ L1(Rd) is defined by

∀ξ ∈ Rd, f̂(ξ) =
∫

Rd

f(x)e−2πix·ξdx.

Here, x · ξ denotes the standard inner product between two vectors x, ξ ∈ Rd. The map f → f̂ restricted to
L1(Rd) ∩ L2(Rd) extends to a unitary map on L2(Rd) denoted by F .

A frame for a separable Hilbert space H is a sequence {fi}i∈I ⊆ H, where I is a countable index set, for
which there are constants A,B > 0 such that

∀f ∈ H, A‖f‖2 ≤
∑
i∈I

| 〈f, fi〉 |2 ≤ B‖f‖2
.

A and B are called frame constants. The weaker version of the above inequality where B > 0 such that the
right-hand side of the above inequality is valid for all f ∈ Rd is termed by referring to {fi}i∈I as a Bessel
sequence. If A = B, we say the frame is tight, and a tight frame with A = B = 1 is called Parseval. A frame is
a Riesz basis for H if it is also a minimal family generating H. We use the terms frame (Riesz) sequence when
we refer to a countable frame or a Riesz basis of a subspace of a Hilbert space.26 For y ∈ Rd, the (unitary)
shift operator Ty is defined as Tyf(x) = f(x − y), f ∈ L2(Rd). Set-theoretic complements are indicated by the
use of the superscript ‘c’. A ball in Rd centered at x with radius r is denoted by B(x, r). If r1 < r2 we set
B(x, r1, r2) := B(x, r2) ∩B(x, r1)c. Finally, ex(ξ) := e−2iπ(x·ξ), where x, ξ ∈ Rd.

An image is a function, say f in L2(Rd) (here d = 2, 3), which belongs to a shift-invariant subspace V . In
practical terms this means that we can represent this image by its samples using a more elaborate and general
version of the Shannon-Whittaker sampling theorem. With no loss of generality we can assume that the scale
has been chosen so that Tn(V ) = V , where n ∈ Zd. We use the τa to denote the affine mapping τa(x) = x− a,
a, x ∈ Rd. Finally, to avoid unnecessary complications we use only dyadic dilations, but most of the results in
this paper hold for more general dilations. We denote by D the dyadic dilation operator, Df(x) = 2d/2f(2x),
for f ∈ L2(Rd).

If an image f is rotated, then it is natural to assume that the rotated image belongs to V as well. This
results from the requirement that f and every rotation of f should not require different sampling rates when
digitizing. This simple requirement naturally leads to a new class of multiresolution analysis, called Isotropic
Multiresolution Analysis (IMRA),26 where the resolution subspaces Vj are not only invariant with respect to the
action of the translation group {T2−jn : n ∈ Zd}, but they are also rotationally invariant meaning ρ(R)(Vj) = Vj

for all integers j, where ρ(R)f(x) = f(RTx) with f ∈ L2(Rd), x ∈ Rd and R ∈ SO(d); the superscript T of R
denotes the transpose of the rotation matrix R. Apparently, all Vj remain invariant under all rotations centered
at any point of their respective sampling grid 2−jZd. All such subspaces have a special structure:

Theorem 1.1.26 Let V be an invariant subspace of L2(Rd) under the action of the translation group induced by
Zd, i.e. Tn(V ) = V , where n ∈ Zd. Then V remains invariant under all rotations if and only if there exisits a
measurable subset Ω of Rd satisfying R(Ω) = Ω for every rotation R in SO(d) and

V = {h ∈ L2(Rd) : ĥ(ξ) = 0 for ξ ∈ Ωc} .

Such a set Ω is ‘radial’, or we can more precisely say that it has radial symmetry, equivalently its indicator
function χΩ is a radial function. An immediate consequence of the previous theorem is that V is translation
invariant, that is Ta(V ) = V for all a ∈ Rd.



The most well-known translation invariant subspace is {h ∈ L2(Rd) : ĥ(ξ) = 0 for ξ 6∈
[
− 1

2 ,
1
2

)d} associated
with the classical sampling theorem. However, the same sampling theorem would hold for the translation-
invariant subspace of L2(Rd) given by {h ∈ L2(Rd) : ĥ(ξ) = 0 for ‖ξ‖ > 1/2}. The latter subspace is invariant
under translations and all rotations, which we will use in this paper.

2 Steerlets and steerable feature mappings

We begin by introducing a concept of steerability for digital images.

Definition 2.1. Assume that V is a closed subspace of L2(Rd) invariant under the action of all integer
translations and all d-dimensional rotations, that is, Tnf ∈ V for all f ∈ V and n ∈ Zd as well as ρ(R)f ∈ V for
all f ∈ V and R ∈ SO(d). A bounded linear transformation A : V → `2(Zd,Ck0) is a Discrete Steerable Feature
Mapping (DSFM) if there exists a shift-invariant representation B of the rotation group on `2(Zd,Ck0) and if
for all R ∈SO(d), n and m in Zd,

(ATmρ(R)f) (n) = B(R) (Af) (n−m) .

In brief, A intertwines ρ and B as well as the integer translations on V and on `2(Zd,Ck0). The reader may
have noticed a departure from our premise; a DSFM is not explicitly required to be covariant under the action of
every translation Ta, a ∈ Rd. The above definition has been chosen so that it can be verified directly when V is
the core subspace of an Isotropic Multiresolution Analysis, defined below, and A associates wavelet coefficients
at n ∈ Zd with any function f ∈W0 := D(V ) ∩ V ⊥.

Our starting point for constructing DSFMs is the IMRA.

Definition 2.2. An Isotropic Multiresolution Analysis (IMRA) of L2(Rd) is a sequence {Vj}j∈Z of closed
subspaces of L2(Rd) satisfying the following conditions:

1. ∀j ∈ Z, Vj ⊂ Vj+1 and Dj(V0) = Vj;

2. ∪j∈ZVj is dense in L2(Rd) and ∩j∈ZVj = {0};

3. V0 is invariant under the action of the groups {Tn : n ∈ Zd} and {ρ(R) : R ∈ SO(d)}.

This concept relates to the theory of MRAs because IMRAs are GMRAs of L2(Rd) which in addition require
the invariance of V0 under the action of {ρ(R) : R ∈ SO(d)}. The term GMRA was coined by Baggett and
others3 in order to signify a more general class of multiresolution analyses than the classical MRAs which require
the existence of an orthonormal scaling function generating the core subspace V0, see also the related work.6

Definition 2.3. A finite family of functions {fi : i = 1, 2 . . . n} in L2(Rd) is called steerable if for every
R ∈ SO(d) and i ∈ {1, 2 . . . n}, ρ(R)fi belongs to the linear span of the family.

The family {ψ(j)
i : i = 0, 1, . . . , n(j), j ∈ Z} ⊂ L2(Rd) is called a family of steerlets if {DjTm/2ψ

(j)
i : i =

0, 1, . . . n(j), j ∈ Z,m ∈ Zd} is a frame for L2(Rd) and if for every j ∈ Z, {ψ(j)
i : i = 0, 1, . . . , n(j)} is steerable.

We will also say that the steerable set {ψ(j)
i : i = 0, 1, . . . , n(j)} is centered at the origin, whereas the corresponding

set centered at the point a ∈ Rd is {T−aψ
(j)
i : i = 0, 1, . . . , n(j), j ∈ Z} ⊂ L2(Rd).

A texture segmentation/identification algorithm can usually be split in two parts, feature extraction and the
classification process. Feature extraction utilizes a data representation. Our features must be such that when
two patches—small regions of the image—generate ‘similar’ feature vectors in some statistical sense, then the
patches can be considered as coming from the same texture. In this context we are not interested in the global
rotations of an image but in rotations of patches. So, we want our steerlets to be well-localized in the space
domain. Then, heuristically speaking, if Patch 1 is centered at the origin and is the rotation of Patch 2 centered
at the grid point n then the steerlet representation of the Patch 2 will be easily predictable from the steerlet
representation of Patch 2 if we use steerlets centered at n. This can allow us to generate rotation-invariant



texture signatures and thus rotation-invariant classifiers. Now the context in which we intent to use steerlets is
clear. However, in this paper we will only illustrate the main ideas for their construction.

We start by using an IMRA generated by a very simple function, namely ϕ = F−1χB(0,b0), where b0 < 1/2.
We begin with a simple case because we can prove all claims with standard arguments without having to employ
technical results. However, one would only use this IMRA for modelling purposes because the filters associated
with it have the poor spatial localization. First, note

Rd = B(0, 2j0b0) ∪∞j=j0 B(0, 2jb0, 2j+1b0) , j0 ∈ Z.

This dyadic decomposition is a partition of Rd, so L2(Rd) is equal to the orthogonal direct sum of its subspaces
Xj0 and Yj , where Xj0 contains those functions in L2(Rd) vanishing a.e. outside B(0, 2j0b0) and Yj contain those
who vanish a.e. outside B(0, 2jb0, 2j+1b0) respectively. This dyadic decomposition is associated with the IMRA
generated by ϕ because Vj0 = F−1(Xj0). Accordingly,

Wj := Vj+1 ∩ V ⊥
j = F−1(Yj) .

Lemma 2.4 (Benedetto and Li4; Han and Larson16). Let f ∈ L2(Rd) and j ∈ Z. Then, {Tnf : n ∈ Zd}
is a Parseval frame of its closed linear span if and only if∑

s∈Zd

|f̂(ξ + s)|2 = χC(ξ) ξ ∈ Td ,

where C is a measurable subset of Td.

2.1 A first construction of steerlets

Definition 2.5. A family of measurable functions {p(j)
i : i = 1, . . . , n(j), j ∈ Z} on Rd is called a family of

steerlet modulators with pass band B(0, b0, 2b0) if the set satisfies the following two conditions:

• Normalized square sum,
n(j)∑
i=1

|p(j)
i (ξ)|2 = 1 a.e. in B(0, b0, 2b0); (1)

• For every i = 1, 2, . . . , n(j) and R ∈SO(3) there exist scalars b(j)i,k(R), 1 ≤ k ≤ n(j) such that

ρ(R)p(j)
i (ξ) =

n(j)∑
k=1

b
(j)
i,k(R)p(j)

k (ξ) a.e. in B(0, b0, 2b0). (2)

If each function in the set is continuous, we call them continuous steerlet modulators.

Next we state and prove the first and simplest steerlet construction.

Proposition 2.6. Let ψ(j)
i be defined via the Fourier transform

ψ̂
(j)
i (ξ) := 2−d/2p

(j)
i (ξ)χB(0,b0,2b0)(ξ), ξ ∈ Rd, i = 1, 2, . . . , n(j), j ≥ j0 ,

and with {p(j)
i : i = 1, . . . , n(j), j ∈ Z}, the family of steerlet modulators in the preceding definition. The family

{ψ(j)
i : i = 1, . . . , n(j), j ∈ Z} then enjoys the following properties:

(i) For each j ≥ j0, the sets {ψ(j)
i : i = 1, 2, . . . , n(j)} and {Dj0ϕ} ∪ {ψ(j0)

i : i = 1, 2, . . . , n(j0)} are steerable.

(ii) The set {Dj0Tnϕ : n ∈ Zd} ∪ ∪∞j=j0
{DjTn/2ψ

(j)
i : i = 1, 2, . . . , n(j), n ∈ Zd} is a Parseval frame of

L2(Rd).



Proof. (i) Let j ≥ j0, 1 ≤ i ≤ n(j) and R ∈ SO(3), then,

F
(
ρ(R)ψ(j)

i

)
(ξ) = 2−d/2p

(j)
i (Rξ)χB(0,b0,2b0)(Rξ)

which, due to (2) is equal to

2−d/2

n(j)∑
k=1

b
(j)
i,k(R)p(j)

i,k(ξ)χB(0,b0,2b0)(ξ) .

This proves the first assertion of (i). The second assertion of (i) follows from the (i) and the fact that ϕ is radial.

(ii) Since ϕ̂ = χB(0,b0) Lemma 2.4 implies that {Tnϕ : n ∈ Zd} is a Parseval frame of V0, thus {Dj0Tnϕ : n ∈
Zd} is a Parseval frame of Vj0 . Now let j ≥ j0. Then,

DjTn/2ψ
(j)
i = T2−(j+1)nD

jψ
(j)
i

so
D−(j+1)T2−(j+1)nD

jψ
(j)
i = TnD

−1ψ
(j)
i .

Thus, {DjTn/2ψ
(j)
i : i = 1, 2, . . . , n(j), n ∈ Zd} is a Parseval frame of Wj if and only if {TnD

−1ψ
(j)
i : i =

1, 2, . . . , n(j), n ∈ Zd} is a Parseval frame of W−1 = F−1(B(0, b0/2, b0)). To establish that this is true we apply
Lemma 2.4: ∑

s∈Zd

|(FD−1ψ
(j)
i )(ξ + s)|2 =

∑
s∈Zd

|p(j)
i (2(ξ + s))χB(0,b0/2,b0)(ξ + 2s)|2

= χB(0,b0/2,b0)(ξ) a.e. in Td.

We remark that the last of the previous equalities follows from (1). To complete the proof of (ii) note that
L2(Rd) is equal to the orthogonal direct sum of Vj0 and all of the Wj ’s with j ≥ j0.

The previous theorem can be generalized to hold for ϕ and steerlets ψ(j)
i with rapid decay in the spatial

domain. These arise when instead of ϕ and ψ
(j)
i proposed above we use smooth versions of the radial windows

χB(0,b0) and B(0, 2jb0, 2j+1b0). Here is how this can be done.

2.2 A construction of spatially well-localized steerlets

Definition 2.7. Let 0 < a1 < a0 < 1/4 and suppose that the low pass filter H0 is a continuous real-valued
Zd-periodic function such that

• H0 = 1 inside the ball of radius a1;

• H0 = 0 on Td \B(0, a0);

• H0|B(0,a0) is radial.

Let h be a Zd-periodic function defined by the identity

h(ξ) =
√

1−H2
0 (ξ) . (3)

Let {p(j)
i } be a family of continuous, Zd-periodic steerlet modulators with pass band B(0, a1, 2a0). We then define

the steerlet filters associated with {p(j)
i } and h for each j ∈ Z by H(j)

i = p
(j)
i (ξ)h(ξ) a.e. in Td and by H0.

Theorem 2.8. Let 1/8 < a1 < a0 < 1/4. Let {p(j)
i } be a family of steerlet modulators with pass band

B(0, a1, 2a0) and let h be as in the preceding definition, and define the steerlet filters H0 and H
(j)
i associated

with these functions accordingly. Let φ be defined by φ̂(ξ) = H0(ξ/2)χTd(ξ) a.e. in Rd and the steerlets ψ(j)
i by

ψ̂
(j)
0 (ξ) = 2−d/2h

(
ξ

2

)
φ̂

(
ξ

2

)
ψ̂

(j)
i (ξ) = 2−d/2H

(j)
i

(
ξ

2

)
φ̂

(
ξ

2

)
1 ≤ i ≤ n(j), ξ ∈ Rd. (4)



Then the refinable function φ and the steerlets ψ(j)
i , where i = 0, 1, 2, . . . , n(j), defined as above can be chosen to

have arbitrarily good spatial localization and the following generalization of Proposition 2.6 is true:

(i) For each scale j ≥ j0, the sets {ψ(j)
i : i = 0, 1, 2, . . . , n(j)} and {Dj0φ} ∪ {Dj0ψ

(j0)
i : i = 0, 1, 2, . . . , n(j0)}

are steerable.

(ii) The set {Dj0Tnφ : n ∈ Zd} ∪ ∪∞j=j0
{DjTn/2ψ

(j)
i : i = 0, 1, 2, . . . , n(j), n ∈ Zd} is a Parseval frame of

L2(Rd).

(iii) The set ∪j∈Z{DjTn/2ψ
(j)
i : i = 0, 1, 2, . . . , n(j), n ∈ Zd} is a Parseval frame of L2(Rd).

Apart from item (iii) which directly follows from (ii) because limj0→−∞ F(Dj0φ)(ξ) = 0, the proof of this
result is non-trivial and, thus is beyond the scope of this publication, so it will appear in a forthcoming paper of
our group.

We remark that unlike curvelets7, 8 and shearlets15, 22, 23, 34 the number of steerlets can vary for each resolution
level j in an arbitrary way. This characteristic allows to reduce or increase the number of steerlets used for every
resolution level as needed. Steerlets can capture several local characteristics of an image: Local angular oscilation,
edges and other singularities alligned in a certain direction.

2.3 Fast Steerlet Transform

Theorem 2.8 allows to use multiple scales. When this is done, we can choose to reduce the redundancy of the
transform by compensating the effects of downsampling with a dyadic factor 2d/2. This allows the transform
to preserve energy, as in mathematical terms, the decomposition is an isometry due to (ii) of Theorem 2.8.
Due to the construction of steerlets the rotation of steerlet stays within the same scale, while translations of
steerlets in general do not share the same property. For this reason if we want the transform to be associated
with simple rigid motion covariance properties–which we will discuss in the following section– we must drop the
downsampling steps and allow for extra redundancy. In this case we will have to remove the energy adjusting
factor 2d/2. The Fast Steerlet Transform allows for exact reconstruction provided that the input image has a
certain bandwidth. For images of higher bandwidth, we have to upsample and low pass the input image before
we apply the transform.

With H0, a1 and H(−1)
i defined as above. Define, D and U the downsampling and upsampling by the factor

2 operators, X0σ = h0 ∗ σ and X
(−1)
i σ = h

(−1)
i ∗ σ, where σ ∈ `(Zd) and h0, h

(−1)
i are the d × d arrays

of filter taps of the filters H0 and H
(−1)
i (i = 0, 1, 2, . . . , n(−1)) respectively. One can choose for a single

decomposition/reconstruction step any j, not j = −1. In other words, any of the steerlet modulators p(j)
i can be

chosen for p(−1)
i .

Proposition 2.9. Fast Steerlet Transform. The following are true:

(i) (Undecimated) For every digital image σ ∈ `(Zd) whose Fourier transform σ̂ vanishes outside B(0, 2a1)
we have

X0X0σ +
n(−1)∑
i=1

X
(−1)
i X

(−1)
i σ = σ .

The decomposition in this algorithm is implemented by applying X0 and X(−1)
i to the input σ.

(ii) (Decimated) With σ as in (i) we have

(2d/2X0U)(D2d/2X0)σ +
n(−1)∑
i=1

X
(−1)
i X

(−1)
i σ = σ .

The decomposition transform in this algorithm is implemented by applying 2d/2X0 and X(−1)
i to the input

σ and is an isometry.



Proof. Item (i) follows directly from

1 = |H0(ξ)|2 +
n(−1)∑
i=1

∣∣∣H(−1)
i (ξ)

∣∣∣2 for all |ξ| ≤ 2a1, (5)

which in turn follows from the definition of H0 and (3) and the property of the steerlet modulators.

Recall, that {0, 1}d is the set of all arrays with d entries which are all either equal to zero or to one. To prove
(ii), first notice that the Fourier transform of UDX0σ is equal to ξ 7→ 1

2d

∑
η∈ 1

2{0,1}d H0(ξ + η)σ̂(ξ + η). Since,

H0 vanishes outside the ball B(0, 1/4) we obtain that the Fourier transform of (2d/2X0U)(D2d/2X0)σ is equal
to ξ 7→ |H0(ξ)|2 σ̂ which combined with (5) completes the proof of (ii). The preservation of energy by decimated
decomposition transform follows by calculating the energy of the function UDX0σ and by observing that U is an
isometry and that each term in the sum ξ 7→ 1

2d/2

∑
η∈ 1

2{0,1}d H0(ξ + η)σ̂(ξ + η) is a translate of the first term,
H0(ξ)σ̂(ξ).

2.4 Discrete Steerability

Throughout this subsection the steerlet modulators {p(j)
i } are assumed to have pass band B(0, a1, 2a0) and the

image f is assumed to have Fourier transform vanishing outside B(0, 2a1). This is a convention we adopt since
we always assume that an already digitized input image has been sampled at an appropriate sampling rate which
we can always set equal to the Nyquist rate. Under this assumption the expansion of f in terms of the Parseval
frame of (ii) of Theorem 2.8 and for j0 = 0 is f =

∑
k∈Zd 〈f, Tkφ〉Tkφ. But 〈f, Tkφ〉 =

∫
Rd f̂(ξ)φ̂(ξ)e2πi(k·ξ)dξ =∫

Rd f̂(ξ)e2πi(k·ξ)dξ = f(k). This shows that under the proper bandwidth assumptions for the image f we can
input its original samples to the Fast Steerlet transform without any initialization.

Next, we consider the high pass output of the transform, Obviously A−1(Tmf)(n) = A−1f(n−m) for every
m ∈ Zd. Now, let R ∈SO(3). We say that Rn be a rotation by R centered at n if Rn(x) = n+R(x− n), for all
x ∈ Rd.

Theorem 2.10. The mapping A−1 defined by the undecimated Fast Steerlet Transform A−1f(n) = (〈f, Tnψ
−1
i 〉)n(−1)

i=0 ,
where n ∈ Zd, is a Discrete Steerable Feature Mapping, meaning it obeys the desired steerability rules under trans-
lations by integers and arbitrary rotations centered at any point where the transform is evaluated.

Proof. First, let n = 0. Then,

A−1(ρ(R)f)(0) = (〈ρ(R)f, ψ−1
i 〉)n(−1)

i=0 = (〈f, ρ(RT )ψ−1
i 〉)n(−1)

i=0 = B(−1)(RT )(A−1f(0))T ,

where for an arbitrary O ∈SO(3) the (n(−1) + 1)× (n(−1) + 1)-matrix B(−1)(O) is given by

B(−1)(O)i,k =


1 if i = k = 0
0 if i = 0 k > 0 or k = 0 i > 0
b
(−1)
i,k (O) in all other cases

where b(−1)
i,k (O) are as in the continuous steerlet modulators. More generally, when n 6= 0 the action of a rotation

Rn on f is given by Tnρ(R)T−n. This shows that the steerability rules for rotations and for n = 0 apply in this
case as well. It is also apparent that translation invariance holds,

A−1(Tnρ(R)T−nf)(n) = (〈Tnρ(R)T−nf, Tnψ
−1
i 〉)n(−1)

i=0 = (〈T−nf, ρ(RT )ψ−1
i 〉)n(−1)

i=0

= B(−1)(RT )(A−1T−nf(0))T = B(−1)(RT )(A−1f(n))T .

If we consider the low pass output of the undecimated transform L−1f(n) := 〈f, TnD
∗φ〉, then we see L−1(Tmf)(n) :=

L−1f(n−m) and for all the actions of all rotations centered at n the output L−1f(n) remains invariant due to
the radiality of φ.



3 First Examples

In all examples that follow we include the steerlet modulators p(j)
i only. We also define these modulators on the

entire d-dimensional torus Td. However, these functions are multiplied by the radial window function hH0(2·).
It is the product of the steerlet modulators with the hH0(2·) that has to be smooth to allow the rapid decay of
the resulting steerlets in the spatial domain.

Example 3.1. A first example of steerlets in 3 dimensions which are not isotropic is obtained by taking n(j) = 3,
independent of j, and by defining for ξ ∈ T3,

p
(j)
0 (ξ) =

1√
2

sin(β(ξ))e−iα(ξ) ,

p
(j)
1 (ξ) = cos(β(ξ)) ,

p
(j)
2 (ξ) = − 1√

2
sin(β(ξ))eiα(ξ) ,

with spherical coordinates, cos(β(ξ)) = ξ3/‖ξ‖ and e−iα(ξ) = (ξ1 + iξ2)/‖ξ‖. This means β measures the angle
between the point on the unit sphere 1

|ξ‖ (ξ1, ξ2, ξ3) and the ‘North pole’, namely (0, 0, 1), whereas α is the
‘longitude’ of the same point measured on the equator of the unit sphere starting from (1, 0, 0). So −π ≤ α ≤ π
and 0 ≤ β ≤ π. These steerlet modulators are, up to an overall constant factor, spherical harmonics of degree
one. It is well known that the span of these spherical harmonics is invariant under rotations. A variation of this
set of steerlet modulators is given by

p
(j)
0 (ξ) = 1/

√
2

p
(j)
1 (ξ) = 2−1/2ξ1/‖ξ‖

p
(j)
2 (ξ) = 2−1/2ξ2/‖ξ‖

p
(j)
3 (ξ) = 2−1/2ξ3/‖ξ‖ .

In the latter setting we have one non-directionally selective modulator, p(j)
0 which allows to extract non-directional

components after applying the high-pass filter hH0(2·). All other modulators are edge detectors sensitive to each
of the main Cartesian axes.

A more general way to produce examples of steerlet modulators in 3D is given by higher order spherical
harmonics. These can be used to extract more detailed informations about the singularity structure in an image,
and also to improve the angular selectivity in the analysis of features. The details of this will be provided in a
forthcoming paper.
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