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Abstract

This work describes a new and different path to create a wavelet transform that can match
ified discrete-time signal. CalledSpikelet, it is designed and optimized to spike and overlap pat
recognition in the digitalized signal that comes from H1, a motion-sensitive neuron of the fly’s
system. The technique proposed here and the associated algorithm, implemented in real tim
a digital signal processor (DSP), are fully detailed. The results obtained matching the signa
analysis show an improvement over all other transforms, including the Daubechies transform
reassures the efficacy of our transform.
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1. Introduction

1.1. Article organization

This article is organized as follows: Sections 1.2–1.5 describe the issue to be fa
basic review on techniques for spike and overlap sorting, techniques of time–freq
analysis, discrete wavelet transforms, and a brief comment on two methods to co
wavelets matching a specified signal. Section 2 contains the characterization of the s
match, called thedefault spike. Section 3 details the construction of the proposed wav
Spikelet. Section 4 describes the algorithm where Spikelet is used to spike and o
sorting. Section 5 lists the results and conclusions.

1.2. Problem description

Much literature has appeared recently describing different techniques to create w
transforms that match a specified signal, for instance [1–5]. The technique proposed
work was inspired by the Daubechies transform [6] together with inputs drawn from
and uses the least-squares method [8] to get the filter coefficients.

In the application treated here, the tests using Spikelet with support 4 showed tha
possible to distinguish at least 7 different patterns against no more than 5 patterns
using other wavelet transforms with support 20 (5 times larger). Furthermore, we dete
in which portion of the signal the patterns occur, making a time–frequency–shape an

The signals under analysis correspond to the neural action potentials of H1, a m
sensitive neuron in the fly’s visual system [9]. They were acquired extracellularly, us
platinum–iridium electrode while the fly views a pattern of vertical random bars mo
horizontally across its visual field. The experimental setup is shown in Figs. 1–4. P
ularly, Fig. 1 shows the full experiment with the fly, the electrode, and the access
Figure 2 shows the Diptera laboratory where the experiment was developed; Fig. 3
a spike captured in real time on the oscilloscope. Figure 4 shows the pattern of bars
as a stimulus to the fly’s visual system during the experiment.

Figure 5 shows the seven patterns easily classified by Spikelet. They are called
left to right,stressed left overlap, left overlap, spike, right overlap, stressed right ove
left and right overlap, andirregular overlap. Spikelet is optimized to match a spike, call
thedefault spike. The overlaps are classified based on their decomposing in two or
spikes.

The seven patterns illustrated in Fig. 5 cover almost all the spike and overlap shap
were found in the corresponding signals. We sampled about 30 h of data, which gen
spikes at a rate of about 40 Hz. We highlight that the spike shape means that on
H1 neuron action potential was captured by the electrode. This is an ideal situation
depends on perfect electrode positioning. So, when an overlap shape is captured, i
that another neuron (or neurons) is (are) reacting together (or not) with H1. The
namedirregular overlap is a deformed spike that conserves the ideal shape in its
part. At its end it appears irregular, indicating that a neighboring neuron is acting
H1, probably with a smaller amplitude. All the other overlap shapes indicate that th
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Fig. 1. The fly, the electrode, and the experiment.

Fig. 2. The Diptera lab.

reaction (associated with the largest amplitude in the shape) was preceded or follo
the reaction of another neighboring neuron(s).

As a final result, the instant that the spike (or overlap) appears correlates with the
that some random bar appears. In this work, the instant the specified shape occurs is
as the point in the shape with the greatest inclination, that is, the largest absolute v
its derivate in relation to time.
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Fig. 3. A spike captured in real time.

Fig. 4. The pattern of bars the fly sees during the experiment.

Fig. 5. 7 patterns of spikes and overlaps easily classified using Spikelet.

The behavior of the neurons, described by the instant the spikes and overlaps oc
the associated shapes, is very important in order to understand the behavior of th
visual system. The detection of neural spike and overlap activity is a technical cha
and is a prerequisite for studying many types of brain functions. The fly’s implicit an
(stimulus velocity)-to-digital (spike and overlap trains) biological system can be us
study its neural code [10].
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Fig. 6. Basic architecture for analyzing extracellular neural signals.

1.3. Some methods for spike and overlap sorting

The first link between neural communication and electrical signals was made by
Galvani in 1791 when he showed that frog muscles could be stimulated by electricity
Since the 1920s, nerve impulses have been measured directly by amplifying electric
nals recorded using electrodes, electronic amplifiers, and filters (Fig. 6).

There are some references in the literature that describe algorithms and meth
spike and overlap sorting [11–13]. The most significant are briefly related:

• Threshold trigger algorithm. This is the simplest method to detect a spike. A p
tion of a signal is classified as a spike whenever some of its samples cross a d
threshold. Although this method is the easiest to be implemented, it is very prim
because there is no shape classification, and overlaps cannot be found.

• Threshold trigger algorithm with interspike interval histogram. The threshold is
used together with a histogram to measure the isolation among spikes that can g
overlaps. This method is also easy to implement, but the shape classification is
best one. It checks the quality of interspike isolation over a long period of tim
cases where the spike waveform under analysis is a single unit, there should
interspike interval less than the refractory period, which is of the order of 1 ms.
method requires a large number of spikes to be certain that it is an isolated unit.

• Template matching algorithm. In this case the algorithm tries to measure charac
istics such as the height and width of the probable spike or overlap to get a bette
on classification.

• Principal component analysis algorithm. The idea behind this method (Glaser a
Marks, 1968; Glaser, 1971; and Gerstein et al., 1983) is to find an ordered set
thogonal basis vectors that captures the directions of the largest variation in th
According to the literature, it is one of the best methods for pattern classification

• Lewicki algorithm. Lewicki (1994) introduced an overlap decomposition algorit
that uses a special data structure for pattern classification: time alignment and o
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decomposition are done at the same time and with minimal computational exp
The algorithm usesk-dimensional search trees and returns a list of spike mode
quences and their relative probabilities. The procedure runs fast enough to
implementation in real time with only modest computing requirements.

• Bayesian approach. Rinberg et al. (2003) proposed a technique based on the Bay
model of probability in the frequency-domain that efficiently detects spikes and
laps and can be used in real time.

• Neural networks approach. A method based on learning which has a good per
mance in classification, although the results depend on the procedure used to tr
classifiers. This approach customarily uses an algorithm of high-order complexi

• Filter-based methods. This approach uses optimal filtering (Roberts and Hartl
1975; Stein et al., 1979; Gozani and Miller, 1994) to discriminate a set of spikes
each other and from background noise. For a spike model, the filter is construc
respond maximally to the spike shape of interest and minimally to the backgr
noise by using convolution in the time domain. According to the literature menti
above, the filter based methods to spike and overlap sorting are less effective tha
methods such as principal component analysis, template matching, and some o
this classification. The use of Spikelet, that is, a wavelet transform, and thus, a
aims to change this idea significantly.

1.4. Time–frequency analysis review and discrete wavelet transform at work

The experiments with spike and overlap sorting algorithms have shown that it is
sible to treat the problem in the frequency-domain. We present a brief review of the
techniques used to analyze a discrete-time signal both in time and frequency doma

• DFT/FFT. The discrete Fourier transform (DFT) or, in its ‘fast’ version, fast Fou
transform (FFT), indicates the frequencies contained in a discrete-time signal, b
their occurrence in time. Thus, for a non-stationary signal, as the fly’s neural s
studied here, this technique does not work well. The DFT is

F [k] =
N−1∑
n=0

f [n]e−j2πnk/N , (1)

wherek labels each sample of the DFT,j = √−1, andN is the number of samples o
the original signalf [n].

• STFT. The short-time Fourier transform (STFT), written in Eq. (2), which is a w
dowed version of DFT, makes a time–frequency analysis of a signal, but the wi
width may cause a problem of resolution: narrow windows give good time resol
but poor frequency resolution; wide windows give good frequency resolution but
time resolution. In Eq. (2),x(t) is the continuous original signal in the time doma
W is the window function,j = √−1, t is the time, andω is the frequency:

STFT
(
t, x(t)

) =
b∫ (

x(t)W(t − t ′)
)
e−jωt dt. (2)
a
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• DWT. The discrete wavelet transform (DWT), whose main idea is the process of
tiresolution analysis (MRA) proposed by Mallat [14], is one of the most approp
techniques to make a joint time–frequency analysis of discrete-time signals. It a
one to find the time support of frequencies.

Considering �f as the discrete-time signal under analysis, it is decomposed in the
of two other vectors�A and �D, called respectivelytrendandfluctuation,

�f = �A + �D, (3)

where

�A =
n/2−1∑
k=0

〈 �f , �vk〉 �vk, �D =
n/2−1∑
k=0

〈 �f , �wk〉 �wk.

Then, for a discrete-time signal�f containingn samples:

· �A is the projection of�f onto a subspaceV , with a basis containingn/2 vectors;
· �D is the projection of�f onto a subspaceW , with a basis containingn/2 vectors;
· V ⊥ W ↔ �A ⊥ �D;
· �vi ⊥ �wi ↔ 〈 �vi, �wi〉 = 0.

The process above is a one-level decomposition. Whenn is an integer power of 2, thi
process can be repeatedj = log(n)/ log(2) times. To do that, the resulting signal�A is
decomposed one or more times, creating a decomposition ofj levels. This is the main ide
behind the MRA analysis: decomposing a signal in several levels of resolution (Eq.

�f = �Aj +
j∑

i=1

�Di. (4)

Thus,

· �Aj is the projection of�f onto a subspaceVj , with a basis containingn/2j vectors;
· �Di is the projection of�f onto a subspaceWj , with a basis containingn/2i vectors;
· Vj ⊥ Wj ↔ �Aj ⊥ �Dj ;
· �vi,j ⊥ �wi,j ↔ 〈 �vi,j , �wi,j 〉 = 0.

In other words,

f [n] =
n/2j −1∑

k=0

Hj,k[n]φj,k[n] +
j∑

t=1

n/2j −1∑
k=0

Gt,k[n]ψt,k[n], (5)

where

· φ[n] andψ[n] forms a Riezs basis [15] to write signalf ;
· φ[n] = ∑

k hnφ[2n − k], defined recursively by dilations and translations of itsel
calledscaling function[15];
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· ψ[n] = ∑
k gnφ[2n − k], defined recursively, is calledwavelet functionand is orthog-

onal to thescaling function;
· Hj,k[n] = 〈f,φj,k[n]〉;
· Gt,k[n] = 〈f,ψt,k[n]〉;
· {0} ← · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2;
· if f [n] ∈ Vj → f [2n] ∈ Vj+1;
· Vj+1 = Vj ⊕ Wj ;
· thehk coefficients form a lowpass filter;
· thegk coefficients form a highpass filter;
· thehk andgk coefficients form theanalysis filter bank;
· a filter with k coefficients is called a filter of supportk.

In practice, to compute the DWT, the coefficients of the signal under analysis (f ) are
convolved [19] both with the lowpass filter (h) and the highpass (g) filter as follows:

ylowpass[n] = f [ ] ∗ h[ ] =
M−1∑
k=0

h[k]f [2n − k], 0� n � N/2, (6)

yhighpass[n] = f [ ] ∗ g[ ] =
M−1∑
k=0

g[k]f [2n − k], 0� n � N/2, (7)

whereylowpassandyhighpassare the outputs,M is the length of signalsh andg, N is the
length of signalf , and∗ denotes the discrete-time convolution.

In each level of decomposition, there is a downsampling by 2 of the signals bein
alyzed because the convolutions above are, in fact, filters that allow a half-band
original signal to pass, according toNyquist rate[17]. Figure 7 illustrates this process.

A much more detailed description of the DWT working, including the inverse D
can be found in the literature, especially [1,6,15]. It is not the goal of this work to deta
of the properties, but there are three special properties of a wavelet transform that a
and analyzed in Spikelet. They are:

• Number of vanishing moments. To a wavelet withm vanishing moments and a sign
that can be described approximately by a polynomial of degree less thanm, the fluc-
tuation (detail) coefficients are approximately zero. Each moment can be calc
with Eq. (8), whereP is the number of integer and half points of the wavelet func
that are different from zero,m = 0,1,2, . . . , is the desired moment,t0 = 0, t1 = 0.5,
t2 = 1, t3 = 1.5, and so on. The number of vanishing moments is thus defined a
non-negative integerm−1 for which the (right-hand side) (rhs) of Eq. (8) differs fro
zero:

momentm =
P−1∑
k=0

tk
mψ[tk]. (8)
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Fig. 7. Example of a MRA analysis using DWT in a 3-level decomposition. The DWT of the original s
with n samples also hasn samples. In the higher frequencies, there is better time resolution and worse freq
resolution; in the lower frequencies, the opposite occurs.

• Signal energy, defined to be the scalar valueE in Eq. (9),

E =
N−1∑
n=0

f [n]2, (9)

whereN is the length of signalf .
• QMF filters (quadrature mirror filters), corresponding to the pair of digital filters

fined by h0, h1, . . . , hk and g1, g2, . . . , gk coefficients, where {hk} form a lowpass
filter and {gk} form the mirror highpass filter [16], in terms of its frequency respon
according to Eq. (10),

gk = (−1)khM−k−1, (10)

whereM is the support length, or the number of coefficients.
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1.5. Methods to create wavelets matching a signal

In general, wavelet transforms such as Daubechies, Coiflets, Symmlets [1], and
are not optimized to match a specified signal. Among the methods, two of the most
esting and recent ones that consider the signal being analyzed are briefly described

• Closed-form solutions for finding scaling function spectrum from the wavelet
spectrum. Proposed by Chapa and Rao [5], the wavelets are designed directly
the signal to match instead of building a composite wavelet from a library of p
ously designed wavelets. The basis is then modified. To do that, two sets of equ
are created. This imposes band limitations and results in closed-form solution
algorithm generates the associated scaling function which, in turn, satisfies the
normal multi-resolution analysis criteria.

• Maximal projection of given signal on to the scaling subspace. In this method,
proposed by Gupta et al. [7], the signal to be matched is convolved with a ge
lowpass filter with support 4 or 6. The resulting signal energy on the scaling sub
is then maximized by calculating its first derivative in relation to all but one fi
weight. This yields a linear homogeneous system. Thej th filter weight is then kep
constant to 1, and the resulting system is solved to obtain the other filter coeffic
The problem with this method is that the result depends on the discarded filter w
This idea corresponds to the energy minimization of a signal that moves to conse
wavelet subspaces. Thus, the projection on the scaling subspace is maximize
technique proposed here to construct Spikelet makes use of this idea, but it do
discard any filter weight.

2. The default spike as the signal to match

The default spike, the main signal to be matched in this instance, is defined us
experimental process. It is the middle spike among the 80 spikes that were obtaine
the visual inspection of a large signal containing many spikes and overlaps. Figure 8
the default spike together with the numerical values(x = sample,y = amplitude) for each
one of its 32 points. The length of the signal to match is arbitrary: 32 is merely the exa
used in this case.

To better illustrate the patterns to match, Fig. 9 shows one clip of a recorded
of interest, both in time and frequency domain. Some isolated spikes and overlaps t
decomposed in several frequency sub-bands are shown in Figs. 10–13 to give an ide
the shapes and the frequencies that form these patterns.

3. Construction of the Spikelet wavelet transform

The process to create the new wavelet, Spikelet, consists of obtaining its filter c
cients using the least-squares method to solve a system of 3n/2 + 1 linear equations inn
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(0,4533) (1,5562)
(2,6517) (3,7358)
(4,7858) (5,7278)
(6,4903) (7,187)
(8,−6648) (9,−14330)
(10,−21331) (11,−26532)
(12,−29400) (13,−29865)
(14,−28071) (15,−24728)
(16,−20572) (17,−15930)
(18,−11207) (19,−6682)
(20,−2644) (21,807)
(22,3627) (23,5771)
(24,7318) (25,8302)
(26,8771) (27,8772)
(28,8421) (29,7822)
(30,7044) (31,6222) Fig. 8. Default spike.

Fig. 9. (Top) Some spikes and overlaps in time domain captured during the experiment. (Bottom) The corr
ing frequency domain representation.

unknowns,n being the filter support. These equations come from two existing appro
to construct a wavelet, both suitably modified:

• ordinary Daubechies wavelet construction [6], excluding the orthogonality cri
This technique does not consider the signal being analyzed;
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Fig. 10. Spike and lowpass filters: solid, original;
dashes, 5512.5 Hz; dots, 2756.25 Hz.

Fig. 11. Overlap and lowpass filters: solid, origina
dashes, 5512.5 Hz; dots, 2756.25 Hz.

Fig. 12. Spike and bandpass filters: solid, original;
dashes, 0–2756.25 Hz; dots, 2756.25–5512.50 Hz;
dashes and dots, 5512.50–11025 Hz; dash with three
dots, 11025–22050 Hz.

Fig. 13. Overlap and bandpass filters: solid, origin
dashes, 0–2756.25 Hz; dots, 2756.25–5512.50
dashes and dots, 5512.50–11025 Hz; dash with th
dots, 11025–22050 Hz.

• maximization of the signal to match on a scaling subspace when its DWT is
formed [7], excluding no filter weight.

The full description follows. Once the signal to match, default spike, has been de
three sequences of steps have to be followed: sequence A (A1, A2, and A3), sequ
(B1, B2, and B3), which may happen in parallel with sequence A, and finally, sequ
C (C1, C2, and C3), which occurs after sequences A and B have been complete
process is illustrated in the following diagram, followed by a detailed description of A
and C:
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• Step A1. Write down the equations for the Daubechies transform filter coefficienthi :

n−1∑
k=0

(−1)khkk
b = 0,

n−1∑
k=0

hk = 2,

n−1∑
k=0

hkhk+2l = 2δ0,l ,

whereb = 0,1, . . . , n/2− 1 andl ∈ Z. The first equation is responsible for produci
vanishing moments. The second one comes from the fact that the area under the
function is unitary:

∫
φ(x)dx = 1. Finally, the third one imposes orthogonality amo

the scaling and wavelet vectors. This is simply the original Daubechies transform
• Step A2. The condition of orthogonality is excluded. The Spikelet transform will

be orthogonal:

n−1∑
k=0

(−1)khkk
b = 0,

n−1∑
k=0

hk = 2.

This does not represent a problem because no inverse transform is needed in
gorithm proposed to classify the patterns. Although the spike and overlap s
Spikelet proposes to match are not smooth, the first group of equations in ste∑n−1

k=0(−1)khkk
b = 0, responsible for producing the vanishing moments, are ke

order to ensure the right frequency response of the proposed filters.
• Step A3. Supportn = 4 is imposed on the equations from step 2. It produces a sy

of n/2+ 1= 3 linear equations inn = 4 unknowns:{−1h3 + 1h2 − 1h1 + 1h0 = 0,

−3h3 + 2h2 − 1h1 + 0h0 = 0,

1h3 + 1h2 + 1h1 + 1h0 = 2.

Constructing the transform with larger supports worsens the result in terms of
recognition, as the experiments have shown.

• Step B1. The default spike signal is convolved with a generic signal of supportn = 4
in the unknownsh0, . . . , h3, followed by a downsampling by 2. The resulting signa
the projection of default spike, called vector�u, on a subspaceV .

• Step B2. The resulting signal energy of step B1 is maximized:

∂E(
−−−→
PV u)

∂h0
= 0,

∂E(
−−−→
PV u)

∂h1
= 0,

∂E(
−−−→
PV u)

∂h2
= 0,

∂E(
−−−→
PV u)

∂h3
= 0.
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• Step B3. Step B2 leads to a system of linear homogeneous equations inn = 4 un-
knowns:


−3.4984h3 + 3.3876h2 − 3.1079h1 + 2.6457h0 = 0,

−3.3876h3 + 3.4876h2 − 3.3967h1 + 3.0924h0 = 0,

−3.1079h3 + 3.3967h2 − 3.5100h1 + 3.4000h0 = 0,

−2.6457h3 + 3.0924h2 − 3.4000h1 + 3.5006h0 = 0.

• Step C1. The equations of steps A3 and B3 are grouped together, resulting in a s
of (n/2+ 1) + n = 3n/2+ 1= 7 linear equations inn = 4 unknowns:



−3.4984 3.3876 −3.1079 2.6457
−3.3876 3.4876 −3.3967 3.0924
−3.1079 3.3967 −3.5100 3.4000
−2.6457 3.0924 −3.4000 3.5006

−1 1 −1 1
−3 2 −1 0
1 1 1 1







h0
h1
h2
h3


 =




0
0
0
0
0
0
2




.

• Step C2. The system is solved using the least-squares method:


−3.4984 −3.3876 −3.1079 −2.6457 −1 −3 1
3.3876 3.4876 3.3967 3.0924 1 2 1

−3.1079 −3.3967 −3.5100 −3.4000 −1 −1 1
2.6457 3.0924 3.4000 3.5006 1 0 1




×




−3.4984 3.3876 −3.1079 2.6457
−3.3876 3.4876 −3.3967 3.0924
−3.1079 3.3967 −3.5100 3.4000
−2.6457 3.0924 −3.4000 3.5006

−1 1 −1 1
−3 2 −1 0
1 1 1 1







h0
h1
h2
h3




=



−3.4984 −3.3876 −3.1079 −2.6457 −1 −3 1
3.3876 3.4876 3.3967 3.0924 1 2 1

−3.1079 −3.3967 −3.5100 −3.4000 −1 −1 1
2.6457 3.0924 3.4000 3.5006 1 0 1







0
0
0
0
0
0
2




.

• Step C3. The solutionh0, . . . , h3 forms a lowpass filter. Defined as a QMF syste
the corresponding highpass filter is formed by theg0, . . . , g3 coefficients according to
Eq. (10):

h0 = 0.26964482896235847376, g0 = 0.23524044702452745481,

h1 = 0.76237548312490721614, g1 = −0.73270322306815560687,

h2 = 0.73270322306815560687, g2 = 0.76237548312490721614,

h3 = 0.23524044702452745481, g3 = −0.26964482896235847376.



38 R.C. Guido et al. / Digital Signal Processing 16 (2006) 24–44

h the
n ideal
hand,
form of

evel of

t func-
ecause
sform

-

Fig. 14. Frequency response of the Spikelet lowpass filter, wherex represents the angular frequency (π = 0.5)
andy represents the amplitude.

Figure 14 shows the frequency response of the Spikelet lowpass filter. Althoug
frequency response of the Daubechies lowpass filter with support 4 is closer to a
response, the Spikelet transform tries to match a signal, not just filter it. On the other
the frequency response cannot be arbitrary because in this case the wavelet trans
the signal under analysis would not relate to the expected frequencies in each l
decomposition. Thus, the Spikelet filters show a satisfactory frequency response.

The next two sections show how to estimate the corresponding scaling and wavele
tions of Spikelet. They are not necessary in order to use the proposed algorithm b
only an analysis (decomposition) of the input signal is made, and no inverse tran
(synthesis) is needed.

3.1. Scaling function

The scaling function,φ(x), defined recursively using the dilation equationφ(n) =∑
k hkφ(2n − k) for a system of supportn = 4 coefficients, does not exist tox < 0 and to

x > 3. We therefore get


φ(0) = h0φ(0),

φ(1) = h0φ(2) + h1φ(1) + h2φ(0),

φ(2) = h1φ(3) + h2φ(2) + h3φ(1),

φ(3) = h3φ(3),

or MT = T , where

M =



h0 0 0 0
h2 h1 h0 0
0 h3 h2 h1
0 0 0 h3


 and T =




φ(0)

φ(1)

φ(2)

φ(3)


 .

So, matrixT with scaling function values is the eigenvector ofM corresponding to eigen
value 1. Using the normalizing condition

∑
k φ(k) = 1, we get



(h0 − 1)φ(0) = 0,

h2φ(0) + (h1 − 1)φ(1) + h0φ(2) = 0,

h3φ(1) + (h2 − 1)φ(2) + h1φ(3) = 0,

(h3 − 1)φ(3) = 0,
φ(0) + φ(1) + φ(2) + φ(3) = 1.
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As h0, . . . , h3 �= 0,


φ(0) = φ(3) = 0,

(h1 − 1)φ(1) + h0φ(2) = 0,

h3φ(1) + (h2 − 1)φ(2) = 0,

φ(0) + φ(1) + φ(2) + φ(3) = 1,

and so{−0.23762451687509278386φ(1) + 0.26964482896235847376φ(2) = 0,

0.23524044702452745481φ(1) − 0.26729677693184439313φ(2) = 0,

φ(1) + φ(2) = 1.

Using the least-squares method again,

φ(1) = 0.53172639832546342298,

φ(2) = 0.46827358753833858707,

whereas the intermediate points satisfyφ(x/2) = ∑
k hkφ(x − k). Thus,

φ

(
1

2

)
= h0φ(1) = 0.14337727373124048436,

φ

(
3

2

)
= h1φ(2) + h2φ(1) = 0.74659794837766346731,

φ

(
5

2

)
= h3φ(2) = 0.11015688806229795293.

3.2. Wavelet function

Using the equationψ(n) = ∑
k gkφ(2n − k), we get


ψ(0) = g0φ(0),

ψ(1) = g0φ(2) + g1φ(1) + g2φ(0),

ψ(2) = g1φ(3) + g2φ(2) + g3φ(1),

ψ(3) = g3φ(3),

yielding

ψ(0) = ψ(3) = 0,

ψ(1) = g0φ(2) + g1φ(1) = −0.27944075778119104037,

ψ(2) = g2φ(2) + g3φ(1) = 0.21362302880293393414,

and for the intermediary points,ψ(x/2) = ∑
k gkφ(x − k). Thus,

ψ

(
1

2

)
= g0φ(1) = 0.12508355563682396761,

ψ

(
3

2

)
= g1φ(2) + g2φ(1) = 0.06226960294661321171,

ψ

(
5

2

)
= g3φ(2) = −0.12626755141936529814.

Figure 15 shows both the scaling and wavelet function graphs.
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Fig. 15. Scaling (left) and wavelet (right) functions of the Spikelet transform.

3.3. Vanishing moments

Although the system in step C1 preserves both vanishing moment condition
Spikelet, the least-squares method used in step C2 disturbs that somewhat. These
conditions are, according to Eq. (8) fort = 0,0.5,1, . . . ,2.5,3:

• 0-order moment= −0.0047321,
• 1-order moment= −0.0119173.

Thus, in theory, Spikelet does not respect any moment condition. However, sinc
very close to having two moment conditions satisfied, and the moment conditions ar
in step A2, we still classify it as a wavelet transform. Anyway, vanishing moments ar
used by the algorithm for spike sorting proposed in Section 4.

3.4. Causality and stability

The pole-zero plot [18] of Spikelet lowpass filter shown in Fig. 16 indicates that i
causal and stable system according to its transfer function:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3

z−n
.

All the poles are located inside the unit circle, and although there are two zeros outs
circle, only the inverse system, not used or calculated here, may not be causal or un

3.5. Considerations

For all tests, a double-numerical precision has been used to compute the filter
cients. The Spikelet filter has the following characteristics:

• asymmetrical wavelet;
• FIR (finite impulse response) filter [19];
• compact support (4);
• stable and causal;
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Fig. 16. Pole-zero plot.

• non-linear phase response;
• each vectorXj is only orthogonal to the corresponding vectorBj , j = 0,1, . . . , where

{X} are the vectors of support 4 with coefficientsh0, . . . , h3 that come from the scalin
function, and{B} are the ones that come from the wavelet function. The system i
construction, not orthogonal;

• a 3-level decomposition of a spike with Spikelet shows that sample 2 presen
largest value of the transform among the samples 0 to 3. Sample 2 of the tran
relates to the rising edge of the original spike. In the next section we see why thi
important [1, p. 232].

4. Using Spikelet: the proposed algorithm

The algorithm that uses Spikelet has a linear order of complexity and is based on
ementary analysis of signal variation between neighboring transform samples of the
under analysis. The steps are:

• Beginning
• Step 1. The FFT (fast Fourier transform) of the signal under analysis is used to

the frequencies that compose it. The signals that were sampled at 44,100 kHz w
bits of quantization contained a higher frequency of 22,050 kHz without alias. F
Nyquist’s sampling theorem, the highest frequency is about 5512.50 kHz whe
signal contains overlaps, and about 2756.25 kHz when only the spikes are p
Thus, a 3-level Spikelet decomposition was chosen.

• Step 2. To reduce computation time, a threshold trigger is used to detect spike
overlaps) that cross a certain pre-defined threshold. For each sample of the o
signal that passes this test, a rectangular window of 32 samples is formed arou
possible spike/overlap. This small part of the signal is analyzed using Spikelet (s
In case the test fails, the algorithm advances some samples in the original sign
returns to step 2 until the signal ends.

• Step 3. The 3-level Spikelet decomposition of the small windowed signal contai
32 samples is formed and analyzed as follows:
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· inversion between samples 1 and 2, 4 and 5→ stressed left overlap;
· inversion between samples 1 and 2, 4 and 5, 5 and 6→ left overlap;
· inversion between samples 1 and 2, 4 and 5, 5 and 6, 6 and 7→ spike;
· inversion between samples 1 and 2, 5 and 6, 6 and 7→ right overlap;
· inversion between samples 1 and 2, 6 and 7→ stressed right overlap;
· inversion between samples 1 and 2, 4 and 5, 6 and 7→ left and right overlap;
· any other combination of signal variations→ irregular overlap.

• Step 4. Some points are advanced. The signal returns to step 2 if it has not ende
• End

Note that samples 0–3 of the transform contain frequencies from 0 to 2756.25 kHz
and, thus, describe only the spikes. Samples 4–7 contain the frequencies from 275.25 to
5512.50 kHz and, thus, describe the overlaps.

Each inversion between samplesi and i + 1, 0 � i � 6, in step 3 above relates
a rising edge in the pattern being analyzed. According to Figs. 10–13, it is po
to see when each one of the 7 patterns decomposes in the corresponding Spike
bands.

Once a spike or an overlap is found, the associated “instant of time” that mar
occurrence is defined as the point in which the derivative is maximized.

5. Results and conclusion

Spikelet easily detects and classifies the rising edges of spikes and the overlap
corresponding frequency sub-bands. In particular, no other wavelet transform, proba
method, or deterministic method (as this algorithm is) is able to detect and recognize
patterns. Table 1 summarizes the results, comparing Spikelet with the proposed alg
used together with other wavelet transforms and also with other algorithms and appr
that have been discussed earlier.

Filter-based methods are the ones that present the worst results to spike sortin
Our technique changes and innovates this.

The Spikelet transform and the algorithm for pattern recognition can be adap
different kinds of signals, including electroencephalogram (EEG) signals, speec
nals, and others. The algorithm using Spikelet was implemented using C++ program-
ming language under a LINUX operating system in a personal computer and
digital signal processor, ADSL21065L, SHARC, Analog Devices Inc., for use in
time.

An interesting open discussion: As the filter nears the ideal, the pattern classifi
worsens. This is visible when testing the wavelets above using the same algorithm. A
selective filter, one with a frequency response closer to the ideal, is not the best for se
patterns.

At the moment, the same idea used to create Spikelet is being tested to create a m
wavelet used to sort and classify real time human voice disorders [20].

Please send questions and comments directly to the corresponding author.
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Table 1
Comparison: Spikelet and other spike sorting methods

Methoda Algorithm
complexity

Deterministic (D)/
probabilistic (P)

Number of
patterns discovered

Threshold trigger Linear D 1
Threshold+ histogram Linear P 1–2
Matching template Linear D 2–4
Principal component Linear D 2–4
Bayesian Linear P 2–4
Lewicki Not linear D 2–4
Neural networks Variable P Variableb

Generic filter based Variable D/P 2–4
Daubechies sp 20∗ Linear D 2
Symmlet sp 8∗ Linear D 3
Daubechies sp 4∗ Linear D 4
Haar (sp 2)∗ Linear D 4
Beylkin sp 18∗ Linear D 4
Vaidyanathan sp 24∗ Linear D 4
Coiflet sp 6∗ Linear D 5
Batlle–Lemariè sp 12∗ Linear D 5
Spikelet (sp 4)∗ Linear D 7

a sp= support size;∗ = DWT used with proposed algorithm.
b 6 or 7 patterns can be recognized, though, only by using a complexity network of high order.
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