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Abstract

This work describes a new and different path to create a wavelet transform that can match a spec-
ified discrete-time signal. CalleSpikelet it is designed and optimized to spike and overlap pattern
recognition in the digitalized signal that comes from H1, a motion-sensitive neuron of the fly’s visual
system. The technique proposed here and the associated algorithm, implemented in real time using
a digital signal processor (DSP), are fully detailed. The results obtained matching the signal under
analysis show an improvement over all other transforms, including the Daubechies transform. This
reassures the efficacy of our transform.
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1. Introduction
1.1. Article organization

This article is organized as follows: Sections 1.2-1.5 describe the issue to be faced, a
basic review on techniques for spike and overlap sorting, techniques of time—frequency
analysis, discrete wavelet transforms, and a brief comment on two methods to construct
wavelets matching a specified signal. Section 2 contains the characterization of the signal to
match, called thelefault spikeSection 3 details the construction of the proposed wavelet,
Spikelet Section 4 describes the algorithm where Spikelet is used to spike and overlap
sorting. Section 5 lists the results and conclusions.

1.2. Problem description

Much literature has appeared recently describing different techniques to create wavelet
transforms that match a specified signal, for instance [1-5]. The technique proposed in this
work was inspired by the Daubechies transform [6] together with inputs drawn from [7]
and uses the least-squares method [8] to get the filter coefficients.

In the application treated here, the tests using Spikelet with support 4 showed that it was
possible to distinguish at least 7 different patterns against no more than 5 patterns when
using other wavelet transforms with support 20 (5 times larger). Furthermore, we determine
in which portion of the signal the patterns occur, making a time—frequency—shape analysis.

The signals under analysis correspond to the neural action potentials of H1, a motion-
sensitive neuron in the fly’s visual system [9]. They were acquired extracellularly, using a
platinum—iridium electrode while the fly views a pattern of vertical random bars moving
horizontally across its visual field. The experimental setup is shown in Figs. 1-4. Partic-
ularly, Fig. 1 shows the full experiment with the fly, the electrode, and the accessories.
Figure 2 shows the Diptera laboratory where the experiment was developed; Fig. 3 shows
a spike captured in real time on the oscilloscope. Figure 4 shows the pattern of bars acting
as a stimulus to the fly’s visual system during the experiment.

Figure 5 shows the seven patterns easily classified by Spikelet. They are called, from
left to right, stressed left overlap, left overlap, spike, right overlap, stressed right overlap,
left and right overlapandirregular overlap Spikelet is optimized to match a spike, called
the default spike The overlaps are classified based on their decomposing in two or more
spikes.

The seven patterns illustrated in Fig. 5 cover almost all the spike and overlap shapes that
were found in the corresponding signals. We sampled about 30 h of data, which generated
spikes at a rate of about 40 Hz. We highlight that the spike shape means that only the
H1 neuron action potential was captured by the electrode. This is an ideal situation, but it
depends on perfect electrode positioning. So, when an overlap shape is captured, it means
that another neuron (or neurons) is (are) reacting together (or not) with H1. The shape
namedirregular overlapis a deformed spike that conserves the ideal shape in its first
part. At its end it appears irregular, indicating that a neighboring neuron is acting after
H1, probably with a smaller amplitude. All the other overlap shapes indicate that the H1
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Fig. 2. The Diptera lab.

reaction (associated with the largest amplitude in the shape) was preceded or followed by
the reaction of another neighboring neuron(s).

As a final result, the instant that the spike (or overlap) appears correlates with the instant
that some random bar appears. In this work, the instant the specified shape occurs is defined
as the point in the shape with the greatest inclination, that is, the largest absolute value of
its derivate in relation to time.
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Fig. 4. The pattern of bars the fly sees during the experiment.
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Fig. 5. 7 patterns of spikes and overlaps easily classified using Spikelet.

The behavior of the neurons, described by the instant the spikes and overlaps occur and
the associated shapes, is very important in order to understand the behavior of the fly’'s
visual system. The detection of neural spike and overlap activity is a technical challenge
and is a prerequisite for studying many types of brain functions. The fly's implicit analog
(stimulus velocity)-to-digital (spike and overlap trains) biological system can be used to
study its neural code [10].
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Fig. 6. Basic architecture for analyzing extracellular neural signals.

1.3. Some methods for spike and overlap sorting

The first link between neural communication and electrical signals was made by Luigi
Galvani in 1791 when he showed that frog muscles could be stimulated by electricity [11].
Since the 1920s, nerve impulses have been measured directly by amplifying electrical sig-
nals recorded using electrodes, electronic amplifiers, and filters (Fig. 6).

There are some references in the literature that describe algorithms and methods for
spike and overlap sorting [11-13]. The most significant are briefly related:

e Threshold trigger algorithm. This is the simplest method to detect a spike. A por-
tion of a signal is classified as a spike whenever some of its samples cross a defined
threshold. Although this method is the easiest to be implemented, it is very primitive
because there is no shape classification, and overlaps cannot be found.

e Threshold trigger algorithm with interspike interval histogram. The threshold is
used together with a histogram to measure the isolation among spikes that can generate
overlaps. This method is also easy to implement, but the shape classification is not the
best one. It checks the quality of interspike isolation over a long period of time. In
cases where the spike waveform under analysis is a single unit, there should be no
interspike interval less than the refractory period, which is of the order of 1 ms. This
method requires a large number of spikes to be certain that it is an isolated unit.

e Template matching algorithm. In this case the algorithm tries to measure character-
istics such as the height and width of the probable spike or overlap to get a better result
on classification.

e Principal component analysis algorithm. The idea behind this method (Glaser and
Marks, 1968; Glaser, 1971; and Gerstein et al., 1983) is to find an ordered set of or-
thogonal basis vectors that captures the directions of the largest variation in the data.
According to the literature, it is one of the best methods for pattern classification.

e Lewicki algorithm. Lewicki (1994) introduced an overlap decomposition algorithm
that uses a special data structure for pattern classification: time alignment and overlap
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decomposition are done at the same time and with minimal computational expense.
The algorithm use&-dimensional search trees and returns a list of spike model se-
guences and their relative probabilities. The procedure runs fast enough to allow
implementation in real time with only modest computing requirements.

e Bayesian approach. Rinberg et al. (2003) proposed a technigue based on the Bayesian
model of probability in the frequency-domain that efficiently detects spikes and over-
laps and can be used in real time.

e Neural networks approach. A method based on learning which has a good perfor-
mance in classification, although the results depend on the procedure used to train the
classifiers. This approach customarily uses an algorithm of high-order complexity.

e Filter-based methods. This approach uses optimal filtering (Roberts and Hartline,
1975; Stein et al., 1979; Gozani and Miller, 1994) to discriminate a set of spikes from
each other and from background noise. For a spike model, the filter is constructed to
respond maximally to the spike shape of interest and minimally to the background
noise by using convolution in the time domain. According to the literature mentioned
above, the filter based methods to spike and overlap sorting are less effective than other
methods such as principal component analysis, template matching, and some others in
this classification. The use of Spikelet, that is, a wavelet transform, and thus, a filter,
aims to change this idea significantly.

1.4. Time—frequency analysis review and discrete wavelet transform at work

The experiments with spike and overlap sorting algorithms have shown that it is pos-
sible to treat the problem in the frequency-domain. We present a brief review of the main
techniques used to analyze a discrete-time signal both in time and frequency domains.

e DFT/FFT. The discrete Fourier transform (DFT) or, in its ‘fast’ version, fast Fourier
transform (FFT), indicates the frequencies contained in a discrete-time signal, but not
their occurrence in time. Thus, for a non-stationary signal, as the fly’s neural signal
studied here, this technique does not work well. The DFT is

N-1
Flkl =Y flnle~/%"/N, @
n=0

wherek labels each sample of the DFfT= +/—1, andN is the number of samples of
the original signalf[n].

e STFT. The short-time Fourier transform (STFT), written in Eq. (2), which is a win-
dowed version of DFT, makes a time—frequency analysis of a signal, but the window
width may cause a problem of resolution: narrow windows give good time resolution
but poor frequency resolution; wide windows give good frequency resolution but poor
time resolution. In Eq. (2)x(¢) is the continuous original signal in the time domain,

W is the window functionj = +/—1, 7 is the time, andv is the frequency:

b

STFT(z, x(1)) = /(x(t)W(t —1'))e " . 2

a
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e DWT. The discrete wavelet transform (DWT), whose main idea is the process of mul-
tiresolution analysis (MRA) proposed by Mallat [14], is one of the most appropriate
techniques to make a joint time—frequency analysis of discrete-time signals. It allows
one to find the time support of frequencies.

Consideringf as the discrete-time signal under analysis, it is decomposed in the sum
of two other vectorsA and D, called respectivelyrendandfluctuation

f=A+D, (3)
where
n/2—-1 n/2—-1
A=Y (f.u, D= Y (f i)k
k=0 k=0

Then, for a discrete-time sign@ﬁ containingn samples:

. Zﬁ is the projection off onto a subspack, with a basis containing/2 vectors;
- D is the projection off onto a subspacW®, with a basis containing/2 vectors;
- VLW ALD;

- U Ly < (v, wi) = 0.

The process above is a one-level decomposition. Whisran integer power of 2, this
process can be repeatgd= log(n)/log(2) times. To do that, the resulting signal is
decomposed one or more times, creating a decompositiptestls. This is the main idea
behind the MRA analysis: decomposing a signal in several levels of resolution (Eq. (4)):

J
f:Aj +ZD,'. (4)
Thus,

. /fj is the projection off onto a subspack¥;, with a basis containing/2/ vectors;
. D; isthe projection off onto a subspac#;, with a basis containing/2' vectors;
. V; LW, < A; LD,

< v Lwij o (vij,wi;)=0.

In other words,

n/2 -1 j nj2i-1
flnl= D" Hjxnlgjalnl+ > Y Gialnlyrilnl, (5)
k=0 t=1 k=0

where

- ¢[n] andy[n] forms a Riezs basis [15] to write signAl
- ¢n] =), hao[2n — k], defined recursively by dilations and translations of itself, is
calledscaling functior{15];
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- ylnl=)"; g.¢[2n — k], defined recursively, is calleglavelet functiorand is orthog-
onal to thescaling function

- Hjglnl=(f, ¢jklnl);

© Gy ilnl = (f, Y1 k[n]);

{0} «---CcVicVocViC - — L

~if flnleV; — fl2n]e Vi,

S Vip=V, e Wwj,

- the i coefficients form a lowpass filter;

- the gx coefficients form a highpass filter;

- the h; andg; coefficients form thanalysis filter bank

- afilter with k coefficients is called a filter of suppadrt

In practice, to compute the DWT, the coefficients of the signal under analysiaré
convolved [19] both with the lowpass filtek and the highpasg| filter as follows:

M-1
Vowpasdn] = f[1xh[1= Y hlklf[2n —k], O0<n<N/2, (6)
k=0

M-1

Yhighpas$n] = f[ 1% gl 1= Z glklf[2n —kl, 0<n<N/2, )
k=0

where yiowpass@nd yhighpassare the outputsy is the length of signalé andg, N is the
length of signalf, and* denotes the discrete-time convolution.

In each level of decomposition, there is a downsampling by 2 of the signals being an-
alyzed because the convolutions above are, in fact, filters that allow a half-band of the
original signal to pass, according Myquist ratg[17]. Figure 7 illustrates this process.

A much more detailed description of the DWT working, including the inverse DWT,
can be found in the literature, especially [1,6,15]. It is not the goal of this work to detail all
of the properties, but there are three special properties of a wavelet transform that are used
and analyzed in Spikelet. They are:

e Number of vanishing moments. To a wavelet withn vanishing moments and a signal
that can be described approximately by a polynomial of degree lessithiére fluc-
tuation (detail) coefficients are approximately zero. Each moment can be calculated
with Eqg. (8), whereP is the number of integer and half points of the wavelet function
that are different from zerop =0, 1, 2, ..., is the desired momenfy =0, 11 = 0.5,
t2 =1, t3 =15, and so on. The number of vanishing moments is thus defined as the
non-negative integen — 1 for which the (right-hand side) (rhs) of Eq. (8) differs from
zero:

P-1

momeny, = Z t" ). (8)
=0
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Fig. 7. Example of a MRA analysis using DWT in a 3-level decomposition. The DWT of the original signal
with n samples also hassamples. In the higher frequencies, there is better time resolution and worse frequency
resolution; in the lower frequencies, the opposite occurs.

e Signal energy, defined to be the scalar valégin Eq. (9),
N-1
E=Y" fln)% 9)
n=0

whereN is the length of signaf .

e QMF filters (quadrature mirror filters), corresponding to the pair of digital filters de-
fined by hg, h1, ..., hx and g, g2, ..., gk coefficients, where 4;} form a lowpass
filter and {g;} form the mirror highpass filter [16], in terms of its frequency response,
according to Eqg. (10),

gk = (=D npy k-1, (10)

whereM is the support length, or the number of coefficients.
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1.5. Methods to create wavelets matching a signal

In general, wavelet transforms such as Daubechies, Coiflets, Symmlets [1], and others
are not optimized to match a specified signal. Among the methods, two of the most inter-
esting and recent ones that consider the signal being analyzed are briefly described below:

e Closed-form solutions for finding scaling function spectrum from the wavelet
spectrum. Proposed by Chapa and Rao [5], the wavelets are designed directly using
the signal to match instead of building a composite wavelet from a library of previ-
ously designed wavelets. The basis is then modified. To do that, two sets of equations
are created. This imposes band limitations and results in closed-form solutions. The
algorithm generates the associated scaling function which, in turn, satisfies the ortho-
normal multi-resolution analysis criteria.

e Maximal projection of given signal on to the scaling subspace. In this method,
proposed by Gupta et al. [7], the signal to be matched is convolved with a generic
lowpass filter with support 4 or 6. The resulting signal energy on the scaling subspace
is then maximized by calculating its first derivative in relation to all but one filter
weight. This yields a linear homogeneous system. Tthefilter weight is then kept
constant to 1, and the resulting system is solved to obtain the other filter coefficients.
The problem with this method is that the result depends on the discarded filter weight.
This idea corresponds to the energy minimization of a signal that moves to consecutive
wavelet subspaces. Thus, the projection on the scaling subspace is maximized. The
technique proposed here to construct Spikelet makes use of this idea, but it does not
discard any filter weight.

2. Thedefault spike asthe signal to match

The default spike, the main signal to be matched in this instance, is defined using an
experimental process. It is the middle spike among the 80 spikes that were obtained from
the visual inspection of a large signal containing many spikes and overlaps. Figure 8 shows
the default spike together with the numerical valges= sample,y = amplitude for each
one of its 32 points. The length of the signal to match is arbitrary: 32 is merely the example
used in this case.

To better illustrate the patterns to match, Fig. 9 shows one clip of a recorded signal
of interest, both in time and frequency domain. Some isolated spikes and overlaps that are
decomposed in several frequency sub-bands are shown in Figs. 10—13 to give an idea about
the shapes and the frequencies that form these patterns.

3. Construction of the Spikelet wavelet transform

The process to create the new wavelet, Spikelet, consists of obtaining its filter coeffi-
cients using the least-squares method to solve a systemy8f31 linear equations in
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Fig. 9. (Top) Some spikes and overlaps in time domain captured during the experiment. (Bottom) The correspond-
ing frequency domain representation.

unknownsy being the filter support. These equations come from two existing approaches
to construct a wavelet, both suitably modified:

e ordinary Daubechies wavelet construction [6], excluding the orthogonality criteria.
This technique does not consider the signal being analyzed;
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e maximization of the signal to match on a scaling subspace when its DWT is per-
formed [7], excluding no filter weight.

The full description follows. Once the signal to match, default spike, has been defined,
three sequences of steps have to be followed: sequence A (Al, A2, and A3), sequence B
(B1, B2, and B3), which may happen in parallel with sequence A, and finally, sequence
C (C1, C2, and C3), which occurs after sequences A and B have been completed. This
process is illustrated in the following diagram, followed by a detailed description of A, B,
and C:
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e Step Al. Write down the equations for the Daubechies transform filter coefficignts

n—1

n—1 n—1
DD k=0, Y =2, > hhira= 20,
k=0 k=0 k=0

whereb=0,1,...,n/2—1andl € Z. The first equation is responsible for producing
vanishing moments. The second one comes from the fact that the area under the scaling
function is unitary:/ ¢ (x) dx = 1. Finally, the third one imposes orthogonality among
the scaling and wavelet vectors. This is simply the original Daubechies transform.

e Step A2. The condition of orthogonality is excluded. The Spikelet transform will not
be orthogonal:

n—1 n—1
Y D mkb =0, Y =2
k=0 k=0

This does not represent a problem because no inverse transform is needed in the al-
gorithm proposed to classify the patterns. Although the spike and overlap signals
Spikelet proposes to match are not smooth, the first group of equations in step A2,
ZZ;&(—l)khkk” = 0, responsible for producing the vanishing moments, are kept in
order to ensure the right frequency response of the proposed filters.

e Step A3. Supportn = 4 is imposed on the equations from step 2. It produces a system
of n/2+ 1= 3 linear equations in = 4 unknowns:

—1h3+ 1ho — 1h1+ 1hg =0,
{ —3h3+ 2ho — 1h1 + 0hg =0,
1h3+1ho+ 1h1+ 1ho=2.

Constructing the transform with larger supports worsens the result in terms of signal
recognition, as the experiments have shown.

e Step B1. The default spike signal is convolved with a generic signal of suppert
in the unknowns, .. ., k3, followed by a downsampling by 2. The resulting signal is
the projection of default spike, called vecinron a subspack.

e Step B2. The resulting signal energy of step B1 is maximized:

OE(Pvu) _,  OE(yw) _ o E(Pvw) _ o 9E(Pvi) _
aho ahy dhy ohs
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e Step B3. Step B2 leads to a system of linear homogeneous equatiomns=id un-
knowns:
—3.4984h3 + 3.387612 — 3.107%1 + 2.6457h = 0,
—3.387613 + 3.487612 — 3.3967h1 + 3.092419 = 0,
—3.107%13 + 3.39672 — 3.510021 + 3.400029 = 0,
—2.645T3 + 3.0924h5 — 3.4000:1 + 3.5006:0 = 0.

e Step C1. The equations of steps A3 and B3 are grouped together, resulting in a system
of (n/2+ 1) +n=3n/2+ 1=7 linear equations in = 4 unknowns:

—3.4984 33876 —3.1079 26457 0

~3.3876 34876 -33967 30924| 0
—3.1079 33967 —3.5100 34000 ho 0
—2.6457 30924 —3.4000 35006 hl =lo0
-1 1 -1 1 h2 0
-3 2 -1 0 3 0
1 1 1 1 2

e Step C2. The system is solved using the least-squares method:

—3.4984 -3.3876 —3.1079 —-26457 -1 -3 1
33876 34876 33967 30924 1 2 1
—-3.1079 -3.3967 —-3.5100 —-34000 -1 -1 1
26457 30924 34000 35006 1 O
—3.4984 33876 —3.1079 26457
—3.3876 34876 —3.3967 30924

~3.1079 33967 —3.5100 34000 ZO
x | —2.6457 30924 —3.4000 35006 1
hp
-1 1 -1 1 .
-3 2 -1 0 3
1 1 1 1

—3.4984 -33876 —-3.1079 —-26457 -1 -3 1
3.3876 34876 33967 30924 1 2 1

-3.1079 -3.3967 —-3.5100 —-34000 -1 -1 1
2.6457 30924 34000 35006 1 O

NOOOOOO

e Step C3. The solutionhy, ..., h3 forms a lowpass filter. Defined as a QMF system,
the corresponding highpass filter is formed by ghe. . ., g3 coefficients according to
Eq. (10):

ho =0.26964482896235847376  go = 0.23524044702452745481
h1=0.76237548312490721614 g1 =—0.73270322306815560687
hy =0.73270322306815560687 g» =0.76237548312490721614
h3=0.23524044702452745481 g3 = —0.26964482896235847376
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Fig. 14. Frequency response of the Spikelet lowpass filter, wheepresents the angular frequeney= 0.5)
andy represents the amplitude.

Figure 14 shows the frequency response of the Spikelet lowpass filter. Although the
frequency response of the Daubechies lowpass filter with support 4 is closer to an ideal
response, the Spikelet transform tries to match a signal, not just filter it. On the other hand,
the frequency response cannot be arbitrary because in this case the wavelet transform of
the signal under analysis would not relate to the expected frequencies in each level of
decomposition. Thus, the Spikelet filters show a satisfactory frequency response.

The next two sections show how to estimate the corresponding scaling and wavelet func-
tions of Spikelet. They are not necessary in order to use the proposed algorithm because
only an analysis (decomposition) of the input signal is made, and no inverse transform
(synthesis) is needed.

3.1. Scaling function

The scaling functiong (x), defined recursively using the dilation equatigin) =
> hio (2n — k) for a system of support = 4 coefficients, does not exist 1o< 0 and to
x > 3. We therefore get

#(0) = ho¢(0),
¢ (1) =hotp(2) + h1¢(1) + ho¢ (0),
@ (2) =h1¢(3) + h2¢(2) + hap (1),
d () =h3p(3),

orMT =T, where

hg 0O 0 O ¢(0)
h2 m oo 0 _ e
M=10 3 np m| 4 T={40o
0 0 0 h3 ?(3)

So, matrixT with scaling function values is the eigenvectorMfcorresponding to eigen-
value 1. Using the normalizing conditign, ¢ (k) = 1, we get

(ho — D¢ (0) =0,

h2¢(0) + (h1 — D¢(1) + hoo(2) =0,
h3p (1) + (h2 — D¢p(2) + h19(3) =0,
(h3 — D¢ (3) =0,

0 +o(DH+0(2+¢(3) =1
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¢(0)=¢(3) =0,

(h1 =D (1) + hop(2) =0,

h3¢ (1) + (h2 — 1)¢(2) =0,
O+ +¢(2)+¢Q) =1,
and so
—0.237624516875092783861) + 0.269644828962358473962) = O,
0.235240447024527454811) — 0.267296776931844393%382) = 0,
p(1)+¢(2)=1

Using the least-squares method again,

¢ (1) =0.53172639832546342298
¢(2) = 0.46827358753833858707
whereas the intermediate points satigix /2) =) ", hr¢ (x — k). Thus,

1
¢ <§) =ho¢ (1) =0.14337727373124048436

¢<g) = h1¢(2) + ha¢ (1) = 0.74659794837766346731

5
) (E) =h3¢(2) =0.11015688806229795293

3.2. Wavelet function

Using the equationy (n) = Y, gr¢ (2n — k), we get
¥ (0) = go#(0),
V(1) =god(2) + g1¢ (1) + 29 (0),
V(2) =819 (3) + g2¢(2) + g3¢ (1),
v (3) =g3¢(3),
yielding
v(0)=v@3) =0,
V(1) = go¢ (2) + g1¢ (1) = —0.27944075778119104037
¥ (2) = g2¢(2) + g3¢p (1) = 0.21362302880293393414
and for the intermediary pointg;(x/2) =), gk¢(x — k). Thus,

1
Y (E) = go¢ (1) = 0.12508355563682396761

v (g) = g10(2) + g2 (1) = 0.06226960294661321171

2
Figure 15 shows both the scaling and wavelet function graphs.

5
v <_> = g3¢(2) = —0.12626755141936529814

39
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Fig. 15. Scaling (left) and wavelet (right) functions of the Spikelet transform.

3.3. Vanishing moments

Although the system in step C1 preserves both vanishing moment conditions for
Spikelet, the least-squares method used in step C2 disturbs that somewhat. These moment
conditions are, according to Eq. (8) fo=0,0.5,1, ...,2.5, 3:

e 0-order moment —0.0047321,
e 1-order moment —0.0119173.

Thus, in theory, Spikelet does not respect any moment condition. However, since it is
very close to having two moment conditions satisfied, and the moment conditions are kept
in step A2, we still classify it as a wavelet transform. Anyway, vanishing moments are not
used by the algorithm for spike sorting proposed in Section 4.

3.4. Causality and stability

The pole-zero plot [18] of Spikelet lowpass filter shown in Fig. 16 indicates that it is a
causal and stable system according to its transfer function:

ho+ h1z Y+ hoz 2 4 haz 3
" '

H(z) =

All the poles are located inside the unit circle, and although there are two zeros outside the
circle, only the inverse system, not used or calculated here, may not be causal or unstable.

3.5. Considerations

For all tests, a double-numerical precision has been used to compute the filter coeffi-
cients. The Spikelet filter has the following characteristics:

asymmetrical wavelet;

FIR (finite impulse response) filter [19];
compact support (4);

stable and causal;
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Fig. 16. Pole-zero plot.

e non-linear phase response;

¢ each vectoKX ; is only orthogonal to the corresponding vecBy;, j =0, 1, ..., where
{X} are the vectors of support 4 with coefficiehts . . ., h3 that come from the scaling
function, and{ B} are the ones that come from the wavelet function. The system is, by
construction, not orthogonal;

e a 3-level decomposition of a spike with Spikelet shows that sample 2 presents the
largest value of the transform among the samples 0 to 3. Sample 2 of the transform
relates to the rising edge of the original spike. In the next section we see why this is so
important [1, p. 232].

4. Using Spikelet: the proposed algorithm

The algorithm that uses Spikelet has a linear order of complexity and is based on an el-
ementary analysis of sighal variation between neighboring transform samples of the signal
under analysis. The steps are:

e Beginning

e Step 1. The FFT (fast Fourier transform) of the signal under analysis is used to find
the frequencies that compose it. The signals that were sampled at 44,100 kHz with 16
bits of quantization contained a higher frequency of 22,050 kHz without alias. From
Nyquist’'s sampling theorem, the highest frequency is about 5512.50 kHz when the
signal contains overlaps, and about 2756.25 kHz when only the spikes are present.
Thus, a 3-level Spikelet decomposition was chosen.

e Step 2. To reduce computation time, a threshold trigger is used to detect spikes (or
overlaps) that cross a certain pre-defined threshold. For each sample of the original
signal that passes this test, a rectangular window of 32 samples is formed around this
possible spike/overlap. This small part of the signal is analyzed using Spikelet (step 3).
In case the test fails, the algorithm advances some samples in the original signal and
returns to step 2 until the signal ends.

e Step 3. The 3-level Spikelet decomposition of the small windowed signal containing
32 samples is formed and analyzed as follows:
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- inversion between samples 1 and 2, 4 ané Stressed left overlap;

- inversion between samples 1 and 2, 4 and 5, 5 ans|6ft overlap;

- inversion between samples 1 and 2, 4 and 5, 5 and 6, 6 andike;

- inversion between samples 1 and 2, 5 and 6, 6 andright overlap;

- inversion between samples 1 and 2, 6 ané Btressed right overlap;

- inversion between samples 1 and 2, 4 and 5, 6 ans|&ft and right overlap;

- any other combination of signal variations irregular overlap.

e Step 4. Some points are advanced. The signal returns to step 2 if it has not ended.
e End

Note that samples 0-3 of the transform contain frequencies from 0 to. 26z
and, thus, describe only the spikes. Samples 4—7 contain the frequencies fro252X056
551250 kHz and, thus, describe the overlaps.

Each inversion between samplesindi + 1, 0< i < 6, in step 3 above relates to
a rising edge in the pattern being analyzed. According to Figs. 10-13, it is possible
to see when each one of the 7 patterns decomposes in the corresponding Spikelet sub-
bands.

Once a spike or an overlap is found, the associated “instant of time” that marks its
occurrence is defined as the point in which the derivative is maximized.

5. Resultsand conclusion

Spikelet easily detects and classifies the rising edges of spikes and the overlaps in the
corresponding frequency sub-bands. In particular, no other wavelet transform, probabilistic
method, or deterministic method (as this algorithm is) is able to detect and recognize these
patterns. Table 1 summarizes the results, comparing Spikelet with the proposed algorithm
used together with other wavelet transforms and also with other algorithms and approaches
that have been discussed earlier.

Filter-based methods are the ones that present the worst results to spike sorting [11].
Our technique changes and innovates this.

The Spikelet transform and the algorithm for pattern recognition can be adapted to
different kinds of signals, including electroencephalogram (EEG) signals, speech sig-
nals, and others. The algorithm using Spikelet was implemented usig @rogram-
ming language under a LINUX operating system in a personal computer and in a
digital signal processor, ADSL21065L, SHARC, Analog Devices Inc., for use in real
time.

An interesting open discussion: As the filter nears the ideal, the pattern classification
worsens. This is visible when testing the wavelets above using the same algorithm. A more
selective filter, one with a frequency response closer to the ideal, is not the best for selecting
patterns.

At the moment, the same idea used to create Spikelet is being tested to create a matched
wavelet used to sort and classify real time human voice disorders [20].

Please send questions and comments directly to the corresponding author.
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Table 1
Comparison: Spikelet and other spike sorting methods
Method? Algorithm Deterministic (DY Number of
complexity probabilistic (P) patterns discovered
Threshold trigger Linear D 1
Threshold+ histogram Linear P 1-2
Matching template Linear D 2-4
Principal component Linear D 2-4
Bayesian Linear P 2-4
Lewicki Not linear D 2-4
Neural networks Variable P Variable
Generic filter based Variable /B 2-4
Daubechies sp 20 Linear D 2
Symmlet sp 8 Linear D 3
Daubechies sp+4 Linear D 4
Haar (sp 2} Linear D 4
Beylkin sp 1& Linear D 4
Vaidyanathan sp 24 Linear D 4
Coiflet sp & Linear D 5
Batlle-Lemarié sp 1.2 Linear D 5
Spikelet (sp 4) Linear D 7

2 sp=support sizex = DWT used with proposed algorithm.
b 6 or 7 patterns can be recognized, though, only by using a complexity network of high order.
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