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ABSTRACT

This paper addresses an innovative approach to informed en-
hancement of damaged sound. It uses sparse approximations with
a learned dictionary of atoms modeling the main components of
the undamaged source spectra. The decomposition process aims at
finding which of the atoms could constitute the decomposition of
the undamaged source in order to recover it. The decomposition
of the damaged signal is done with a Matching Pursuit algorithm
and involves an adaptation of the dictionary learned on undamaged
sources. Evaluation is performed on a bandwidth extension task for
various classes of signals.

Index Terms— sparse representations, Matching Pursuit, audio
signal enhancement, dictionary learning

1. INTRODUCTION

Sound enhancement consists in modifying a signal in order to im-
prove its perceived quality or its fidelity to an audio source category.
Recent studies have proposed generic algorithms with regard to the
sources and for well-calibrated sound defects, some others are fo-
cused on a specific sound source.

It includes a large amount of principles, goals and techniques
that are not necessarily comparable one to another. However, the
problem often comes down to trying to recreate missing parts of the
signal’s spectrum, usually high frequencies.

An obvious distinction between sound enhancement approaches
is the use or not of prior knowledge on the processed signal. When
no such information is available, it deals with blind enhancement.
Scientific literature on the subject is abundant since this problem has
many applications in the communication area, especially for voice
signals. For bandwidth extension tasks, techniques have been devel-
oped both in time and frequency domain, with recent advances in the
latter.

Time domain methods include non linear distortions of signals.
A trivial example is taking the square or the absolute value of each
sample then subtract the arithmetic mean and normalize. These
methods are very cheap but produce terrible results when dealing
with harmonic signals, for they create very disturbing intermodula-
tion.

Frequency Translation methods, also known as Band Replica-
tion, works in the frequency domain. The Spectral Band Replication
(SBR) process is the most commonly used, since it has been adopted
in the MPEG-4 HE-AAC norm[1]. SBR works at the decoder side
and uses extra information transmitted alongside the data to recon-
struct the high-frequency parts of the signal. Several improvements
have since been made in [2, 3].

However, harmonic parts of the spectrum are generally poorly
enhanced with these methods in blind context, especially when deal-

ing with polyphony. Dictionary-based methods such as [4] present
an innovative approach to help tackle these limitations. Recently de-
veloped object representations then provides an interesting frame-
work for this application, since they work on high level, time-
frequency structures.

In this paper, a new method for sound enhancement is proposed.
It aims at being generic for sources, provided it has been trained
on undamaged samples of the source, and applicable to stationary
defects in the frequency contents. It relies on the learning of dictio-
naries that model undamaged source spectra, whose supposed acti-
vation is detected in the signal to enhance. The chosen framework is
the domain of sparse approximations of signals, which provides the
possibility to decompose the sound into an object representation.

The enhancement algorithm relies on several steps :

1. Learning of the dictionary on undamaged sources ;

2. Decomposition of the signal to enhance with the adapted
learned dictionary into an object representation ;

3. Post-processing of the object representation ;

4. Synthesis of the processed object representation .

The object representation process is close to the one proposed
in[5]. An overview is presented in Section 2. The post-processing
of the object representation is shown in Section 3 and the results it
provides in Section 4.

2. OBJECT REPRESENTATION

2.1. Signal model: Speclets

2.1.1. Definition

The original signal is approximated by a linear combination of atoms
learned on the undamaged source, αλ taking values in C:
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The atoms sλ, that we name speclets, are build themselves with
Gabor atoms. A Gabor atom is defined by:
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where s is the scale of the atom, u its time localization, f its fre-
quency, and w a Gaussian window with a unitary energy.

The speclets sλ=(s,u,F,A,Φ) are linear combinations of Gabor
atoms that have the same scale and time support, but different fre-



Fig. 1. Modulus of the Fourier Transform of an analyzed signal (con-
tinuous line), and speclet modeling this signal. The speclet’s compo-
nents parameters are (frequency, amplitude) couples (squares), and
match the peaks of the spectrum of the analyzed signal.

quency localizations:

ss,u,F,A,Φ :=

MX
m=1

ame
jΦmgs,u,fm , with |〈gs,u,fi , gs,u,fj 〉| < ε

(3)
for i 6= j, where F = (fm)m=1..M is the vector of frequency lo-
calizations of the Gabor atoms, A = (am)m=1..M their respective
weights and Φ = (φm)m=1..M their respective phases. The A vec-
tor is normalized so that the speclet has a unit energy. In the speclet
atom definition (3), a constraint is set on the orthogonality of the Ga-
bor atoms, which has to be limited to a value ε. This constraint has
an interest for the signal decomposition step, that will be highlighted
in section 2.2.2.

Speclets capture a major part of the timbre information of acous-
tic sources: its goal is to model the spectrum of a single time frame
of a source with a few Gabor atoms. Figure 1 displays a speclet
along with the spectrum it models: the frequencies of the Gabor
atoms are aligned with the highest peaks of the spectrum. Defining
atoms that capture such timbre characteristics is not new: Gribon-
val [6] defined harmonic atoms that are extracted in a unsupervised
way (without learning) but with given frequency localizations, using
a modified Matching Pursuit algorithm. This idea has been extended
to learned harmonic atoms in [5]. Cho [4] also used high-level atoms
composed of Gabor atoms, with arbitrary scales, time localizations
and frequency localizations, but without orthogonality assumption
for the components taken pairwise, preventing to compute the pro-
jections in the spectral domain.

2.1.2. Learning

The learning of the speclet dictionary is not detailed here for the sake
of conciseness. It is based on a Matching Pursuit algorithm with Ga-
bor atoms, which is performed on signal frames of the undamaged
sources as in [4]. To reduce the number of learned speclets, a vec-
tor quantization algorithm is perfomed the whole speclet dictionary.
Before the quantization, the spectra of the speclet atoms are gaus-
sianized to reduce the distance between speclet that have a small
fundamental frequency difference.

2.2. Decomposition

The decomposition algorithm provides a sound object representation
of the signal using the aforementioned signal model.

2.2.1. Matching Pursuit algorithm

The Matching Pursuit (MP) algorithm [7, 8] is a popular algorithm
for sparse approximations of signals. It provides a generally subopti-
mal sparse representation of the analyzed signal, but at a reasonable
computational cost. It consists in the following steps:

1. Compute the inner products between the
signal and the atoms in the dictionary
(|〈x, sλ〉|);

2. Select the atom in the dictionary that
maximizes the modulus of its inner
product with the signal:
sλ0 := arg max

sλ∈D
{|〈x, sλ〉|};

3. Subtract the atom with its weight from
the signal: x ← x − 〈x, sλ0〉.sλ0 . Go to
step 1;

If the algorithm is run on an entire signal, the update of the inner
products is only performed on the timezone where lay the extracted
atom (as in [9]).

The analysis of a real signal with complex atoms remains valid
by performing the pursuit with couples of conjugate atoms, as men-
tioned in a number of studies, e.g. in [7]. For Gabor atoms, the real
atom is a windowed cosine, whose phase can be computed as follows
[7]:

ejφ =
〈x, gs,u,f 〉
|〈x, gs,u,f 〉|

(4)

2.2.2. Matching Pursuit with speclets

To deal with specific types of atoms, MP is often adapted. For the
speclet case, the adaptation lies in the computation of the inner prod-
ucts. The modulus of the inner product of the signal with the speclet
atom writes as follows:

|〈x, sλ〉| =

˛̨̨̨
˛ X
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jφm〈x, gs,u,fm〉

˛̨̨̨
˛ (5)

The phases of each component is computed as in (4): they are
stated as being adapted to the signal. This computation of compo-
nent phases is only valid if the Gabor components are orthogonal
enough. If this assumption is not valid, the Matching Pursuit can
diverge. As a consequence, the angle of ejφm〈x, gs,u,fm〉 is 0. The
inner product can thus be written:

|〈x, sλ〉| =
X

m=1..M

am|〈x, gs,u,fm〉| (6)

The modulus of the inner product between a speclet and the sig-
nal can thus be seen as inner product of an amplitude vector and
some points of the modulus of a Fourier transform, which consider-
ably reduces the computation time of the step 1 of the MP algorithm.

With the help of this algorithm, a signal can be decomposed as
a resynthesizable object representation on which post-processing in
the object domain can be applied. Each object is an atom whose
spectral shape has been learned on an audio source.

2.2.3. Molecular Matching Pursuit with speclets

An extension of MP has been recently proposed in [8], where higher-
level structures called molecules are defined. They are constituted
of a set of atoms with common properties (such as timbre-, time-
proximity) and can capture high-level musical information such as



Fig. 2. Object representation in the time-pitch plane of a clarinet
solo using clarinet atoms. Atoms are rectangles whose length repre-
sent the atom durations and height their amplitudes.

notes. Molecules are obtained with a Viterbi algorithm (not detailed
here) working on a grid obtained by projecting of the signal on the
speclet dictionary. The transition costs are defined to reflect timbre
proximity or semantic constraints, such as brutal note changes. The
signal m related to a moleculeM can be written as follows:

m =
X
l∈ΛM

pl.sl (7)

The atoms {sl} composing the moleculeM are temporally adjacent
and overlapping. MP algorithm is then adapted as follows:

1. Compute the inner products between
the signal x and the atoms in the
dictionary. A grid G is thus obtained;

2. Find the optimum path through G with a
Viterbi algorithm using a transition
weights matrix TD:
M = V iterbi(G,TD)

3. Orthogonal projection of the molecule to
recalculate atom weights :
p = M(MTM)−1MTx .Subtract the molecule
from signal x← x− Mp then go to step 1;

where p is the vector of the speclet coefficients in the molecule
pl and M the matrix of the speclet waveforms.

Molecules efficiently capture the inherent consistency of musi-
cal notes, thus providing a robust support for sound enhancement in
a polyphonic context. Figure 2 depicts an example of object repre-
sentation of a solo clarinet in the time-pitch plane.

3. POST-PROCESSING

An object representation of the signal is obtained once the decom-
position step is over: spectral enhancement can then be performed.
The whole process is depicted on Figure 3. Let xf be a version of
an original signal xwith stationary damaging mask U and additional
noise w.

xf = U.x+ w (8)

Finding the correct x when observing xf is solving an inverse prob-
lem for sound enhancement. Assuming that we have learned a un-
damaged source-adapted dictionary D on a set of full band signals,
then we might be able to replace speclets from the decomposition
of xf by full-band versions of the same speclets. The missing fre-
quencies would thus be recovered with very high consistency. A

Fig. 3. Overview of the enhancement process

simple MP-decomposition of xf on D would not provide good re-
sults, because the chosen speclets would have an insufficient and
biased correlation with xf . As a consequence, some speclets would
be chosen to compensate the high frequency by having their Gabor
phases opposing them of the first speclet. The one-to-one match-
ing of the speclet and the source would be lost, and the signal could
not be enhanced. To adapt the dictionary to the signal to enhance,
a stationary mask Ũ transforming the global envelope of D into the
global envelope of xf is either guessed or estimated, and applied to
D, yielding a filtered dictionary Df . A MP decomposition with Df
is then performed to decompose xf , leading to:

x̃f =
X
λ∈Λ

αλsfλ (9)

where the sfλ are speclets from Df . The post-processing step
consists in the replacement of these speclets by their corresponding
full-band versions in D. The result is an enhanced version of the
reconstituted signal, with recreated missing frequencies.

x̃ =
X
λ∈Λ

αλsλ (10)

Unfortunately, the phases of this recovered frequencies cannot be
calculated using the signal, since it does not contain these frequen-
cies. Phase consistency can however be forced between consecutive
atoms. Working with molecules facilitates this process, for they cap-
ture higher level structures such as musical notes. The phase recov-
ery processes as follows: for overlapping atoms, phases of Gabor
components φf1,t1 and φf2,t2 are adapted so that the sum is opti-
mized at the maximum overlapping point tM by:

φf2,t2 = φf1,t1 + 2π(f2t2 − f1t1 + (f1 − f2)tM ) (11)

Ensuring phase consistency between atoms in the same molecule
provides good perceptive results.

4. EXPERIMENTS AND RESULTS

Experiments have been conducted on a bandwidth extension task,
where the damaging maskU is a destructive low-pass filtering. Eval-
uation is performed on synthetic harmonic series, both monophonic



Fig. 4. Spectrograms of (a) original polyphonic harmonic serials of 40 partials, f0 = 440 Hz and 512 Hz, (b) damaged signal cutoff frequency
of 6000 Hz and (c) restored signal. Almost perfect signal reconstitution is achieved

and polyphonic, then on real musical data, i.e. short instrument solo
segments and mixtures. Decompositions were performed with 200
speclets per second of signal, speclet length is 93 ms while hop size
is 23 ms, full-band speclets contain 40 Gabor atoms and FFT size is
4096. The learning process is conducted on similar harmonic series
for synthetic signals, and on RWC database for instrument solos. A
few atoms are kept for each pitch, instrument and style. The more
prior knowledge on the sources, the smaller the dictionary. In blind
contexts, typical dictionary size is 10000 atoms, but in single instru-
ment contexts, this can be reduced to a few hundreds.

Then the technique is applied to enhance an artificially damaged
segment 1.

An objective evaluation criteria is defined in the frequency do-
main. Indeed, since high frequency phases are artificially recreated,
it is uneasy to compare original and restored signals in the time do-
main. Perceptively similar signals might have poor sample corre-
lation, however their spectrograms are very close. The following
High-Frequency Gain (HFG) for a signal x̃ whose spectrogram is
written X̃(f, t) is defined:

HFG = 10. log

„
‖X̃(f, t)‖2

‖X̃(f, t)−X(f, t)‖2

«
(12)

Signal HFG
Synthetic Mono 35.2
Synthetic duo 34.8
Trumpet solo (1 sec) 18.2
Trumpet solo (10 sec) 13.1
Clarinet solo (10 sec) 9.9
Violin + piano 7.5
Clarinet + mixture 6.3

Table 1. Enhancement results (in dB) for different classes of signals,
damaged signals are destructively low-pass filtered at 6000 Hz cut-
off frequency. The HF gain column show gain in the damaged parts
or in the restored area

Table 1 depicts the results of the enhancement process. For syn-
thetic signals, the reconstruction is nearly perfect for both solo and
polyphonic cases. For solo instruments, results highly depend on the
dictionary used. For sound mixtures, only the soloing instrument is
enhanced, objective evaluation is then very uneasy to perform. How-
ever perceptive results are encouraging.

1Available [temporary address for review purposes] at
http://research.audionamix.com/private/45/63080091641fe62902a39f19f3613a2c/

5. CONCLUSION AND FUTURE WORK

In this study, the use of sparse approximation of the signal with dic-
tionaries learned on undamaged signals has been investigated for
sound enhancement. It enables the recovery of missing frequen-
cies. Improvements can be conducted at the decomposition level by
raising its ability to extract relevant sound objects. Post-processing
could also be improved by adding constraints on the time evolution
of the amplitude of the note partials. A subjective quality assessment
of this algorithm will also be performed in future work.
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