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ABSTRACT
    We proposes an mammogram enhancement technique using
interpolating distributed approximating functional (DAF)
wavelets, visual group normalization (VGN), softer logic
masking (SLM) filtering, and nonlinear sharpening
enhancement (ESE) techniques. These are formulated to
normalize the wavelet coefficients, remove perceptual
redundancy and obtain optimal visualization of the important
diagnostic features for digital mammograms.

1. INTRODUCTION

    Distributed approximating functionals (DAFs) are generated
by Gaussian-modulated Sinc, Hermit, or Lagrange functionals.
Such DAFs are smooth and decaying in both time and frequency
representations and have been used for numerically solving
various linear and nonlinear partial differential equations with
extremely high accuracy. Examples include DAF-simulations of
3-D reactive quantum scattering, the Kuramoto-Sivashinsky
equations describing flow pattern dynamics for a circular
domain, the sine-Gordon equation near homoclinic orbits, and a
2-D Navier-Stokes equation with non-periodic boundary
conditions [1].
    In this paper, the Sinc-DAF is employed to construct a new
class of interpolating wavelets and specifically for use in
mammogram enhancement. Human visual sensitivity is utilized
to construct the visual group normalization (VGN) technique,
which is used to re-scale the wavelet decomposition coefficients
for perceptual adapted reconstruction. A nonlinear contrast
stretch and enhancement functional is realized for wavelet-based
multi-scale gradient transformation and feature-sensitive image
reconstruction, which enables us to obtain accurate space-
localization of the important features of the mammogram. The
combined techniques can greatly improve the visualization of
low-contrast components, which is important for diagnosis.
Additionally, the DAF-wavelet image processing can be
implemented using the interpolation technique that implies the
extreme efficiency for fast implementation.

2. GENERALIZED SINC WAVELETS

2.1 Sinc Wavelet

    The π band-limited Sinc function,  
φ(x)=sin(πx)/(πx)∈C∞                                               (1)

constructs the interpolation in Paley-Wiener space. Every π
band-limited function f∈L2(R) can be reconstructed by the
equation
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The associated wavelet function—Sinclet is defined as (as
shown in Fig.1)
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Figure 1. π band-limited interpolating wavelets. (a)
Sinc function, (b) Sinclet wavelet.

The scaling function is the well-known ideal low-pass filter
which possesses the filter response
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Its impulse response can be described as

                h[k]= ∫−
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The so-called half-band filter [2] only possesses non-zero
impulses at odd integer samples, h(2k+1), while at even
integers, h[2k]=0, except for k=0.



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 2. Gibbs overshot of Sinc FIR implementation.

    However, this ideal low-pass filter can not be implemented
physically. Because the digital filter is an IIR (infinite impulse
response) solution, its digital cutoff FIR (finite impulse
response) implementation introduces Gibbs phenomenon
(overshot effect) in Fourier space, which degrades the frequency
resolution (Fig.2). The explicit compactly supported Sinc
scaling function and wavelet, as well as their dual scaling
function and wavelet, are shown in Fig.3. We find that the
cutoff Sinc has decreased regularity, which is manifested by a
fractal-like behavior and implies poor time localization.
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Figure 3. Sinc cutoff wavelets (M=9). (a) Scaling, (b)
wavelet, (c) dual scaling, (d) dual wavelet.

2.2 Gaussian-Sinc DAF Wavelets

    Because the ideal low-pass Sinc wavelet can not be
implemented “ideally” by FIR filters, a windowed weighting
technique is introduced here to eliminate the cutoff singularity,
and improve the time-frequency localization. We choose sinc-
DAF [3] to construct interpolating scalings,
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where Wσ(x) is a window function which is selected as a
Gaussian,
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It satisfies the minimum frame bound condition in quantum
physics and improves the time-frequency resolution. Here σ is a
window width parameter, and P(x) is the Sinc interpolation

kernel. The Gaussian window in our DAF-wavelets efficiently
smoothes out the Gibbs oscillations, which plague most
conventional wavelet bases. The following equation shows the
connection between the B-spline function and the Gaussian
window [4]:
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for large N. As in Fig. 6, if we choose the window width

12/)1( += Nησ                                                      (9)

the Gaussian window can be regarded as a fine estimation of the
B-spline function. The cascade smooth construction of DAF-
wavelets using lifting schemes [5] are shown in Fig.4. The
associated frequency responses of the subband filters are shown
in Fig.5 with fine frequecny resolution.
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Figure 4. DAF wavelets (N=5, η=3). (a) Scaling, (b)
wavelet, (c) dual scaling, (d) dual wavelet.
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Figure 5. Frequency response of equivalent filters (N=5,
η=3). (a) Decomposition,  (b) reconstruction.

3. VISUAL GROUP NORMALIZATION

3.1 Magnitude Normalization

     At each decomposition level, 2D wavelet coefficients are
divided into four sub-blocks, LL, HL, LH, and HH. L and H
represent the low-pass and high-pass subband filtering results,
respectively. HL means the output of signal passing the
horizontal high-pass filter and vertical low-pass filter. The sub-



block coefficients HL, LH and HH represent the multiscale
difference operation in different spatial directions, horizontal,
vertical, and diagonal, respectively. At each level of analysis,
the bandwidth of the equivalent subband filters decreases by a
factor of two [6].
    Wavelet coefficients can be regarded as the output of the
signal passing through equivalent decomposition filters (EDF).
The responses of the EDF are the different combination of
subband filters and down-sampling operations. The EDF
responses determine the magnitude distribution of the
decomposition coefficients. To adjust the magnitude response in
each block, the decomposition coefficients Cj,m(k) in block (j,m)
are normalized with a magnitude factor λj,m. Here j represents
the decomposition layer, and m denotes the different orientation
block (LL, LH, HL or HH). The normalizing factor is designed
as the reciprocal of the maximum magnitude of the EDF
response.
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The magnitude normalized coefficients NCj,m(k) are defined as
NCj,m(k)=λj,mCj,m(k).                                            (11)

This idea was recently extended to Group Normalization (GN)
of wavelet packets for signal processing and was shown to yield
the optimal performance [7].

3.2 Perceptual Luminance Normalization

    The visibility of wavelet transform coefficients will depend
on the display visual resolution in pixel/degree.  Given a
viewing distance V in inches and a display resolution d in
pixel/inch, the effective display visual resolution (DVR) R is

R=dVtan(π/180)≈dV/57.3                                                    (12)
The visual resolution is the viewing distance (dV) divided by
57.3. When the decomposition layer increases, the bandwidth of
the EDF decreases by a factor of two while the frequency
resolution doubles. Correspondingly, the space resolution
(display resolution) decreases by a factor of two. Each sub-block
of wavelet coefficients corresponds to a spatial-frequency band.
For a display resolution of R pixel/degree, the spatial frequency
f of level j is

f=2-jR                                                                       (13)
For gray-scale mammogram image, the just-noticeable
quantization threshold of Y is generally different at each spatial
frequency. The contrast sensitivity declines when the spatial
frequency increases (whereas, the size of the stimuli decreases).
This fact of visual response is used to construct the “perceptual
normalization” that enables efficient removal of the visual
redundancy with respect to the perceptual importance. A simple
nonlinear model of different frequency bands has been presented
in [8], which can be used to construct the “perceptual
normalization” response magnitude Yj,m in luminance spaces.
We extend the definition as
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where a defines the minimum threshold, k is a constant, R is the
display visual resolution (DVR), f0 is the spatial frequency, and
dm is the directional response factor.

3.3 Contrast Sensitivity Normalization

   Visual sensitivity is defined as the inverse of the contrast to
produce a threshold response [9],

S=1/C,                                                                       (15)
where C is generally referred to simply as the threshold. The
Michelson definition of contrast,

C=(Lmax−Lmean)/Lmean                                         (16)
is used, where Lmax and Lmean refer to the maximum and mean
luminances of the waveform in a luminance channel. The
variations in sensitivity as a function of light level are primarily
due to the light-adaptive properties of the retina and are referred
to as the amplitude nonlinearity of the HVS. The variations as a
function of spatial frequency are due to the optics of the eye
combined with the neural circuitry; these combined effects are
referred to as the contrast sensitivity function (CSF). Combining
the perceptual lossless normalization, the visual sensitivity
normalization and the magnitude normalized factorλj,m we
obtain the combined normalization matrix Qj,m

Qj,m=2CYj,m/λj,m                                    (17)
This treatment provides a human-vision-based normalization
technique for the restoration of the important perceptual
information. We denote the combination of the above-mentioned
techniques the Visual Group Normalization (VGN).

4. IMAGE PROCESSING
    For grayscale image contrast stretching, the objective is to
improve the perception capability for image components that the
human visual system is initially insensitive but is important for
diagnosis. In other words, mammogram enhancement increases
the cancer detection probability and precision. We first
appropriately normalize the decomposition coefficients
according to the length scale of the display device so that they
fall within the interval of the device frame. Assume that the
coefficients have already been properly adjusted using VGN so
that the amplitude value NCj,m(k) falls into the dynamic range of
the display device:

dmin ≤ NCj,m(k) ≤ dmax                                          (18)
Without loss of generality, we consider the normalized gradient

Uj,m(k)=NCj,m(k)/(dmax-dmin)                                      (19)
    Wavelet analysis provides a natural characterization for
multiscale image edges and can be easily extracted by various
differentiations. Their idea was extended by Laine et al  [10] to
develop directional edge parameters based on a subspace energy
measurement. Our starting point is to define an enhancement
functional Ej,m

Ej,m=αj,m+βj,m∆,                                                    (20)
where ∆ is the Laplacian and -1≤αj,m, βj,m≤1. The coefficients
αj,m, βj,m can be easily chosen so that desired image features are
emphasized. In particular we can emphasize an image edge of
selected grain size. We note that a slight modification of αj,m

and βj,m  results in orientation selected image enhancement.
    Contrast stretching is an old but quite efficient method for
feature selective image display. Lu and coworkers [11] have
designed a hyperbolic function

    gj(k)=[tanh(ak-b)+tanh(b)]/[tanh(a-b)+tanh(b)]       (21)
for multiscale gradient transformation.



5. ENHANCEMENT RESULT
    Mammograms are complex in appearance and signs of early
disease are often small and/or subtle. The original MIAS image
[12] is chopped at 768×800 size as shown in Fig. 6(a). The
methods in chapter 4 are combined for enhancement processing.
As shown in Fig. 6(b), there is a significant improvement in
both edge representation and image contrast resulting from
DAF-wavelet-based VGN and non-linear enhancement
techniques. In particular, the domain and internal structure of
higher-density cancer tissues are clearly displayed.

(a)

(b)

Figure 6. Mammogram enhancement. (a) Original
mammogram, (b) enhancement result.

6. SUMMARY

    The newly developed image enhancement techniques improve
the imaging performance for earlier detection of cancer and
malignant tumors. It improves the spatio-temporal resolution of
biomedical images and enhances the visualization of the
perceptually less-sensitive components that are very important

for diagnosis. The method presented can be applied to various
types of medical images. These include various X-ray images,
mammography, magnetic resonance imaging (MRI), supersonic
imaging, etc.
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