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Abstract 

A new class of biorthogonal wavelets-interpolating distributed approximating functional (DAF) wavelets are proposed 
as a powerful basis for scale-space functional analysis and approximation. The important advantage is that these wavelets 
can be designed with infinite smoothness in both time and frequency spaces, and have as well symmetric interpolating 
characteristics. Boundary adaptive wavelets can be implemented conveniently by simply shifting the window envelope. As 
examples, generalized Lagrange wavelets and generalized Sinc wavelets are presented and discussed in detail. Efficient 
applications in computational science and engineering are explored. @ 1999 Elsevier Science B.V. All rights reserved. 

PACS: 02.60 
Keywords: Interpolating distributed approximating functional wavelets 

1. Introduct ion  

The theory of  interpolating wavelets based on a subdivision scheme has attracted much attention re- 
cently [ 1,9,12,13,17,22,27,29,40,42,45-49,54-56,65,66].  Because the digital sampling space is exactly homo- 
morphic to the mult iscale spaces generated by interpolating wavelets, the wavelet coefficients can be obtained 
from linear combinat ions of  discrete samples rather than from traditional inner product integrals. This parallel 
computat ional  scheme significantly decreases the computational complexity and leads to an accurate wavelet de- 
composi t ion,  without any pre-condit ioning or post-conditioning processes. Mathematically,  various interpolating 
wavelets can be formulated in a biorthogonal setting. 

Fol lowing Donoho ' s  interpolating wavelet theory [ 12], Harten has described a kind of  piecewise biorthogonal 
wavelet construction method [ 17]. Swelden independently develops this method as the well-known "lifting 
scheme" [56] ,  which can be regarded as a special case of  the Neville filters considered in [27] .  The lifting 
scheme enables one to construct custom-designed biorthogonal wavelet transforms by just  assuming a single 
low-pass filter (a  smooth operat ion) without iterations. Theoretically, the interpolating wavelet theory is closely 
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related to the finite element technique in the numerical solution of partial differential equations, the subdivision 
scheme for interpolation and approximation, multi-grid generation and surface fitting techniques. 

In this paper, we propose a new class of interpolating wavelets, which are generated from a generalized, 
window-modulated interpolating shell. Taking advantage of various interpolating shells, such as Lagrange poly- 
nomials and the Sinc function, etc., bell-shaped, smooth window modulation leads to wavelets with arbitrary 
smoothness in both time and frequency. Our method leads to a powerful and easily implemented series of inter- 
polating wavelet. Generally, this novel designing technique can be extended to generate other non-interpolating 
multiresolution analyses as well (such as the Hermite shell). Unlike the biorthogonal solution discussed in [ 6], 
we do not attempt to solve a system of algebraic equations explicitly. We first choose an updating filter and then 
solve the approximation problem, which is a rth-order accurate reconstruction of the discretization. Typically, 
the approximating functional is a piecewise polynomial. If we use the same reconstruction technique at all the 
points and at all levels of the dyadic sequence of uniform grids, the prediction will have a Toplitz-like structure. 

These ideas are closely related to the distributed approximating functionals (DAFs) used successfully in 
computational chemistry and physics [20-22,65-67], for obtaining accurate, smooth analytical fits of potential- 
energy surfaces in both quantum and classical dynamics calculations, as well as for the calculation of the 
state-to-state reaction probabilities for three-dimension (3-D) reactions. DAFs provide a numerical method for 
representing functions known only on a discrete grid of points. The underlying function or signal (image, 
communication, system, or human response to some probe, etc.) can be a digital time sequence (i.e., finite in 
length and 1-dimensional), a time and spatially varying digital sequence (including 2-D images that can vary 
with time, 3-D digital signals resulting from seismic measurements), etc. The general structure of the DAF 
representation of the function, fDAF(X, t),  where x can be a vector (i.e.), not just a single variable, is 

fDAF(X, tp) = ~ qb(X -- X j ) I o ' / A ) f ( x j ,  tp) , 
J 

where ~b(x - x j ) [ o - / d )  is the "discrete DAF", f (x j ,  tp) is the digital value of the "signal" at time tp, and M 
and o-/8 will be specified in more detail below. They are adjustable DAF parameters, and for non-interpolative 
DAF, they enable one to vary the behavior of the above equation all the way from an interpolation limit, where 

fDAF(Xj, tp) =-- f ( x j ,  tp) 

(i.e., the DAF simply reproduces the input data on the grid to as high accuracy as desired) to the well-tempered 
limit, where 

fDAF(Xj, tp) 4: f (x j ,  tp) 

for function f ( x ,  tp) @ L2(R). Thus the well-tempered DAF does not exactly reproduce the input data. This 
price is paid so that instead a well-tempered DAF approximation makes the same order error off the grid as it 
does on the grid (i.e., there are no special points). We have recently shown that DAFs (both interpolating and 
non-interpolating) can be regarded as a set of scaling functionals that can be used to generate extremely robust 
wavelets and their associated biorthogonal complements, leading to a full multiresolution analysis [22,46- 
49,54,55,66,67]. DAF-wavelets can therefore serve as an alternative basis for improved performance in signal 
and image processing. 

The DAF wavelet approach can be applied directly to treat bounded domains. As shown below, the wavelet 
transform is adaptively adjusted around the boundaries of finite-length signals by conveniently shifting the 
modulated window. Thus the biorthogonal wavelets in the interval are obtained by using a one-sided stencil 
near the boundaries. Lagrange interpolation polynomials and band-limited Sinc functionals in Paley-Wiener 
space are two commonly used interpolating shells for signal approximation and smoothing, etc. Because of 
their importance in numerical analysis, we use these two kinds of interpolating shells to introduce our discussion. 
Other modulated windows, such as the square, triangle, B-spline and Gaussian are under study with regard to 
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the time-frequency characteristics of generalized interpolating wavelets. By carefully designing the interpolating 
Lagrange and Sinc functionals, we can obtain smooth interpolating scaling functions with an arbitrary order of 
regularity. 

2. Interpolating wavelets 

The basic characteristics of interpolating wavelets of order D discussed in Ref. [ 12] require that the primary 
scaling function, ~b, satisfies the following conditions: 
(1) Interpolation: 

1, k = O ,  
4 , ( k ) =  0,  k ~ 0,  k C Z ,  (1) 

where Z denotes the set of all integers. 
(2) Self-Induced Two-Scale Relation: ~b can be represented as a linear combination of dilates and translates 

of itself, with a weight given by the value of ~b at k/2, 

(b(x) = ~--~ dp(k /2 )qb(Zx-  k) . (2) 
k 

This relation is only approximately satisfied for some interpolating wavelets discussed in the later sections. 
However, the approximation can be made arbitrarily accurate. 

(3) Polynomial Span: For an integer D > 0, the collection of formal sums symbol ~ Ck~b(x -- k) contains 
all polynomials of degree D. 

(4) Regularity: For a real V> 0, ~b is HOlder continuous of order V. 
(5) Localization: ~b and all its derivatives through order [VJ decay rapidly, 

[d j ( r ) ( x )J<_as ( l+ lx[ )  - s ,  x E R ,  s > 0 ,  0 < r < [ V J ,  (3) 

where [VJ represents the maximum integer that does not exceed V. 
[] 

In contrast to most commonly used wavelet transforms, the interpolating wavelet transform possesses the 
following characteristics: 
(1) The wavelet transform coefficients are generated by the linear combination of signal samplings, 

(2) 

(3) 
(4) 

Si, k = 2 - J / 2 f ( 2 - j k )  , Wi, k = 2 - J / 2 [ f ( 2 - J (  k +  1/2))  - ( p i f ) ( 2 - J ( k +  1 / 2 ) ) ] ,  (4) 

instead of the convolution of the commonly used discrete wavelet transform, such as 

= f ~ . i , k ( X ) f ( x )  dx ,  (5) wj,~ 
R 

where the scaling function, qS.i,k ( X ) = 2J/2 ~ ( 2J x--  k ) , and wavelet function, ~ j,k ( X ) = 2J/2~ ( 2J x -  k ) , Pi f 
as the interpolant 2 -j/2 ~ f ( 2-Jk  )q~j,k( x) .  
A parallel-computing mode can be easily implemented. The calculation and compression of coefficients 
does not depend on the results of other coefficients. For the halfband filter with length N the calculation 
of each of the wavelet coefficients, Wj, k, does not exceed N + 2 multiply/adds. 
For a Dth order differentiable function, the wavelet coefficients decay rapidly. 
In a minimax sense, threshold masking and quantization are nearly optimal approximations for a wide 
variety of regularity algorithms. 
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Fig. 1. ~- band-limited interpolating wavelets. (a) Sinc function; (b) Sinclet wavelet. 

Theoretically, interpolating wavelets are closely related to the following functions: 
( 1 ) Band-limited Shannon wavelets 

The 7r band-limited function, ~b(x) = sin(qrx)/(~x) E C ~ in Paley-Wiener space, generates the inter- 
polating functions. Every ~ band-limited function f C L2(R) can be reconstructed using the equation 

sinTr(x k) 
f ( x )  = Z f ( k )  

I 

k ~ ( x - k )  ' (6) 

where the related wavelet function-Sinclet is defined as (see Fig. 1) 

sin ~ - ( 2 x -  1) - s i n T r ( x -  1/2) 
0 ( x )  = 7 r ( x -  1/2) (7) 

(2) Interpolating fundamental splines 

(3) 

The fundamental polynomial spline of degree D, ~T°(x), where D is an odd integer, has been shown by 
Schoenberg (1972) to be an interpolating wavelet (see Fig. 2). It is smooth with order R = D - 1, and 
its derivatives through order D - 1 decay exponentially [59]. Thus, 

~o = ~-~ ~Z) (k)BV(x _ k) ,  (8) 
k 

where flD ( X ) 

D+I  

D! j x +  - -  
j=o 

Here U is the step function 

U(x)  = { 0 ,  x < 0 ,  
1, x _ > 0 ,  

is the B-spline of order D defined as 

2 j U x + - -  ) 2 j . (9) 

( lo )  

and {ce D (k)} is a sequence that satisfies the infinite summation condition 

E aD(k)flD(n-- k) = 8 ( n ) .  (11) 
k 

Deslauriers-Dubuc functional 
Let D be an odd integer, D > 0. There exist functions FD such that if Fo has already been defined at all 
binary rationals with denominator 2 ), it can be extended by polynomial interpolation, to all binary rationals 
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Fig. 3. Interpolating wavelets by auto-correlation shell (D = 3). (a) Daubechies wavelet; (b) Dubuc wavelet. 

with denominator 2 j+l,  i.e. all points halfway between previously defined points [9,13].  Specifically, to 
define the function at (k + 1/2)/2J when it is already defined at all {k × 2-J} ,  fit a polynomial 7rj, k to 
the data (k ' /2  .i, FD(k' /2 j)  for k' E { 2 - J [ k -  (D  - 1 ) /2 ]  . . . . .  2-.i[k + (O + 1) /2 ]} .  This polynomial 
is unique, 

(k+ i/2'  
ra t 2]12). (12) 

This subdivision scheme defines a function which is uniformly continuous at the rationals and has a 
unique continuous extension; FD is a compactly supported interval polynomial and is regular; it is the 
auto-correlation function of the Daubechies wavelet of  order D + 1. It is at least as smooth as the 
corresponding Daubechies wavelets (roughly twice as smooth) .  
Auto-correlation shell of  orthonormal wavelets 
I f  ~ is an orthonormal scaling function, its auto-correlation 4) = ~ • ~ ( - . )  is an interpolating wavelet 
(Fig. 3) [40] .  Its smoothness, localization and the two-scale relation are inherited from ~.  The auto- 
correlations of  Haar, Lamarie-Batt le ,  Meyer, and Daubechies wavelets lead to, respectively, the interpo- 
lating Schauder, interpolating spline, C ~° interpolating, and Deslauriers-Dubuc wavelets. 
Lagrange half-band filters 
Ansari, Guillemot, and Kaiser [ 1 ] used Lagrange symmetric halfband FIR filters to design the orthonomal 
wavelets that express the relation between the Lagrange interpolators and Daubechies wavelets [7].  Their 
filter corresponds to the Deslauriers-Dubuc wavelet of  order D = 7 ( 2 M -  1), M = 4. The transfer 
function of  the halfband symmetric filter h is given by 

H ( z )  = ½ + z T ( z 2 ) ,  (13) 
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where T is the trigonometric polynomial. Except for h(O) = 1/2, at every even integer lattice point 
h(2n) = 0, n v~ 0, n E Z. The transfer function of the symmetric FIR filter h(n) = h ( - n )  has the form 

M 

H(Z) = 1/2 + Z h ( 2 n  - 1)(z 1-2n + z 2"-1" (14) 
rt=l 

The concept of an interpolating wavelet decomposition is similar to "algorithm a trous", the connection 
having been found by Shensa [42]. The self-induced scaling and interpolation conditions are the most important 
characteristics of interpolating wavelets. From the following equation: 

f ( x )  = ~ f(n)~b(x - n) , (15) 
n 

and Eq. (1),  the approximation to the signal is exact on the discrete sampling points, which does not hold in 
general for commonly used non-interpolating wavelets. 

3. Generalized interpolating wavelets 

In this paper, interpolating wavelets with either a Lagrange polynomial shell or Sinc functional shell are 
discussed in detail. We call these kinds of window modulated wavelets generalized interpolating wavelets, 
because they are more convenient to construct, processing and extend to higher dimensional spaces. 

3.1. Generalized Lagrange wavelets 

Three kinds of interpolating Lagrange wavelets, Halfband Lagrange wavelets, B-spline Lagrange wavelets 
and Gaussian-Lagrange DAF wavelets, are studied here as examples of the generalized interpolating wavelets. 

Halfband Lagrange wavelets can be regarded as extensions of the Dubuc interpolating functionals [9,13], the 
auto-correlation shell wavelet analysis [40], and halfband filters [ 1 ]. B-spline Lagrange wavelets are generated 
by a B-spline-windowed Lagrange functional which increases the smoothness and localization properties of 
the simple Lagrange scaling function and its related wavelets. Lagrange Distributed Approximating Functionals 
(LDAF)-Gaussian modulated Lagrange polynomials, have been successfully applied for numerically solving 
various linear and nonlinear partial differential equations. Typical examples include DAF-simulations of 3- 
dimensional reactive quantum scattering and the solution of a 2-dimensional Navier-Stokes equation with 
nonperiodic boundary conditions. In terms of a wavelet analysis, DAFs can be regarded as particular scaling 
functions (wavelet-DAFs) and the associated DAF-wavelets can be generated in a number of ways [20-22,65- 
67]. 

3.1.1. Halfband Lagrange wavelets 
A special case of halfband filters can be obtained by choosing the filter coefficients according to the Lagrange 

interpolation formula. The filter coefficients are given by 

( _ _ l ) n + M _  1 2M ~m=, (M + 1/2 - m) 
h ( 2 n -  1) = (16) 

( M - n ) ! ( M + n -  l ) ! ( 2 n -  1) 

These filters have the property of maximal flatness in Fourier space, possessing a balance between the degree 
of flatness at zero frequency and the flatness at the Nyquist frequency (half sampling). 

These half-band filters can be utilized to generate the interpolating wavelet decomposition, which can be 
regarded as a class of the auto-correlated shell of orthogonal wavelets, such as the Daubechies wavelets [7]. The 
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interpolating wavelet transform can also be extended to higher order cases using different Lagrange polynomials, 
a s  [40] 

M 
x -  ( 2 m -  1) (17) 11 e2.-l(x) 

.t.t ( 2 n -  1) - ( 2 m -  I)  
re=M+ 1 ,m q" n 

The predictive interpolation can be expressed as 

M 

rsj(i) = ~ P 2 , - :  ( o )  [s;(i + 2n - 1) + s j ( i  - 2n  + 1 ) ] ,  i = 2k + 1, (18) 
n=l 

where /" is a projection and Sj  is the jth layer low-pass coefficients. This projection relation is equivalent to 
the subband filter response of 

h ( 2 n  - 1) = P2n-l(0) • (19) 

The above-mentioned interpolating wavelets can be regarded as the extension of the fundamental Deslauriers- 
Dubuc interactive sub-division scheme, which results when M = 2. The order of the Lagrange polynomial is 
D = 2 M -  1 = 3  (Fig. 6a). 

It is easy to show that an increase of the Lagrange polynomial order D will introduce higher regularity for the 
interpolating functionals (Fig. 7a). When D --~ +c~, the interpolating functional tends to a ~- band-limited Sinc 
function and its domain of definition is on the real line. The subband filters generated by Lagrange interpolating 
functionals satisfy the properties: 
( l )  Interpolation: h(w) + h(~o + ~r) = l. 
(2) Symmetry: h(o~) = h ( - w ) .  
(3) Vanishing Moments: fR  x P f b ( x ) d x  = 6p. 

Donoho outlines a basic subband extension to obtain a perfect reconstruction. He defines the wavelet function 
a s  

~p(x) = ~b(2x - 1).  (20) 

The biorthogonal subband filters can be expressed as 

h ( w )  = 1 , g(og)  = e - i w  , ~(09)  = e - i ~ ' h ( w )  + qr) . (2 l )  

However, the Donoho interpolating wavelets have some drawbacks. Because the low-pass coefficients are 
generated by a sampling operation only, as the decomposition layer increases, the correlation between low-pass 
coefficients become weaker. The interpolating (prediction) error (high-pass coefficients) strongly increases, 
which is deleterious to the efficient representation of the signal. Further, it cannot be used to generate a Riesz 
basis for L 2(R) space. 

Swelden has provided an efficient and robust scheme [56] for constructing biorthogonal wavelet filters. His 
approach can be utilized to generate high-order interpolating Lagrange wavelets with higher regularity. As Fig. 4 
shows, P0 is the interpolating prediction process, and the P1 filter is called the updating filter, used to smooth 
the down-sampling low-pass coefficients. If we choose P0 to be the same as Pl, then the new interpolating 
subband filters can be depicted as 

h i (w)  = h(to) , 
/t(w) = 1 + ~ ( w ) P ( 2 ~ o ) ,  
gl ( oJ) = e-i~o _ h(og)P(2w) , 
~l (oJ) = ~(oJ) .  

(22) 
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Fig. 4. Lifting scheme. 
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Fig. 5. Lagrange wavelets with D = 3. (a) Scaling function; (b) Wavelet; (c) Dual scaling function; (d) Dual wavelet. 

The newly developed filters hi, g], hi, and ~1 also generate the biorthogonal dual pair for a perfect reconstruc- 
tion. Examples of  biorthogonal lifting wavelets with regularity D = 3 are shown in Fig. 5. Fig. 6 gives the 
corresponding Fourier responses of  the equivalent subband decomposition filters. 

3.1.2. B-spline Lagrange wavelets 
Lagrange polynomials are natural interpolating expressions for functional approximations. Utilizing a different 

expression for the Lagrange polynomials, we can construct other forms of useful interpolating wavelets as 
follows. 

We define a class of  symmetric Lagrange interpolating functional shells as 

M 

X i 
P M ( x )  = 1--[ - ( 2 3 )  

- i  
i=-- M,i -~ O 

It is easy to verify that this Lagrange shell also satisfies the interpolating condition on discrete, integer points, 
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Fig. 6. Frequency response of equivalent filters (D = 3). (a) Decomposition; (b) Reconstruction. 

1, k = 0 ,  
PM(k)= 0 ,  otherwise. (24) 

However, simply defining the filter response as 

h(k)=P(k/2) /2,  k = - M , M ,  (25) 

leads to nonstable interpolating wavelets, as shown in Fig. 7. 
Including a smooth window, which vanishes at the zeros of  the Lagrange polynomial, will lead to more 

regular interpolating wavelets and equivalent subband filters (as shown in Figs. 7 and 8). We select a well- 
defined B-spline function as the weight window. Then the scaling function (mother wavelet) can be defined as 
an interpolating B-spline Lagrange functional (BSLF),  

~ N ( x / n )  
CM(X) - PM(X) 

/ ~ N ( 0 )  

_ ~ N ( x / r l )  M 
r - r  x - i 

1 1  BN(O) - - i  ' 
i=M,i 4~ 0 

(26) 

where N is the B-spline order, and r/ is the scaling factor to control the window width. To ensure coincidence 
of  the zeroes of  the B-spline and the Lagrange polynomial, we set 

2 M = ~ ×  ( N + I ) .  (27) 

To ensure the interpolation condition, the B-spline envelope degree M must be an odd number. It is easy to 
show that if the B-spline order is N = 4k + 1, r 1 can be any odd integer (2k + 1); if N is an even integer, then 
~7 can only be 2. When N = 4k - 1, we cannot construct an interpolating shell using the definition above. From 
the interpolation and self-induced scaling properties of  the interpolating wavelets, it is easy to verify that 

h(k)=¢M(k/2)/2, k = - 2 M + l ,  2 M - 1 .  (28) 

3.1.3. Gaussian-Lagrange DAF wavelets 
We can also select a class of  distributed approximation functional-Gaussian-Lagrange (GLDAF)  as our basic 

scaling function to construct interpolating wavelets. We write 

CM(x) = W ~ ( x ) P M ( x )  
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Fig. 7. Nonregularized Lagrange wavelets (M = 5). (a) Lagrange polynomial; (b) Scaling function; (c) Wavelet; (d) Dual scaling 
function; (e) Dual wavelet. 

M 
X i 

=W~(x) H - (29) 
- - i  ' 

i=--M,i~O 

where W~(x) is a window function. It is chosen to be a Gaussian, 

W ~ ( x )  = e -x2/2'~2 , ( 3 0 )  

because it satisfies the minimum frame bound condition in quantum physics. Here o- is a window width 
parameter, and Pl~(X) is the Lagrange interpolation kernel. The DAF scaling function has been successfully 
introduced as an efficient and powerful grid method for quantum dynamical propagations [40].  Using Swelden's 
lifting scheme [32],  a wavelet basis is generated. The Gaussian window in our DAF-wavelets efficiently 
smoothes out the Gibbs oscillations, which plague most conventional wavelet bases. The following equation 
shows the connection between the B-spline window function and the Gaussian window [ 3 4 ] :  
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Fig. 9. Frequency response of equivalent filters (N = 4, 7/= 2). (a) Decomposition; (b) Reconstruction. 

6 { - 6 x Z ~  
¢IN(x) ~ ~r(N+ 1) exp ~,N+ l J '  (31) 

for large N. As in Fig. 12, if  we choose  the window width 

o- = r/v/(N + 1)/12, (32) 

the Gaussian-Lagrange wavelets generated by the lifting scheme will be similar to the B-spline Lagrange 
wavelets. Usually, the Gaussian-Lagrange DAF displays a slightly better smoothness  and more rapid decay 
than the B-spline Lagrange wavelets. If we select more sophisticated window shapes, such as those popular in 
engineering (Bartlett, Hanning, Hamming,  Blackman, Chebychev, and Bessel  windows) ,  the Lagrange wavelets 
can be generalized further. We shall call these extensions Bel l -windowed Lagrange wavelets. 
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3.2. Generalized Sinc wavelets 

As we have mentioned above, the rr band-limited Sinc function, 

fb( x ) = sin( rrx ) / ( rrx ) E C °o , (33) 

in Paley-Wiener space constructs an interpolating function. Every ~ band-limited function f C L2(R) can be 
reconstructed by the equation 

sin ~r(x k) 
f ( x )  = ~ f ( k )  k r r ( x - -  k) ' (34) 

where the related wavelet function-Sinclet is defined as (see Fig. 1) 

s i n ~ r ( 2 x -  1) - s i n  r r ( x -  1/2) 
~(x)  = r r ( x -  1/2) (35) 

The scaling Sinc function is the well-known ideal low-pass filter, which possesses the ideal square filter response 
as  

1, Io,1_< ~r/2, 
H(aQ = 0,  ~r/2 < Itol <_ or. (36) 

Its impulse response can be generated as 

h[k] = l eik~dw/2rr = sin(rrk/2)/~rk. (37) 
i /  

(-~r/2,rr/2) 

The so-called half-band filter possesses a nonzero impulse only at the odd integer sampler, h(2k + 1), while at 
even integers, h[2k] = 0 unless a k = 0. 

However, this ideal low-pass filter is never used in application. Since the digital filter is an IIR (infinite 
impulse response) solution, its use as a digital cutoff FIR (finite impulse response) will produce Gibbs 
phenomenon (overshot effect) in Fourier space, which degrades the frequency resolution (Fig. 11). 

The resulting compactly supported Sinc scaling and wavelet functions, as well as their biorthogonal dual 
scaling and wavelet functions, are shown in Fig. 12. We see that the regularity of the cutoff Sinc is obviously 
degraded with a fractal-like shape, which leads to poor time localization. 

3.2.1. B-spline Sinc wavelets 
Because the ideal low-pass Sinc wavelet cannot be implemented "ideally" by FIR (finite impulse response) 

filters, to eliminate the cutoff singularity, a windowed weighting technique is employed to adjust the time- 
frequency localization of the Sinc wavelet analysis. 
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Fig. 1 1. Gibbs overshoot of the Sinc FIR. 
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Fig. 12. Sinc cutoff wavelets (M = 9). (a) Scaling; (b) Wavelet; (c) Dual scaling; (d) Dual wavelet. 

To begin, we define a symmetric  Sinc interpolating functional shell as 

P ( x )  - s i n ( z r x / 2 )  ( 3 8 )  
7 T X  

Utilizing a smooth window, which vanishes gradually at the exact zeros of  the Sinc functional, will lead to 
more regular interpolating wavelets and equivalent subband filters (as shown in Figs. 13 and 14).  

For example,  we illustrate using a well-defined B-spline function as the weight window. Then the scaling 
function (mother wavelet)  can be defined as an interpolating B-spline Sinc functional ( B S F ) ,  

~M(x)  - ~ N ( x / ~ )  P ( z )  
#s(o) 
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Fig. 14. Frequency response of equivalent filters (N = 5,r/= 3). (a) Decomposition; (b) Reconstruction. 

_ f l U ( x / r D  sin(Trx/2) 
, ( 3 9 )  

fiN(O) ~'x 

where N is the B-spline order, and r / is  the scaling factor to control the window width. To ensure the coincidence 
of  the zeroes of  the B-spline and the Sinc shell, we set 

2 M +  1 = r /  × ( N +  1 ) / 2 .  (40) 

To maintain the interpolation condition, h(2k)  = 0, k 4: 0, it is easy to show that when the B-spline order 
N = 4k + 1, r/ may be any odd integer (2k + 1). If  N is an even integer, then r/ can only be 2. When 
N = 4k - 1, we cannot construct the interpolating shell using the definition above. The admissibility condition 
can be expressed as 
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77 = 2,  N = 2i, (41) 
r / = 2 k +  l ,  N = 4 i + l .  

From the interpolation relation 

1, k = 0 ,  
¢ ( k ) =  0 ,  k ~ 0 ,  k E Z ,  (42) 

and the self-induced two-scale relation 

¢(x)  = ~ ¢ (k /2 )¢ (ex  - k),  

it is easy to show that 

(43) 

h ( k )  = ¢ M ( k / 2 ) / 2 ,  k = - 2 M + l ,  2 M -  1. (44) 

3.2.2. Gaussian-Sinc DAF wavelets 
We can also select a class of distributed approximation functionals, i.e., the Gaussian-Sinc DAF (GSDAF) 

as our basic scaling function to construct interpolating scalings, 

CM(X) = W o - ( x ) P ( x )  

= W ~ ( x )  sin(~rx/2) , (45) 
qT"X 

where W,~(x) is a window function which is selected as a Gaussian, 

W,~( x )  = e -x~/2'~2 . (46) 

Because it satisfies the minimum frame bound condition in quantum physics, it significantly improves the 
time-frequency resolution of the Windowed-Sinc wavelet. Here tr is a window width parameter, and P ( x )  
is the Sinc interpolation kernel. This DAF scaling function has been successfully used in an efficient and 
powerful grid method for quantum dynamical propagations [40]. Moreover, the Hermite DAF is known to be 
extremely accurate for solving the 2-D harmonic oscillator, for calculating the eigenfunctions and eigenvalues 
of the SchrSdinger equation. The Gaussian window in our DAF-wavelets efficiently smoothes out the Gibbs 
oscillations, which plague most conventional wavelet bases. The following equation shows the connection 
between the B-spline and the Gaussian windows [34]: 

6 
I t ( N +  1) exp k , N ' - ~ . ]  ' (47) 

for large N. As in Fig. 6, if we choose the window width 

or = r / v / ( N  + 1) /12 ,  (48) 

the Gaussian Sinc wavelets generated by the lifting scheme will be similar to the B-spline Sinc wavelets. Usually, 
the Gaussian Sinc DAF displays a slightly better smoothness and rapid decay than the B-spline Lagrange 
wavelets. If  we select more sophisticated window shapes, the Sine wavelets can be generalized further. We call 
these extensions Bell-windowed Sinc wavelets. The available choices can be any of the popularly used DFT 
(discrete Fourier transform) windows, such as Bartlett, Hanning, Hamming, Blackman, Chebychev, and Besel 
windows. 
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Fig. 15. Mother wavelet comparison (N = 4, r/= 2). Solid: B-spline Sinc; dotted: Gaussian Sinc. 

4. Adaptive boundary adjustment 

The above-mentioned generalized interpolating wavelet is defined on the domain C (R). Many engineering 
applications involve finite length signals, such as image and isolated speech segments. In general, we can 
define these signals on C [0,1]. One could set the signal equal to zero outside [0,1], but this introduces an 
artificial "jump" discontinuity at the boundaries, which is reflected in the wavelet coefficients. It will degrade 
the signal filtering and compression in multiscale space. Developing wavelets adapted to "life on an interval" 
is useful. Periodization and symmetric periodization are two commonly used methods to reduce the effect of 
edges. However, unless the finite length signal has a large flat area around the boundaries, these two methods 
cannot remove the discontinuous effects completely [4,6,11 ]. Dubuc utilized an iterative interpolating function, 
FD, on the finite interval to generate an interpolation on the set of dyadic rationals D/ .  The interpolation in the 
neighborhood of the boundaries is treated using a boundary-adjusted functional, which leads to regularity of 
the same order as in the interval. This avoids the discontinuity that results from periodization or extending by 
zero. It is well known that this results in weaker edge effects, and that no extra wavelet coefficients (to deal 
with the boundary) have to be introduced, provided the filters used are symmetric. 

We let K/represent  the number of coefficients at resolution layer j ,  where K i = 2J. Let 2 ./ > 2D ÷ 2, define 
the non-interacting decomposition. If we let j0 hold the non-interaction case 2 j° > 2D + 2, then there exist 
functions ,Alnterval ,/,Interval such that for all f E C [0, 1], 

"¢~ j k ' v" j ,k  

2 m - 1 2 j - 1 
f =  Z Si°(k)t'b~ nl~rvai + Z Z Wj(k)~P.I n~e'~a'' (49) 

k=0 J>_.Jo k=0 

The ,.Llntel'val ~lnterval w.i,k , ./,k are called the interval interpolating scalings and wavelets, which satisfy the interpolation 
conditions 

,./,Interval ( 2 - i n )  Wj, k = 2J/26k, . ,  0 <_ n < K j ,  (50) 

,hlnterval g o - - J - -  l , '~  ~ 
7 " j k  ~.~ ,~l  2 J / 2 ~ 2 k + l , n ,  0 < n < K j + I  . 

The interval scaling is defined as 

/ ,4~Left 
,r.i, k , 0 < k < D ,  

~lnterval j,k = qS.i,k[i0,11, D < k < 2  - / - D - l ,  (51) 

"ARight 2 j -- D - 1 < k < 2 j 
w'.j,k , - -  , 

where OSj,kll0,11 is called the "inner-scaling" which is identical to the fundamental interpolating function, and 
q~Right ,,ALeft j,k and v'j,k are the "left-boundary" and the "right-boundary" scalings, respectively. Both are as smooth as 
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~.j,k]fo, J l. Interval wavelets are defined as 

,/,Left 
~'i,k , 0 < k < LD/2J, 

t~Interval 3,k = ~b3,kll0,11 , LD/2J _< k < 23 - LD/2J ,  (52) 

/pRight , 23 - LD/2J < k < 23 
,j,k - -  • 

~Pi~ I0,1 is the inner-wavelet, and ~pLeft t0Right .i,~ and 3,k are the left and right-boundary wavelets, respectively, which 
are of  the same order regularity as the inner-wavelet [ 13]. 

The corresponding factors for the Deslauriers-Dubuc interpolating wavelets are M = 2, and the order of  the 
Lagrange polynomial is D = 2M - 1 = 3. The interpolating wavelet transform can be extended to high order 
cases by two kinds of  Lagrange polynomials, where the inner-polynomials are defined as [ 14] 

x - ( 2 m -  1) 
P2,,-l(x) = 1-I ( 2 n -  l )  - ( 2 m -  1) (53) 

m=--M+l ,m4~n  

This kind of  polynomial introduces the interpolation in the intervals according to 

M 

pjs(i)  : ~P2n_ l (O ) [S j ( i+  2 n -  1 ) + S y ( i - - 2 n + l ) ] ,  i=2k + l ,  (54) 
n :  I 

and the boundary polynomials are 

2M--I  

~ I  x - -  m L~(x) = , O < d < D ,  (55) 
d - m  

m=O,m q: d 

which introduce the adjusted interpolation on the two boundaries of  the intervals. That is, 

D 

ejs(i) = ~ La(i/2)Sj(i  + 2d - 1) ,  i = 2k + 1, 0 < k < L D - l J / 2 .  (56) 
d=0 

The left boundary extrapolation outside the intervals is defined as 

D 

PjS( -1)  = Z Ld( -1 /2 )S j (2d) ,  i = 2k + 1, 0 < k < L D - l J / 2 ,  (57) 
d=0 

and the right boundary extrapolation is similar to the above. The boundary adjusted interpolating scaling is 
shown in Fig. 16. 

Although Dubuc shows the interpolation is almost twice differentiable, there still is a discontinuity in the 
derivative. In this paper, a DAF-wavelet based boundary adjusted algorithm is introduced. This technique can 
produce an arbitrary smooth derivative approximation, because of  the infinitely differentiable character of  the 
Gaussian envelope. The boundary-adjusted scaling functionals are generated as conveniently as possible just by 
window shifting and satisfy the following equation: 

q b m ( x ) = W ( x - 2 m ) P ( x ) ,  m = - L ( M - 1 ) / 2  j ,  [ ( M - 1 ) / 2 J ,  (58) 

where ~bm(x) represents different boundary scalings, W(x) is the generalized window function and P(x)  is the 
symmetric interpolating shell. When m > 0, left boundary functionals are generated; when m < 0, we obtain 
right boundary functionals. The case m = 0 represents the inner scalings mentioned above. One example for 
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Fig, 16. Dubuc wavelets (D = 3). (a) Inner scaling; (b) Boundary scaling. 
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Fig. 18. Boundary filter response comparison between the halfband Lagrange wavelet and our DAF wavelet. 

a S inc-DAF wavelet is shown in Fig. 17. We choose the compact ly-supported length of  the scaling function 
to be the same as the halfband Lagrange wavelet. It is easy to show that our newly developed boundary 
scaling is smoother than the commonly  used Dubuc boundary interpolating functional. Thus it will generate a 
more stable boundary adjusted representation for finite-length wavelet transforms, as well as a better derivative 
approximation around the boundaries.  Fig. 18 is the boundary filter response comparison between the halfband 
Lagrange wavelet and our DAF wavelet. It is easy to establish that our boundary response decreases the 
overshoot of  the low-pass band filter, and so is more stable for boundary frequency analysis and approximation.  
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Table 1 
Eigenvalues of the 2D harmonic oscillator 

k = kx + ky kd Exact solution Sinc-DAF calculation 

0 1 1 0.99999999999835 

1 2 2 1.99999999999952 
1.99999999999965 

2 3 3 2.99999999999896 
2.99999999999838 
2.99999999999997 

3 4 4 3.99999999999943 
3.99999999999947 
3.99999999999986 
3.99999999999994 

4 5 5 4.99999999999907 
4.99999999999953 
4.99999999999989 
5.00000000000674 
5.00000000000813 

6 6 6 5.99999999999982 
6.00000000000018 
6.00000000000752 
6.00000000000801 
6.00000000044972 
6.00000000012005 

5. Applications of generalized symmetric interpolating wavelets 

5.1. Eigenvalue solution o f  2D quantum harmonic oscillator 

As discussed in [22] ,  a standard eigenvalue problem of the Schr6dinger equation is that of  the 2D harmonic 
oscillator, 

- ~mm i=l ~ + ½(x2 + x22) q'k(Xl,X2) = Ek@k(x , , x2 ) .  (59) 

Here '/~k and Ek are the kth eigenfunction and eigenvalue, respectively. The eigenvalues are given exactly by 

Ek,.k2 = l + k l  + k 2 ,  0 < k < c x D ,  0_<kl  _<k2, (60) 

with a degeneracy (k~t = k + 1) in each energy level Ek = 1 ÷ k. The 2D version of  the wavelet DAF 
representation of  the Hamiltonian operator was constructed and the first 21 eigenvalues and eigenfunctions 
obtained by subsequent numerical diagonalization of  the discrete Sinc-DAF Hamiltonian. As shown in Table 1 
all results are accurate to at least 10 significant figures for the first 16 eigenstates. It is evident that DAF-wavelets 
are powerful for solving eigenvalue problems. 

5.2. Target extraction 

Military target extraction, including such applications as high-resolution radar (aerial photograph) imaging, 
radar echo, and remote sense detection, is a difficult subject. National Defense Agencies (e.g., the Navy, 
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(a) (b) 
Fig. 19. Target extraction from color background. (a) Original pilot view; (b) DAF-wavelet restoration. 

Army, and Air Force) have great interest in technical advances for reconnaissance, earlier warning and target 
recognition. Some of our DAF-wavelet schemes represent a significant breakthrough for these very difficult 
tasks. Compared with other methods, our algorithm possesses a very high resolution for target localization and 
high efficiency for clutter/noise suppression, as well as computational efficiency. 

Detecting a military target in a low luminance environment is challenging work for image processing. 
To improve the target discrimination, the visibility of differences between a pair of images is important for 
modern image restoration and enhancement. We construct a method for detectability using a multiple channel 
enhancement technique. The images were captured on a color monitor at a viewing distance giving 95 pixels 
per degree of visual angle and an image size of 5.33 x 5.05 deg. The mean luminance of the images was about 
10 cd/m a [ 39 ]. Using our newly developed visual enhancement techniques, visual targets can be extracted very 
accurately in a low-luminance environment for detection and warning. The technique combines the response 
of human vision system (HVS) with multiresolution enhancement and restoration methods. The simulation of 
tank-target detection in a low-luminance environment is shown in Fig. 19. 

5.3. Image filtering 

Image de-noising is a difficult problem for signal processing. Due to the complicated structure of image and 
background noise, an optimal filtering technique does not currently exist. Generally, the possible noise sources 
include photoelectric exchange, photo spots, image communication error, etc. Such noise causes the visual 
perception to generate speckles, blips, ripples, bumps, ringing and aliasing. The noise distortion not only affects 
the visual quality of images, but also degrades the efficiency of data compression and coding. De-noising and 
smoothing are extremely important for image processing. 

We use a DAF-wavelet to generate a more efficient, human-vision-system-based image processing technique, 
which processes the advantages of ( 1 ) long range de-correlation for convenience of compression and filtering; 
(2) high perceptual sensitivity and robustness; (3) filtering that takes account of the human visual response. It 
therefore can enhance the most important visual information, such as edges, while suppressing the large scale 
of fiat regions and background; (4) it can be carried out with real-time processing. 

Biorthogonal interpolating wavelets and corresponding filters are constructed based on Gauss-Lagrange 
distributed approximating functionals (DAFs). The utility of these DAF wavelets and filters is tested for digital 
image de-noising in combination with a novel blind restoration technique. This takes account of the response of 
human vision system so as to remove the perceptual redundancy and obtain better visual performance in image 
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(a) (b) 
Fig. 20. Visual Color Image Restoration. (a) Noisy girl; (b) Our restoration. 

processing. The test results for a color photo are shown in Fig. 20. It is evident that our Color Visual Group 
Normalization technique yields excellent contrast and edge-preservation and provides a natural color result for 
the restored image [48]. 

5.4. Imaging enhancement  

Mammograms are complex in appearance and signs of early disease are often small and/or subtle. Digital 
mammogram image enhancement is particularly important for solving storage and logistics problems, and 
for the possible development of an automated-detection expert system. The DAF-wavelet based mammogram 
enhancement is implemented in the following manner. First we generate a perceptual lossless quantization matrix 
Qi,m, to adjust the original transform coefficients Cj, m(k). This treatment provides a simple human-vision-based 
threshold technique for the restoration of the most important perceptual information in an image. For grayscale 
image contrast stretching, we appropriately normalize the decomposition coefficients according to the length 
scale, L, of the display device [ 16] so that they fall in the interval of [0,1] of the device frame 

NCj, m(k)  =Qj,  mCj, m ( k ) / L .  (61) 

We then use a nonlinear mapping to obtain the desired contrast stretching 

NCj, m = Yj, m Xj, m ( NCi, m) , (62) 

where the constant ~j,m and function Xj, m are appropriately chosen so that the desired portion of the grayscale 
gradient is stretched or compressed. 

To test our new approach, low-contrast and low quality breast mammogram images are employed. A typical 
low quality front-view image is shown in Fig. 21a. The original image is coded at 512 × 512 pixel size with 
2 bytes/pixel and 12 bits of gray scale. We have applied our edge enhancement normalization and device- 
adapted visual group normalization. As shown in Fig. 21b, and Fig. 21c, there is a significant improvement in 
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(a) 

(b) (c) 
Fig. 21. Enhancement of Database I. (a) Original mammogram; (b) Linear enhancement; (c) Nonlinear enhancement. 

both the edge representation and image contrast. In particular, the domain and internal structure of high-density 
cancer tissues are more clearly displayed. Fig. 22a is an original 1024 x 1024 side-view breast image which 
has been digitized to a 200 micron pixel edge with 8 bits of gray scale. The enhanced image result is shown 
in Fig. 22b. In this case we again obtain a significant improvement in image quality [54,55]. 

6. Conclusion 

In summary, in this paper we present a new class of wavelets-generalized symmetric interpolating wavelets 
(GSIW),  which are generated by a window modulated interpolating shell. Due to the absence of a compli- 
cated factorization process, this kind of interpolating wavelet is easily implemented and possesses very good 
characteristics in both time (space) and spectral domains. The stable boundary adjustment can be generated 
by a window shifting operation only. It overcomes the overshoot of the boundary response introduced by 
other boundary processing, such as Dubuc Lagrange wavelet and Daubechies boundary filters. Many successful 



216 Z. Shi et al./Computer Physics Communications 119 (1999) 194-218 

(a) (b) 
Fig. 22. Enhancement of Database 2. (a) Original mammogram; (b) Enhancement. 

app l ica t ions  o f  D A F - w a v e l e t s  have been  repor ted  to il lustrate its pract ical i ty  and its ma themat ica l  behavior.  
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