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ABSTRACT

In this paper we describe a new class of multidimensional representation systems, called shearlets. They are
obtained by applying the actions of dilation, shear transformation and translation to a fixed function, and
exhibit the geometric and mathematical properties, e.g., directionality, elongated shapes, scales, oscillations,
recently advocated by many authors for sparse image processing applications. These systems can be studied
within the framework of a generalized multiresolution analysis. This approach leads to a recursive algorithm for
the implementation of these systems, that generalizes the classical cascade algorithm.
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1. INTRODUCTION

The importance of wavelets in signal processing applications is widely acknowledged. Indeed, they provide
optimal approximation, in a certain sense, for one dimensional piecewise continuous functions.1, 2 On the other
hand, it is also well-known that wavelets do not perform as well in dimensions larger than one. This situation
is illustrated, for example, by the classical problem of representing a natural image using a 2–D wavelet basis.
Natural images exhibit edges, that is, discontinuities along curves. Because these discontinuities are spatially
distributed, they interact extensively with the elements of the wavelet basis, and so the wavelet representation
is not sparse, that is, “many” wavelet coefficients are needed to accurately represent the edges.

This limitation has led to several new constructions, in order to handle efficiently the geometrical features
of multidimensional signals. These constructions include the directional wavelets,3 the complex wavelets,4 the
ridgelets,5 the curvelets6, 7 and the contourlets.8 The main idea, in all of these constructions, is that, in
order to obtain efficient representations of multivariable functions with spatially distributed discontinuities, such
representations must contain basis elements with many more shapes and directions than the classical wavelet
bases. One of the most successful construction based on this idea are the curvelets of Candès and Donoho, that
achieve an (almost) optimal approximation property for 2–D piecewise smooth functions with discontinuities
along C2 curves.7

In this paper we show that it is possible to obtain efficient representations of multivariable functions using
affine systems of the form

AAB(ψ) = {ψi,j,k = | detA|i/2 ψ(Bj Aix− k) : i, j ∈ Z, k ∈ Z
2}, (1)

where A =

(
2 0

0
√

2

)
and B =

(
1 1
0 1

)
.

These systems are a special case of a new class of analyzing functions called affine systems with com-
posite dilations. One advantage of this approach is that these systems can be studied within the framework
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of a generalized Multi-Resolution Analysis, and this is very relevant for the discrete implementation of these
representations in terms of multidimensional filter banks.

The paper is organized as follows. In Section 2 we introduce the continuous shearlet transform and show its
connection with the discrete systems AAB(ψ), given by (1). In Section 3 we describe a general framework for the
study of the affine systems AAB(ψ), based on a generalized Multi-Resolution Analysis (MRA). In particular, we
deduce an appropriate scaling equation associated with this MRA and a recursive algorithm for the computation
of the coefficients associated with these transformations.

2. CONTINUOUS SHEARLETS

Let

Mas =

(
1 s
0 1

) (
a 0
0

√
a

)
=

(
a

√
a s

0
√
a

)
, (2)

where (a, s) ∈ R
+ × R, and consider the affine systems

AMas
(ψ) = Aast(ψ) = {ψast(x) = a−3/4 ψ(M−1

as (x− t)) : a ∈ R
+, s ∈ R, t ∈ R

2}. (3)

Observe that the matrix Mas is the composition of the non-isotropic dilation

(
a 0
0

√
a

)
, and the shearing

transformation

(
1 s
0 1

)
. We will be interested in the affine systems Aast(ψ) generated by functions ψ for

which

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

), (4)

where ψ1 is a continuous wavelet, for which ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊂ [−2, 1/2] ∪ [1/2, 2], and ψ2 is chosen

such that ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1], with ψ̂2 > 0 on (-1,1), and ‖ψ2‖ = 1. There are several examples of
functions ψ1, ψ2 satisfying these properties.9

a=1,s=1

a=1,s=0 a=1/2,s=0

Figure 1. Support of the shearlets ψ̂ast (in the frequency domain) for different values of a and s.



Under these assumptions on ψ, it is not hard to show that the family {ψast(x) : a ∈ R
+, s ∈ R, t ∈ R

2} is a
reproducing system for L2(R2), that is, it satisfies the Calderòn formula

‖f‖2 =

∫

R2

∫

R

∫ ∞

0

|〈f, ψast〉|2
da

a3
ds dt,

for all f ∈ L2(R2) (details can be found in Kutyniok and Labate10). We will use the terminology of (contin-
uous) shearlets to denote these collections of reproducing functions, and we define the continuous shearlet
transform as the function

Sf (a, s, t) = 〈f, ψast〉, a ∈ R
+, s ∈ R, t ∈ R

2.

The geometrical properties of the shearlets are more evident in the frequency domain. Since

ψ̂ast(ξ) = a
3

4 e−2πiξt ψ̂1(a ξ1) ψ̂2(a
−1/2(s+

ξ2
ξ1

)),

it is clear that the function ψ̂ast has frequency support

supp ψ̂ast ⊂ {(ξ1, ξ2) : ξ1 ∈ [−2/a,−1/(2a)]∪ [1/(2a), 2/a], |s+ ξ2/ξ1| ≤
√
a}.

Thus, the shearlets are oriented waveforms, with orientation controlled by the shear parameter s, and they
become increasingly thin at fine scales (for a→ 0). Figure 1 shows the support of the shearlets in the frequency
domain for some values of a and s.

It is important to emphasize the special role of the matrices

(
a 0
0

√
a

)
and

(
1 s
0 1

)
in this construction. The

first matrix controls the ‘scale’ of the shearlets, by applying a different dilation factor along the two axes. This
ensures that the frequency support of the shearlets becomes increasingly elongated at finer scales. The shear

matrix

(
1 s
0 1

)
, on the other hand, is not expansive, and only controls the orientation of the shearlets.

These geometrical features are similar, for some aspects, to the recently introduced continuous curvelet
transform of Candès and Donoho.11 The continuous curvelet transform is defined as Γf (a, θ, t) = 〈f, γaθt〉,
where γaθt is obtained by applying translations by t and rotations by θ to appropriate functions γa, a ∈ R

+,
where a is a scale parameter. Observe that, unlike the shearlets, the curvelets are not generated by a simple
affine transformation of a single function γ.

2.1. Resolution of edges using the continuous shearlets

Consider a 2–D function f which is smooth away from a discontinuity along a curve. This is a reasonable model
for the situation one typically encounters in image processing.

It is known12 that, if ψ is a ‘nice’ continuous wavelet, then the continuous wavelet transform Wf (a, t) =
〈f, ψat〉, where ψat(x) = a−1ψ(a−1(x − t)), is able to localize the singularities of f in the following sense. For
a → 0, the function Wf (a, t) tends rapidly to zero, when t is outside the singularity, and Wf (a, t) tends to zero
slowly when t is on the singularity.

The continuous shearlets are not only able to locate a discontinuity curve, but also to identify its orientation.
That is, for a → 0, the shearlet transform Sf(a, s, t) tends rapidly to zero unless t is at the singularity and s
describes the direction that is perpendicular to the discontinuity curve. The following example is a special case
of this general property10:

Example 2.1. Let f = χD, where D is the unit disc in R
2, then, for a→ 0,

• if t ∈ ∂D and s describes the direction normal to ∂D, then |Sf (a, s, t)| ≤ C a3/4;

• otherwise, for each N = 1, 2, . . . , |Sf (a, s, t)| ≤ C aN .

Observe that the same property holds for the continuous curvelet transform of Candès and Donoho.11



2.2. Discretization of the continuous shearlet transform and discrete shearlets

By sampling the continuous shearlet transform Sf (a, s, t) = 〈f, ψast〉 on an appropriate discrete set, it is possible
to obtain a frame or even a tight frame for L2(R2). It is reasonable to expect that the resulting discrete systems
will inherit some basic geometric properties of the corresponding continuous systems and, thus, their ability to
‘localize’ spatially distributed discontinuities.

In order to discretize, let us replace the continuous matrices Mas, given by (2), with the discrete set

Mi,j =

(
1 j 2i/2

0 1

) (
2i 0

0 2i/2

)
=

(
2i 0

0 2i/2

) (
1 j
0 1

)
= BjAi, (5)

where i, j ∈ Z, and A and B are the matrices defined after equation (1). Also, let the continuous translation
variable t ∈ R

2 be replaced by a discrete lattice. Then the affine system (3) gives us the discrete system (1).
Observe that this discretization procedure is similar to the one that relates the continuous curvelet transform to
the (discrete) curvelets.13

As a special case of systems of the form (1), we will construct a ‘discretized’ version of the continuous shearlets.
For any ξ = (ξ1, ξ2) ∈ R

2, ξ1 6= 0, define ψ ∈ L2(R2) by

ψ̂(ξ) = ψ̂1(4 ξ1) ψ̂2

(ξ2
ξ1

)
. (6)

Let ψ1 ∈ L2(R) be a one-dimensional dyadic wavelet with supp ψ̂1 ⊂ [−2,− 1
2
]∪ [ 1

2
, 2], and ψ2 ∈ L2(R) be another

band-limited function with supp ψ̂2 ⊂ [−1, 1] and satisfying

∑

j∈Z

|ψ̂2(ω + j)|2 = 1 a.e. ω ∈ R. (7)

Recall that, since ψ1 is a dyadic wavelet, it satisfies the Calderòn equation:

∑

j∈Z

|ψ̂1(2
jω)|2 = 1 a.e. ω ∈ R. (8)

There are several choices of functions ψ1 and ψ2 satisfying these properties. We will choose ψ1 to be the Lemariè-
Meyer wavelet and ψ2 to be an arbitrary C∞ bump function. It follows that ψ̂, given by (6), is in C∞(R2) and
this implies that |ψ(x)| ≤ KN (1 + |x|)−N , KN > 0, for any N ∈ N, and, thus, the function ψ is well-localized.

Using (7) and (8) it is easy to see that

∑

i,j∈Z

|ψ̂((BT )j Ai ξ)|2 =
∑

ij∈Z

|ψ̂1(2
s+i ξ1)|2 |ψ̂2(2

−i/2 ξ2
ξ1

+ j)|2

=
∑

i∈Z

|ψ̂1(2
s+i ξ1)|2

∑

j∈Z

|ψ̂2(2
−i/2 ξ2

ξ1
+ j)|2 = 1 a.e.

This observation implies that, for this choice of ψ, the system {ψijk : i, j ∈ Z, k ∈ Z
2}, given by (1), is a tight

frame for L2(R2), that is, ∑

i,j,k

|〈f, ψi,j,k〉|2 = ‖f‖2, for all f ∈ L2(R2).

Thus, the functions ψijk are a tight frame of well-localized oscillatory waveforms, with many directions depending
on j, and needle-like for i → ∞. We refer to Guo at al.9 for details about this construction. We use the
terminology of discrete shearlets or simply shearlets to refer to these systems.



3. WAVELETS WITH COMPOSITE DILATIONS

The authors and their collaborators have developed a general framework for the study of shearlets and more
general systems9, 14 . The affine systems with composite dilations are the collections of the form

AAB(Ψ) = {DAi DBj
Tk Ψ : k ∈ Z

2, i, j ∈ Z, }, (9)

where Ψ = (ψ1, . . . , ψL) ⊂ L2(R2), Tk are the translations, defined by Tk f(x) = f(x−k), DA are the dilations,
defined by DA f(x) = | detA|−1/2 f(A−1x), and A, {Bj : j ∈ Z}, are invertible 2 × 2 matrices. By choosing Ψ,
A, and Bj appropriately, one can make AAB(Ψ) an orthonormal (ON) basis or, more generally, a tight frame for
L2(R2). In this case, we call Ψ an AB–wavelet. It is clear that the (discrete) shearlets that we constructed in
the last section are a special case of AB–wavelets, where {Bj = Bj : j ∈ Z} and B, A are the matrices defined
after equation (1). Many other such wavelets can be constructed by choosing A to be an expanding matrix, and
{Bj : j ∈ Z} to be a collection of non-expanding matrices of some special form, including, for example, the case
where {Bj : j ∈ Z} is a finite group of matrices.15 Generalizations to higher dimensions are also possible, but
will not be addressed in this paper.

3.1. The theory of AB Multiresolution Analysis

Associated with the affine systems with composite dilations is the following generalization of the classical Mul-
tiresolution Analysis.

Let {Bj : j ∈ Z} be a collection of invertible 2 × 2 matrices with | detBj | = 1 and A be an invertible
2 × 2 matrix with integer entries. We say that a sequence {Vi}i∈Z of closed subspaces of L2(R2) is an AB
Multiresolution Analysis (AB–MRA) if the following holds:

(i) DBj
Tk V0 = V0, for any j ∈ Z, k ∈ Z

2;

(ii) for each i ∈ Z, Vi ⊂ Vi+1, where Vi = D−i
a V0;

(iii)
⋂
Vi = {0} and

⋃
Vi = L2(R2);

(iv) there exists φ ∈ L2(R2) such that ΦB = {DBj
Tk φ : j ∈ Z, k ∈ Z

2} is a tight frame for V0.

The space V0 is called an AB scaling space and the function φ is an AB scaling function for V0. If, in
addition, ΦB is an orthonormal basis, then we say that φ is an ON AB scaling function.

It is clear from this definition that, unlike the classical MRA, the scaling space is not only invariant with
respect to the integer translations, but also to the Bj dilations. As in the classical MRA, the following fact is
easy to verify.

Theorem 3.1. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(R2) be such that {DBj
Tk ψ

ℓ : j ∈ Z, k ∈ Z
2, ℓ = 1, . . . , L} is

an orthonormal basis (resp. tight frame) for W0, where W0 is the orthogonal complement of V0 in V1, that is,
W0 = V1 ∩ (V0)

⊥. Then Ψ is an orthonormal (resp. tight frame) AB–multiwavelet.

We will now apply the framework of the AB–MRA we have just introduced to construct new examples of
AB–wavelets for L2(R2). For simplicity, we will consider a wavelet ψ of ‘Shannon type’, that is, the Fourier

transform of the wavelet is the characteristic function of a set: ψ̂ = χI , I ⊂ R
2. However, the AB wavelets need

not be of this form in general.

Example 3.2. This construction is illustrated in Figure 2.

It is convenient to work in the frequency domain, that we will denote by R̂
2. Let A =

(
4 0
0 2

)
and Bj = Bj ,

j ∈ Z, where B =

(
1 1
0 1

)
. Let S0 = {ξ = (ξ1, ξ2) ∈ R̂

2 : |ξ1| < 1
4
}. This is the vertical strip of width 1

2
bounded

by the lines ± 1
4

(see Figure 2). Then Si = Ai S0, i ∈ Z, are the vertical strips {ξ = (ξ1, ξ2) ∈ R̂
2 : |ξ1| < 2i−2}.

Observe that

(BT )j ξ =

(
1 0
j 1

) (
ξ1
ξ2

)
=

(
ξ1

jξ + ξ2

)
,
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Figure 2. Example of AB wavelet. The figure shows the action of the matrices A and B on the trapezoid I+.

and, thus, (BT )j S0 ⊆ S0, for each j ∈ Z. In addition, we clearly have that (i) Si ⊂ Si+1, (ii)
⋃

i∈Z
Si = R̂

2, (iii)
⋂

i∈Z
Si = {ξ = (ξ1, ξ2) ∈ R̂

2 : ξ1 = 0}. For S ⊂ R̂
2, we use the notation L2(S) = {f ∈ L2(R2) : supp f̂ ⊂ S}.

From the observations that we made about the sets Si, it follows that:

(i) Dj
BT Tk L

2(S0) = L2(S0), for any j ∈ Z, k ∈ Z
2,

(ii) L2(Si) ⊂ L2(Si+1),

(iii)
⋂

i∈Z
L2(Si) = {0} and

⋃
i∈Z

L2(Si) = L2(R̂2).

Finally, let φ be given by φ̂ = χU , where U = U+ ∪ U−, and U+ is the triangle of vertices (0, 0), (1
4
, 0), , (1

4
, 1

4
)

and U− = {ξ ∈ R̂
2 : −ξ ∈ U+}. Then it is simple to show that S0 = ∪j∈Z(BT )jU , where the union is disjoint,

and, thus, ΦB = {DBj Tk φ : j ∈ Z, k ∈ Z
2} is a tight frame for V0. In addition, ΦB is semi-orthogonal, that is,

DBj1
Tk φ⊥DBj2

Tk′ φ for any j1 6= j2, j1, j2 ∈ Z, k, k′ ∈ Z
2. Thus, the sequence {L2(Si) = Vi : i ∈ Z} of closed

subspaces of L2(R2) is an AB–MRA.

In order to construct an AB–wavelet, let R0 = S1\S0. Then W0 = L2(R0) is the orthogonal complement of
V0 in V1. Next, consider the set I = I+ ∪ I−, contained in R0, where: I+ is the trapezoid with vertices (1

4
, 0),

(1
4
, 1

4
), (1, 0), (1, 1), and I− = −I+ (see Figure 2). Then an observation similar to the one we made before shows

that {DBj
Tk ψ : j ∈ Z, k ∈ Z

2, where ψ̂ = χI , is a tight frame for W0, and, thus, by Theorem 3.1, ψ is a tight
frame AB–wavelet.

3.2. A cascade algorithm for AB wavelets

As in the classical MRA, the AB scaling function φ determines the AB–MRA completely. Since φ ∈ V1, then
φ(A−1x) ∈ V0, and so

φ(A−1x) =
∑

k∈Z2

∑

j∈Z

akj φ(Bj x− k),



or, equivalently,

φ(x) =
∑

k∈Z2

∑

j∈Z

akj φ(Bj Ax− k).

Thus:
φ̂(ξ) =

∑

j∈Z

mj((B
T
j )−1A−1ξ) φ̂((BT

j )−1 A−1 ξ), (10)

where mj(ξ) =
∑

k∈Z2 akj e
−2πikξ. Equation (10) is the scaling equation associated with the AB–MRA.

Observe that this equation involves countably many ‘filters’mj(ξ), as compared to the scaling equation associated
with the classical MRA, that involves only one filter m(ξ).

In the following, we will examine the special case where Bj = Bj , j ∈ Z, and A, B are chosen as in
Example 3.2. In addition, we assume that mj(ξ) ≡ 0 for j 6= 0,−1, and, thus, the scaling equation associated
with the AB–MRA has the form

φ̂(ξ) = m0(A
−1ξ) φ̂(A−1 ξ) +m1(B

T A−1ξ) φ̂(BT A−1 ξ). (11)

Let us observe that the AB scaling equation associated with Example 3.2 is exactly of this form. However, we
need not assume that φ̂ is the characteristic function of a set, in general.

We have the result16:

Theorem 3.3. For a given function φ ∈ L2(R2), let

ψ̂ℓ(ξ) = mℓ
0(A

−1ξ)φ̂(A−1ξ) +mℓ
1(B

TA−1ξ)φ̂(BTA−1ξ) where ℓ = 0, . . . , L, (12)

and φ = ψ0. If
L∑

ℓ=0

mℓ
k((BT )k(ξ + αi))mℓ

k′((BT )k′ (ξ + αi′)) = δkk′δii′ (13)

where k, k′ = 0, 1, i, i′ = 0, . . . , 7 and αi are the coset representatives of A−1
Z

2/Z2 (that is: α0 = (0, 0), α1 =
(1
4
, 0), α2 = (1

2
, 0), α3 = (3

4
, 0), α4 = (0, 1

2
), α5 = (1

4
, 1

2
), α6 = (1

2
, 1

2
), α7 = (3

4
, 1

2
)), and

lim
j→∞

∑

k∈Z

|φ̂((BT )kA−jξ)|2 = 1 a.e. ξ ∈ R̂
2,

then ψ1, . . . , ψL is a tight frame AB–multiwavelet.

This theorem generalizes a similar result in the classical MRA theory.2 In particular, equation (13) is the
analog of the Smith–Barnwell equation that describes a so-called perfect reconstruction condition in the theory
of filter banks.

This approach also leads to the following recursive algorithm for the computation of the AB-wavelet coeffi-
cients 〈f, ψℓ

ijk〉, where ψℓ
ijk = Di

AD
j
BTk ψ

ℓ, that generalizes the classical cascade algorithm for wavelets.

Suppose that f ∈ V1, then

f =
∑

j∈Z

∑

k∈Z2

〈f,D−1
A Dj

BTkφ〉D−1
A Dj

B Tk φ.

In addition, if we assume (12), where ψ0 = φ and mℓ
0 and mℓ

1 satisfy (13), then we have

ψℓ =
∑

k∈Z2

hℓ(k)D−1
A Tk φ+

∑

k∈Z2

gℓ(Bk)D−1
A DBTk φ,

where

mℓ
0(ξ) =

1

2
√

2

∑

k∈Z2

hℓ(k)e−2πik·ξ , mℓ
1(ξ) =

1

2
√

2

∑

k∈Z2

gℓ(Bk)e−2πik·ξ.



Letting dℓ
j(k) = 〈f,Dj

BTk ψ
ℓ〉 and cj(k) = 〈f,D−1

A Dj
BTk φ〉, for ℓ = 0, . . . , L, we have the analysis equation:

dℓ
j(k) =

∑

m∈Z2

hℓ(m−Ak) c2j(m) +
∑

m∈Z2

gℓ(m−Ak) c2j−1(B
−1m). (14)

A similar argument gives the corresponding synthesis or reconstruction equations:

c2j(k) =

L∑

ℓ=0

∑

m∈Z2

hℓ(k −Am) dℓ
j(m) (15)

and

c2j−1(k) =

L∑

ℓ=0

∑

m∈Z2

gℓ(k −B−1Am) dℓ
j(m). (16)

4. CONCLUSION

We have presented a new class of multidimensional representations obtained from the action of translations,
dilations, and shear transformations on a finite set of generators in L2(R2). These representations exhibit exactly
those mathematical and geometrical properties, including multiscale, localization, anisotropy, directionality,
recently advocated by many authors for the construction of efficient image representations. One advantage of this
approach is that these systems can be constructed using a generalized multiresolution analysis and implemented
efficiently using an appropriate version of the classical cascade algorithm.

We are currently investigating the regularity issues associated with these systems, and the connection of our
approach with some recent results about directional filter banks, such as, in particular, the curvelets and the
contourlets7, 8, 17
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