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SUMMARY

I introduce a digital wavelet-like transform tailored specifically for
representing seismic data. The transform provides a multiscale orthog-
onal basis with basis functions aligned along seismic event slopes in
the input data. It is defined with the help of the wavelet lifting scheme
combined with local plane-wave destruction. The main objective of
the new “seislet” transform is an optimal seismic data compression
for designing efficient algorithms. Traditional signal processing tasks
such as noise removal and trace interpolation are simply defined in
the seislet domain and realizable with optimally efficientO(N) algo-
rithms. When applied in the offset direction on common midpoint or
common image point gathers, the seislet transform finds an additional
application in optimal stacking of seismic records.

INTRODUCTION

Wavelet transforms have found many applications in science and en-
gineering (Mallat, 1999), including geophysics (Foster et al., 1994;
Dessing, 1997; Wapenaar et al., 2005). The power of wavelet trans-
forms, in comparison with the classic Fourier transform, lies in their
ability to represent non-stationary signals. As a result, wavelets pro-
vide an optimally compact basis for non-stationary data decomposi-
tion. Having a compact basis is useful both for data compression and
for designing efficient numerical algorithms.

Recently, a number of wavelet-like transforms that explore directional
characteristics of images, have entered the image analysis literature
(Welland, 2003). Among those transforms are bandelets (Pennec and
Mallat, 2005), contourlets (Do and Vetterli, 2005), curvelets (Starck
et al., 2000), directionlets (Velisavljevic, 2005), etc. Unlike isotropic
wavelets, directional-type transforms attempt to design basis functions
that are elongated anisotropically along 2-D curves or 3-D surfaces
that might be characteristic for an image. Therefore, they achieve bet-
ter accuracy and better data compression in representing non-stationary
images with curved edges. Curvelets seem particularly appropriate for
seismic data because they provide provably optimal decomposition of
wave-propagation operators (Candès and Demanet, 2004). Applica-
tion of the curvelet transform to seismic data analysis is an area of
active research (Herrmann, 2003; Douma and de Hoop, 2005).

Although wavelet theory originated in seismic data analysis (Mor-
let, 1981), none of the known wavelet-like transforms were designed
specifically for seismic data. Even though some of the transforms
are applicable to representing seismic data, their original design was
motivated by a completely different kinds of data, such as piecewise-
smooth images. In this paper, I investigate the possibility of designing
a transform tailored specifically for seismic data. In analogy with pre-
vious naming games, I call such a transformthe seislet transform1.

The approach taken in this paper follows the general recipe for digital
wavelet transform construction known as thelifting scheme(Sweldens,
1995). The lifting scheme provides a convenient and efficient con-
struction for digital wavelet transforms of different kinds. The key
ingredients of the scheme are a prediction operator and an update op-
erator defined at different digital scales. The goal of the prediction
operator is to predict regular parts of the image so that they could be
subtracted from the analysis. The goal of the update operator is to
carry essential parts of the image to the next analysis scale. Conven-
tional wavelet transforms use prediction and update operators designed

1Name suggested by Huub Douma (pers. comm.)

for characterizing locally smooth images. In this paper, I show how
designing prediction and update suitable for seismic data can improve
the effectiveness of the transform in seismic applications. I use pre-
diction along locally dominant event slopes found by the method of
plane-wave destruction (Fomel, 2002).

The seislet transform decomposes a seismic image into an orthonormal
basis which is analogous to the wavelet basis but aligned along dom-
inant seismic event slopes. Using synthetic and field data examples,
I demonstrate the effectiveness of the new transform in characterizing
seismic data and in accomplishing traditional signal processing tasks
such as noise removal, trace interpolation, and stacking.

TRANSFORM CONSTRUCTION

(a) (b)

Figure 1: Benchmark “Lena” image from image analysis literature (a)
and its 2-D digital wavelet transform using bi-orthogonal wavelets (b).

In order to define the new transform, I follow the general recipe for
digital wavelet transforms provided by Sweldens and Schröder (1996).
In the most general terms, the lifting scheme (Sweldens, 1995) is de-
fined as follows:

1. Organize the input data as a sequence of records.

2. Break the data into even and odd componentseando.

3. Find a residual differencer between the odd component and
its prediction from the even component:

r = o−P[e] , (1)

whereP is apredictionoperator.

4. Find a coarse approximationc of the data by updating the
even component

c = e+U[r ] , (2)

whereU is anupdateoperator.

5. The coarse approximationc becomes the new data, and the
sequence of steps is repeated at the next scale level.
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A digital wavelet transform consists of data approximation at the coars-
est level and residuals from all the levels. The key in designing an ef-
fective transform is making sure that the prediction operatorP leaves
small residuals while the update operatorU preserves essential fea-
tures of the original data while promoting them to the next scale level.
For example, one can obtain the(2,2) Cohen-Daubechies-Feauvea bi-
orthogonal wavelets (Cohen et al., 1992) by making the prediction op-
erator a linear interpolation between two neighboring samples

P[e]k = ek−1 +ek (3)

and by constructing the update operator to preserve the running aver-
age of the signal (Sweldens and Schröder, 1996)

U[r ]k = (rk−1 + rk)/4 . (4)

The digital wavelet transform is an efficient operation. Assuming the
prediction and update operation take a constant cost per record, the
number of operation at the finest scale is proportional to the total num-
ber of recordsN, the next scale computation takesO(N/2), etc. so
that the total number of operations is proportional toN+N/2+N/4+
. . .+2 = 2(N−1), which is smaller thanO(N logN) cost of the Fast
Fourier Transform.

The transform is also easily invertible. Reversing the lifting scheme
operations provides the inverse transform algorithm, as follows:

1. Start with the coarsest scale data representationc and the
coarsest scale residualr .

2. Reconstruct the even componenteby reversing the operation
in equation 2, as follows:

e= c−U[r ] , (5)

3. Reconstruct the odd componento by reversing the operation
in equation 1, as follows:

o = r +P[e] , (6)

4. Combine the odd and even components to generate the data
at the previous scale level and repeat the sequence of steps.

Figure 1 shows a classic benchmark image from the image analysis
literature and its digital wavelet transform using two-dimensional bi-
orthogonal wavelets. Thanks to the general smoothness of the “Lena”
image, the residual differences from equation 2 (stored as wavelet co-
efficients at different scales) have a small dynamic range, which allows
for an effective compression of the image.

FROM WAVELETS TO SEISLETS

I adopt the general idea of the lifting scheme to transforming mul-
tidimensional seismic data. The key idea of the seislet transform is
recognizing that

• seismic data should be organized as a collection of traces or
records and not simply as a collection of samples;

• prediction of one seismic trace or record from the other and
update of records on the next scale should follow features
characteristic for seismic data.

For example, one can view seismic data as collections of traces and
predict one trace from the other by following local seismic event slopes.
Such a prediction is a key operation in the method of plane-wave de-
struction (Fomel, 2002). In fact, it is the minimization of prediction
error that provides a criterion for estimating local slopes (Claerbout,
1992).

The prediction and update operators for a simple seislet transform are
defined by modifying the bi-orthogonal wavelet construction in equa-
tions (3-4) as follows:

P[e]k = S(+)
k [ek−1]+S(−)

k [ek] (7)

U[r ]k =
(

S(+)
k [rk−1]+S(−)

k [rk]
)

/4 , (8)

whereS(+)
k and S(−)

k are operators that predict a trace from its left
and right neighbors correspondingly by shifting seismic events ac-
cording to their local slopes. The predictions need to operate at dif-
ferent scales, which, in this case, mean different distances between the
traces. Equations (7-8), in combination with the forward and inverse
lifting schemes (1-2) and (5-6), provide a complete definition of a use-
ful transform.

(a) (b)

Figure 2: Synthetic seismic image (a) and local slopes estimated by
plane-wave destruction (b).

(a) (b)

Figure 3: Wavelet transform (a) and seislet transform (b) of the syn-
thetic image from Figure 2.

Figure 2(a) shows a synthetic seismic image from Claerbout (2006).
Estimating local slopes from the image (Figure 2(b)), I applied the
seislet transform described above. The transform is shown in Fig-
ure 3(b) and should be compared with the corresponding wavelet trans-
form in Figure 3(a). Apart from the fault and unconformity regions,
where the image is not predictable by continuing local slopes, the
seislet transform coefficients are small which allows for an effective
compression. The wavelet transform has small residual coefficients at
the fine scale but develops large coefficients at coarser scales.
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(a) (b)

Figure 4: Randomly selected representative basis functions for wavelet
transform (a) and seislet transform (b).

(a) (b)

Figure 5: Image reconstruction using only 3% of significant coeffi-
cients (a) by inverse wavelet transform (b) by inverse seislet transform.

Effectively, the wavelet transform in this case is equivalent to the seislet
transform for the erroneous zero slope. Figure 4 shows example basis
functions for the wavelet and seislet transform used in this example.
Expectedly, wavelet transform fails to reconstruct the most important
features of the original image when using only the most significant
coefficients while the seislet transform achieves an excellent recon-
struction (Figure 5). I used the method of soft thresholding (Donoho,
1995) for selecting the most significant coefficients.

Figure 6(a) shows a common-midpoint data from a real marine dataset.
Plane-wave destruction estimates local slopes shown in Figure 6(b)
and enables the seislet transform shown in Figure 7(a). Small dynamic
range of the seislet coefficients implies a good compression ratio. Fig-
ure 7(b) shows data reconstruction using only 5% of the significant
seislet coefficients.

If we choose the significant coefficients at the coarse scale and zero
out difference coefficients at the finer scales, the inverse transform will
remove incoherent noise from the gather (Figure 7). Thus, denoising
is a naturally defined operation in the seislet domain.

If we extend the seislet domain, possibly with random noise, and inter-
polate the smooth local slope to a finer grid, the inverse seislet trans-
form will accomplishes trace interpolation of the input gather (Fig-
ure 9). In this example, the number of traces is increased by four.
Thus, trace interpolation also turns out to be a natural operation when
viewed from the seislet domain.

(a) (b)

Figure 6: Common-midpoint gather (a) and local slopes estimated by
plane-wave destruction (b).

(a) (b)

Figure 7: Seislet transform of the input gather (a) and (a) and data
reconstruction using only 5% of significant seislet coefficients (b).

(a) (b)

Figure 8: Zeroing seislet difference coefficients at fine scales (a) en-
ables effective denoising of the reconstructed data (b).

(a) (b)

Figure 9: Extending seislet transform with random noise (a) enables
trace interpolation in the reconstructed data (b).
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SEISLET STACK

The seislet transform defined in the previous section acquires a special
meaning when applied in the offset direction on common midpoint or
common image point gathers. According to the lifting construction,
the zero-order seislet coefficient is nothing more than seismic stack
but computed in a recursive manner by successive partial stacking of
neighboring traces. As a consequence, seislet stack avoids the problem
of “NMO stretch” associated with usual stacking as well as the prob-
lem of nonhyperbolic moveouts. All other gather attributes including
multiple reflections and amplitude variation with offset appear in the
higher order seislet coefficients. Figure 10 shows a comparison be-
tween the conventional NMO stack and the seislet stack. The higher
resolution of the seislet stack is clearly visible. Figure 11 compares
the common-midpoint gather after conventional normal moveout cor-
rection and an effective seislet moveout computed by separating con-
tributions from individual traces to the stack.

Figure 10: Left: conventional normal-moveout stack. Right: seislet
stack.

(a) (b)

Figure 11: Input gather after normal moveout correction (a) and effec-
tive seislet moveout (b).

CONCLUSIONS

I have introduced a new digital transform named “seislet transform”
because of its ability to characterize and compress seismic data in the
manner similar to that of digital wavelets transforms. I defined the
seislet transform by combining the wavelet lifting scheme with local
plane-wave destruction.

The new transform provides a convenient orthonormal basis with the
basis functions spanning different scales analogously to those of the

digital wavelet transform but aligned anisotropically along the dom-
inant seismic slopes. Traditional signal analysis operations such as
denoising and trace interpolation become simply defined in the seislet
domain and allow for optimally efficient algorithms. Seismic stack
also has a simple meaning of the zeroth-order seislet coefficient com-
puted in an optimally efficient manner by recursive partial stacking,
thus avoiding the usual problems with wavelet stretch and nonhyper-
bolic moveouts. One can extend the idea of the seislet transform fur-
ther by changing the definition of prediction and update operators in
the lifting scheme.
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