
SEAMLETS: CONTENT-AWARE NONLINEAR WAVELET TRANSFORM 
  

David D. Conger, Hayder Radha, Fellow, IEEE 
Michigan State University 

Dept. of Electrical & Computer Engineering 
East Lansing, MI  48824-1226 

Mrityunjay Kumar 
Eastman Kodak Company 

Rochester, NY  14650-2118 

 
 

ABSTRACT 
 
With the rise of mobile media devices, resizing an image or 
video to fit a screen of arbitrary size has become an 
important topic. In general, arbitrary resizing does not 
preserve the original image aspect ratio, and hence, can 
introduce significant visual distortion.  Content-aware 
retargeting methods have been proposed to preserve salient 
features of an image or video ([1][3][5][6]) even under 
arbitrary changing of the aspect ratio.  While these are useful 
tools, little attention has been given to the development of an 
efficient retargeting-driven representation of images. Such 
representation, for example, can lead to efficient distribution 
of media destined for retargeting at a variety of devices with 
different aspect ratios.  We propose a new framework, 
seamlets, which utilizes the discrete wavelet transform 
(DWT) to perform content-aware arbitrary media resizing. 
In essence, seamlets provide an efficient multi-resolution 
representation for retargeting applications.  The seamlet 
transform elegantly generalizes the DWT and seam carving, 
which is an intriguing retargeting method. The result is a 
new image framework, seamlets, that inherits the benefits of 
retargeting and wavelets. 
 

Index Terms— Wavelet transforms, Image retargeting, 
Seam carving, Image resizing 
 

1. INTRODUCTION 
 

Mobile devices such as cell phones and personal media 
players are quickly changing what is meant by typical image 
sizes.  With an increased demand for media content, the 
ability to make full use of their displays becomes a real 
challenge.  The screen sizes are generally dictated by what is 
considered mobile, and are therefore no bigger than what 
might fit in one’s pocket.  Furthermore, there are no 
standards on screen sizes and so generally every 
manufacturer produces different sized screens.  This initially 
was not a problem since displaying media on these devices 
was never a primary function.  However, with increased 
memory and processing power, distributing media to mobile 
devices has become a mainstay and, more often than not, a 
primary selling point. 
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Figure 1: (a) Original image, (b) uniform resizing to 60% width, 
(c) seams (red) found using seam carving and (d) result of 
removing seams to achieve 60% width, (e) Vertical seamlet 
decomposition using Haar wavelet.  [Image courtesy of 
mr.bmonroe on flickr.com] 

 
Media can be cropped or stretched to fit different device 

displays, but generally this introduces undesirable distortion 
(cf. Figure 1(b)).  Adding borders to an image or video to 
preserve the aspect ratio is another option, but this leaves an 
already-small mobile device display with an even smaller 
content area. 

This motivates what is known as retargeting, which is 
the process of changing the aspect ratio of an image or video 
while maintaining the content and appearance of the original 
media.  One rather elegant solution called seam carving (SC) 
– developed by S. Avidan and A. Shamir in [1][4] – 
provides a way to systematically remove pixels from visually 
“unimportant” paths, or seams, effectively reducing the 
height or width by one pixel at a time, in a relatively 
unnoticeable way (cf. Figure 1(c,d)).  Similarly, pixels can 
be added to these paths to achieve an increase in the 
dimension.  By repeating seam removal or insertion, 
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essentially any dimension can be achieved, although, too 
many iterations eventually introduce very noticeable 
distortion.  This of course depends on the signal and, 
specifically, how much “important” information an image or 
video contains.   
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Figure 2: (a) Image with seam shown in red, (b) Image rows 
realigned at seam with seam image shown in pink for a=2, b=1. 
 

It is worth mentioning that several global retargeting 
solutions have been proposed ([3][5][6]).  Although they 
prove to be effective options, such techniques require 
processing an entire image or video at once which may be 
too complex and too costly for mobile devices.  SC on the 
other hand is more scalable since it decreases or increases 
the dimension by one at each step, effectively achieving 
every target size between the original and desired target 
sizes.  This is especially beneficial when the target size is 
not known ahead of time.  In this case, the SC algorithm 
proceeds by finding all the seams in the image or video and 
pre-storing the locations of these paths.  Then, later, any size 
can be attained on-demand using the path data and the 
original media [1][4]. 

In this paper we present the groundwork for a general 
framework that provides an efficient multi-resolution image 
representation tailored for retargeting applications. For 
example, the proposed framework enables efficient 
distribution of images that are destined for retargeting at 
arbitrary and heterogeneous mobile devices. As generating 
this framework involves applying wavelets along seam 
paths, we call this new decomposition, seamlets. Methods 
such as SC can already be implemented in mobile devices, 
but large-scale distribution may require either wasteful 
transmission or disproportionate processing. We believe that 
seamlets provide a viable representation for retargeting. 

The remainder of the paper is organized as follows. 
Section 2 describes the seamlet transform including the 
analysis and synthesis stages for one-dimensional signals. 
Extension of seamlets to 2D is outlined in Section 3. Section 
4 discusses applications of seamlets for retargeting of 
images over networks.  Section 5 provides some simulation 
results. 
 

2. THE SEAMLET TRANSFORM 
 
As mentioned above, image retargeting is essentially 
changing the aspect ratio of an image.  Using seam carving, 
this can be achieved in a couple different ways.  To make an 
image narrower, for instance, we can either remove vertical 
seams or add horizontal seams.  While each approach will 
produce different looking images and different image 
dimensions, the resulting images can be rescaled to match 
the desired target size.  Alternatively, the target size can be 
met by removing or adding both horizontal and vertical 
seams.  This avoids the need for rescaling, however, there 
are limitations to how many seams can be added or removed. 

Determining which way to proceed is an image 
dependent decision and a whole other topic for discussion.  
While our algorithm can be used for all of these cases, for 
the sake of brevity we will focus on the description of the 
one-dimensional seamlet transform for the case of 
“removing” vertical seams to meet a particular aspect ratio. 
 
2.1. Overview 

 
Here we present an overview of the vertical seamlet 
decomposition (refer to Figure 3(a)).  At step k the image 

1kI  is modified as follows: 
 the k-th seam path is found using seam carving 
 the pixels near and on the seam are filtered using 

the DWT (as explained further below) 
 the approximation coefficients replace those pixels 

to produce kI  
 the detail coefficients are stored as ,v ky  

The starting image is 0I  and the final retargeted image is 
KI .  For convenience we will refer to the k-th instance of 

the retargeted image, namely 1kI , as the k-th base image. 
 
2.2. The Seam Path 

 
A seam is an 8-connected path of pixels from one side of an 
image to the opposite side, containing exactly one pixel per 
row (vertical seam) or one pixel per column (horizontal 
seam).  Based on [1], we define the k-th vertical seam path 
of an m×n image as 

, ,

1 1
,

mmv k v k k
i i i

s i x is  

where x is a single-valued function such that 

1 1 2,x i x i i m . 
Although seamlet analysis does not require any particular 

path finding algorithm, we use seam carving because we are 
interested in content preservation.  It should be noted that 
there are two seam criteria defined in [2]: forward energy 
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and backward energy.  In general, the forward energy 
criterion produces better results at the cost of longer 
compute times.  For our purposes it does not matter which is 
used since either criteria finds seam paths as defined above 
and consequently either one can be used. 

Having found the seam path, the SC algorithm would 
proceed by simply discarding the pixels along the path and 
move on to the next step.  Instead, we will employ the DWT 
to reduce the spatial resolution near the seam path by 
filtering each row (or column for horizontal seams).  To 
formulate the neighborhood near the seam, we would also 
need to know the seams adjacent to the k-th seam.  We 
define a seam path shifted by p as 

, ,

1 1
,

mmv k v k k
i i i

p s p i x i ps  

where , 0v ks  is the k-th optimum seam path as defined 
above.  Let the pixels of the base image associated with the 
k-th seam path be defined as 

1, ,kv k v k
p = I psI s  

where 1kI  is the base image at the start of step k. 
 
2.3. Seamlet Analysis 

 
A key difference from traditional wavelet decomposition of 
an image is that seamlet decomposition occurs iteratively.  
Rather than filtering the entire image at once, we only filter 
the pixels near and along a single seam at each step k.  
Formally, this pixel area around and including a vertical 
seam can be redefined as the 1m a b  seam image 

, , ,
, 0... ...v k v k v k

v k b aI = s s sI I I  

where a and b are nonnegative integers chosen based on the 
type and support size of the wavelet being used.  Of course, 
there could be other ways to define the neighborhood of 
pixels around a seam, such as designing a way to account for 
the directionality.  But for this brief introduction to the 
seamlet transform, we will use this straightforward 
definition.  Note, however, that this is not simply a 
rectangular subset of the original image (see Figure 2(b)). 

Because we want to reduce the dimension of the image, 
we are exploiting the fact that the DWT decimates the 
signal.  This will invariably put certain conditions on 
acceptable values for a and b, and consequently on the size 
of the seam image.  For example, using the basic Haar 
wavelet, the minimum possible size seam-image is m×2. 

The next step is to apply the DWT to each row (or 
column for horizontal seams) using lowpass filter h and 
highpass filter g: 

 

 
(a) 

 
(b) 

Figure 3: (a) Vertical seamlet decomposition, (b) 2D seamlet 
decomposition. 
 

, ,, , 2
a

v k v k
t b

I i j = I i t h j t  

 

,
,, , 2

a
v k

v k
t b

y i j = I i t g j t . 

 
Note that the columns of the seam-image are indexed from 

b  to a . The lowpass output 
, ,v kI i j  replaces the seam 

image pixels corresponding to the starting image 1kI ; the 
highpass output , ,v ky i j  is stored beside the image (see 
Figure 3(a)). 

Additionally, the seam path locations are stored in an 
index map that is used for reconstruction: 

1

,
, K j

i j
T i j x i  

where x is found using seam carving as defined above. 
This process is repeated until some minimum-size image 

KI  is reached.  The result is the seamlet decomposition (cf. 
Figure 1(e)). 

 
2.4. Seamlet Synthesis 

 
Reconstructing the image works by recombining the 
highpass and lowapss seamlet coefficients in the reverse 
order that they were decomposed from KI  to 0kI  where 

0kI  is either the original image or meets some desired 
target size. 

Assuming the data is stored in a lossless manner, the 
quality of the reconstruction depends on the wavelet being 
implemented.  If the wavelet provides perfect reconstruction, 
the seamlet reconstruction will also be perfect. 

 
3. EXTENSION TO 2D 

 
Seamlet decomposition can be extended to 2D by switching 
between vertical and horizontal seam processing.  The 
framework for this is shown in Figure 3(b), however, note 
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that it is not required to switch directions at every step as is 
shown; nor does the number of horizontal seams need to 
equal the number of vertical seams.  The order of directions 
as well as the stopping point for either direction is image 
dependent and, consequently, difficult to automate. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4: (a) Original image, (b) 2D seamlet decomposition, (c) 
resizing and (d) seamlet reconstruction to 501×200, (e) resizing 
and (f) seamlet reconstruction to 301×350. [Image courtesy of 
mikebaird on flickr.com] 
 

Synthesis for this case would proceed just as for the 1D 
case by reconstructing the seam images in the reverse order 
they were decomposed.  Of course, this might not 
immediately produce an image of the desired target size for 
the reason that not every possible image size is passed as an 
image is retargeted from 0I  to KI .  A simple solution to 
this problem is to reconstruct the image to 0kI  such that 
both target dimensions are met or exceeded for the first time 
during the reconstruction process.  From there, the image 

0kI  can be retargeted to the desired size. 
Another solution is possible by considering the 

intersections of seams and modifying the seamlet 
coefficients to artificially reorder when each seam was 

processed.  Although we have omitted these details for the 
sake of space, we have used this in our simulations. 

 
4. SIMULATIONS 

 
While we have experimented with various types of wavelets, 
we found that the Haar wavelet is particularly well-suited for 
retargeting due to its small support width.  This easily 
enables reductions by one dimension in the height or width, 
which is consistent with the seam carving algorithm.  For 
this reason, we have shown simulation examples using the 
Haar wavelet. 

To support our claim of arbitrary media retargeting, we 
have taken an image represented using the 2D seamlet 
decomposition and reconstructed it to various sizes (see 
Figure 4).  The original 600×400 image was decomposed to 
a 300x100 base image by alternating between vertical and 
horizontal seams.  Starting from there, we were able to 
reconstruct to any arbitrary size using the methods discussed 
in Section 4.  For comparison, we have also used resizing to 
obtain the same sizes.  Due to space constraints, we are 
unable to show the results using only seam carving, 
however, there is no significant difference from our results. 

 
5. CONCLUSIONS 

 
We have presented a wavelet-based seam carving algorithm 
in the light of an efficient multi-resolution representation.  
Yet, we believe there is more significance to this algorithm 
in terms of wavelet theory.  In future we plan to look further 
into these details and discover other applications. 
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