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Abstract:
Noiselets are a family of functions completely uncom-
pressible using Haar wavelet analysis. The resultant per-
fect incoherence to the Haar transform, coupled with the
existence of a fast transform has resulted in their inter-
est and use as a sampling basis in compressive sampling.
We derive a recursive construction of noiselet matrices and
give a short matrix-based proof of the incoherence.

1. Introduction

The noiselet basis, originally described in [2], has gar-
nered interest recently because noiselets (1) are maximally
incoherent to the Haar basis and (2) have a fast algorithm
for their implementation. Thus, they have been employed
in compressive sampling to sample signals that are sparse
in the Haar domain [1].
The work presented here was motivated by the observation
that it had not been previously shown in a straightforward
way that the discrete Haar transform is maximally inco-
herent to a discretized version of the noiselet transform.
Additionally, the exact form of a noiselet matrix needed to
be inferred from the original work.
The main contributions are the derivation of a recursive,
tensor product-based, construction of noiselet matrices,
the unitary matrices that result from the noiselet transform
for discrete input, and an intuitive proof showing its inco-
herence to the corresponding Haar matrix.

2. Preliminaries

2.1 General definitions
Definition 1. LetA be anm×nmatrix, andB be a matrix
of an arbitrary size. The Kronecker product of A and B is

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
The Kronecker product (see e.g. [4]) is a bilinear and as-
sociative operator which is not generally commutative. It
can be combined with a standard maxtrix multiplication as
follows:

(A⊗B)(C ⊗D) = AC ⊗BD

whenever the products AC, BD exist. This property is
sometimes called the mixed product property.

Definition 2. Let A be a m × n matrix. A(k, ∗) de-
notes the (row) vector (A(k, 1) A(k, 2) . . . A(k, n))
while, A(∗, l) similarly denotes the (column) vector
(A(1, l) A(2, l) . . . A(m, l))T .

2.2 Noiselets
Noiselets [2] are functions that are completely uncom-
pressible under the Haar transform. The family of noise-
lets is constructed on the interval [0, 1) as follows:

f1(x) = χ[0,1)(x),
f2n(x) = (1− i)fn(2x) + (1 + i)fn(2x− 1)

f2n+1(x) = (1 + i)fn(2x) + (1− i)fn(2x− 1)

Here, χ[0,1)(x) = 1 on the definition interval [0, 1) and 0
otherwise. It is shown in [2] that {fj} is a basis:

Theorem 1. The set {fj |j = 2N , . . . , 2N+1 − 1} is an
orthogonal basis of the vector space V2N , which is the
space of all possible approximations at the resolution 2N

of functions in L2[0, 1).

2.3 Haar Transform
Haar wavelet transform can be described by a real square
matrix. For our purposes, it is advantageous to recursively
build the Haar matrix using the Kronecker product [3]:

Hn =
1√
2

[
Hn/2 ⊗ (1 1)
In/2 ⊗ (1 −1)

]
.

The iteration starts with H1 =
[
1
]
. The normalization

constant 1√
2

ensures that HT
nHn = I . Haar wavelets are

the rows of Hn.

3. Matrix construction of noiselets

First we extend and discretize the noiselet functions.

Definition 3. The extensions of noiselets to the interval
[0, 2m − 1] sampled at points 0, . . . , 2m − 1 is the series
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(a) Real part of 8x8 noiselet matrix
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(b) Imaginary part of 8x8 noiselet matrix
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(c) Real part of 64x64 noiselet matrix
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(d) Imaginary part of 64x64 noiselet matrix

Figure 1: Noiselet matrix: graphical view. In figures (a) and (b), the black and white colors denote values of −0.25
and 0.25 respectively. In figures (c) and (d), the black, gray and white colors denote values of −0.125, 0 and 0.125
respectively. .

of functions fm(k, l)

fm(1, l) =

{
1 l = 0, . . . , 2m − 1
0 otherwise

fm(2k, l) = (1− i)fm(k, 2l) + (1 + i)fm(k, 2l − 2m)
fm(2k + 1, l) = (1 + i)fm(k, 2l) + (1− i)fm(k, 2l − 2m)

where m denotes the range of extension, k = 1, . . . , 2m+1

is the function index and l = 0, . . . , 2m − 1 is the sample
index.

Starting with a 1 × 1 matrix N1, a sequence of noiselet
matricesN1, N2, N4, . . . , N2m of sizes 1×1, 2×2, 4×4,
. . . , 2m × 2m, respectively, is generated. The rows of the
Nn matrix are noiselets which form an orthonormal basis
for the space Cn.

Definition 4. For n = 1, N1 =
[
1
]
. Then the n × n

noiselet matrix Nn is built up recursively according to:

Nn(k, ∗) =
1
2

(1− i 1 + i)⊗Nn/2(
k

2
, ∗)

when k = 0, 2, 4, . . . , n− 2 and

Nn(k, ∗) =
1
2

(1 + i 1− i)⊗Nn/2(
k − 1

2
, ∗)

when k=1,3,. . . ,n-1.

Lemma 1. Let m > 0. The noiselet matrices
N1, N2, N4, . . . , N2m are built up from a series of discre-
tised and extended noiselets fm:

Nn(k, l) = fm(n+ k,
2m

n
l), k, l = 0, . . . , n− 1.

Proof. Let m > 0 be fixed. For n = 1

N1(0, 0) = fm(1, 0) = 1.

By induction, for a matrix of size n = 2p, p = 1, . . . ,m,
its basis vector k = 0, 2, 4, . . . , n − 2 and vector indices
l = 0, . . . , n

2 − 1

Nn(k, l) = (1− i)Nn/2(
k

2
, l)

= (1− i)fm(
n

2
+
k

2
,

2m

n
2

l) = fm(n+ k,
2m

n
l).

For the same n, k and l = n
2 , . . . , n− 1,

Nn(k, l) = (1 + i)Nn/2(
k

2
, l − n

2
)

= (1 + i)fm(
n

2
+
k

2
, 2

2ml

n
− 2m) = fm(n+ k,

2m

n
l).

To see this, observe that fm is zero outside of [0, 2m − 1]
and therefore, the first half of samples of fm(k, l) are
defined exclusively by the expression (1 ± i)fm(k, 2l)



whereas the second half of the samples are defined exclu-
sively by (1± i)fm(k, 2l − 2m).
For k odd (k = 1, 3, . . . , n− 1) the proof is similar.

Specially, the noiselet matrixNn for n = 2m can be found
as the “tail” of the function series fm. Indeed, the expres-
sion in Theorem 1 becomes N(k, l) = fm(n + k, l) for
n = 2m.

4. Incoherence of noiselets and Haar

In what follows, we adhere to the terminology of basis co-
herence which is common in the field of compressive sam-
pling. See for example [1] for details on these definitions
and related literature.
Mutual coherence of two bases is defined as the maximum
scalar product of any pair of their basis vectors:

Definition 5. Mutual coherence between two orthonormal
bases Ψ, Φ is

µ(Ψ,Φ) = max
k,j
|〈ψk, φj〉|.

The minimal coherence is usually termed maximal or per-
fect incoherence, which means that µ(Ψ,Φ) = O(1). In
other words, the matrix of scalar products ΨΦ∗ is “flat”.
As Candès and Romberg suggest [1], we will show the
perfect incoherence of Haar and noiselets in the following
setting. Given an orthonormal n × n Haar matrix H , we
compute the matrix of scalar products for a corresponding
noiselet matrix N normalized such that N∗N = nI . By
doing so, the product will be flat with all values having the
magnitude of 1.
For clarity of the main proof, it saves some technical work
to define a “twisted” noiselet basis.

Definition 6. The twisted noiselet matrix N̂1 =
[
1
]
.

Then the n × n twisted noiselet matrix N̂n is built up re-
cursively by

N̂n(k, ∗) =
1
2
N̂n/2(

k

2
, ∗)⊗ (1− i 1 + i)

when k = 0, 2, 4, . . . , n− 2 and

N̂n(k, ∗) =
1
2
N̂n/2(

k − 1
2

, ∗)⊗ (1 + i 1− i)

when k = 1, 3, . . . , n− 1.

The difference between this and the definition of the noise-
let matrix N (Definition 4) is that the order of operands in
the Kronecker product is changed. In fact, each one is just
a permutation of the other.

Lemma 2. For n = 2m, the bases Nn, N̂n consist of the
same set of basis vectors.

Proof. Indeed, we can write N̂n = PnNn where P is the
permutation matrix:

P (k, ∗) =

{
(1 0)⊗ Pn/2(k

2 , ∗) k = 0, 2, 4, . . . , n− 2
(0 1)⊗ Pn/2(k−1

2 , ∗) k = 1, 3, . . . , n− 1

starting with P = [1].

The claim holds for n = 1. For n = 2, 4, 8, . . . , 2m,

PnNn(k, l) = Pn(k, ∗)Nn(l, ∗)T

as it can easily be shown that Nn is symmetric. Using the
recurrent equations for Pn andNn and applying the mixed
product rule, we get, for k = 0, 2, 4, . . . , n− 2,

PnNn(k, l) =
1
2

(1− i)Pn/2(
k

2
, ∗)Nn/2(∗, l

2
)

when l = 0, 2, 4, . . . , n− 2 and

PnNn(k, l) =
1
2

(1 + i)Pn/2(
k − 1

2
, ∗)Nn/2(∗, l

2
)

when l = 1, 3, . . . , n− 1. By induction,

PnNn(k, ∗) =
1
2
N̂n/2(

k

2
, ∗)⊗ (1− i 1 + i)

for even k indices. This situation for odd k is similar.

Now the main result can be shown.

Theorem 2. Let n = 2m where m is a non-negative in-
teger. Let Nn be the noiselet matrix of size n × n and let
Hn be the Haar matrix of size n × n. Then Hn and Nn

are maximally incoherent.

Proof. Without loss of generality, assume the bases are
normalized such that HT

nHn = I and N∗nNn = nI . For
the case of n = 1,

H1N
∗
1 =

[
1
]
·
[
1
]

=
[
1
]

For n = 2m,m > 1, the incoherence is shown by induc-
tion. Suppose we know maximal incoherence holds for n

2
and we want to show it for n. In the induction step, we use
the iterative construction of the Haar matrix by means of
Kronecker product. By computing the product

HnN̂
∗
n = H(N∗nP

∗
n) = (HnN

∗
n)PT

n

we will still be able to conclude on magnitude of the el-
ements of (HnN

∗
n), since permutation matrices do not

change magnitudes.
The productHnN̂

∗
n can be computed per-column; we take

the j-th column of N̂∗n, j = 0, 2, 4, . . . , n − 2 and trans-
form it by Hn, getting

HnN̂
∗
n(∗, j) =

1√
2

[
Hn/2 ⊗ (1 1)
In/2 ⊗ (1 −1)

]
· 1√

2
N̂∗n/2(∗, j

2
)⊗ (1− i 1 + i)∗

Note the altered normalization factor of noiselets. Now
the mixed product property can be applied to get

1
2

Hn/2N̂
∗
n/2(∗, j

2 )⊗ (1 1)
[
1 + i
1− i

]
In/2N̂

∗
n/2(∗, j

2 )⊗ (1 −1)
[
1 + i
1− i

]
 =

1
2

[
Hn/2N̂

∗
n/2(∗, j

2 ) ∗ 2
In/2N̂

∗
n/2(∗, j

2 ) ∗ 2i

]
.

By induction, it follows that |Hn/2N̂
∗
n/2(i, j

2 )| = 1 and

|In/2N̂
∗
n/2(i, j

2 )| = 1 for i = 1, . . . , n
2 . The Kronecker

multiplication is only by entries with magnitude 2, thus the
resulting magnitudes are 1

2 ∗2 = 1. The proof is equivalent
for j = 1, 3, . . . , n− 1.
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