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Noiselets are functions which are noise-like in the sense that they are totally
uncompressible by orthogonal wavelet packet methods. We describe a library of
such functions and demonstrate a few of their noise-like properties. 2001 Academic

Press

0. INTRODUCTION

As the reader undoubtedly knows, various effective algorithms exist for using wavelets
and wavelet packets to process data, for example, for compression or noise removal. In
these algorithms, analysis of data is achieved because one is able to find rapid decay in the
distribution of values of the data, when it is transformed into wavelet or wavelet packet
bases.

In practice one finds that the few large values in the transformed data describe the
interesting part of the data, and the vast majority of values, which are small, represent
a noise term. See, for example, [6].

The performance of these algorithms is impressive and might lull one into the belief that
analysis of any “interesting” structure can be carried out via wavelet packet analysis. Of
course this cannot be so, and this paper gives constructions of large families of functions
which give worst case behavior for orthogonal wavelet packet compression schemes.

Noiseletsare functions which give worst case behavior for the aforementioned type
of orthogonal wavelet packet analysis. In particular, this paper gives explicit examples
of (complex-valued) noiselets for which all Haar–Walsh wavelet packet coefficients
have exactly the same absolute value. So, in some sense, noiselets are “noise-like,”
and in particular, noiselets are totally uncompressible by orthogonal wavelet packet
methods.

Although noiselets are noise-like in the sense of being spread in time and frequency,
there are patterns lurking in them. Certain families of noiselets arise as bases for the
spaces of the Haar multiresolution analysis. These bases are computationally good in
the same way that wavelet packets are; they come with fast algorithms for forward and
inverse transforms and there are trees of bases with the structure needed to support the
best-basis algorithm. These good properties of noiselets are no coincidence. Noiselets are
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constructed via a multiscale iteration in exactly the same way as wavelet packets, but with
a twist. So in some sense noiselets have the structure of wavelet packets. Because of this
fast computational structure, the possibility exists that noiselets will be valuable tools for
certain applications, rather than simply representing counterexamples.

Another source of pattern within noiselets is that one finds within their construction
certain classical fractal generating mechanisms. In fact, a whole class of noiselets are
nothing but the distributional derivatives of the classical paper folding curves (see [4]
for an introduction to paper folding). Hence noiselets provide a counterexample to the
philosophical view of analysis with which this note began. Indeed, one sees that certain
interesting multiscale mechanisms can produce well-organized data which are nonetheless
invisible to our standard analysis tools.

This paper provides constructions of families of noiselets which are shown to give bases
for the spaces of the Haar multiresolution analysis and to have totally flat Haar wavelet
packet coefficients. The Fourier transforms of the noiselets are computed and are seen to
also be reasonably flat.

Forthcoming articles by the authors will give generalizations and show that noiselets
cannot be “denoised” using local time-frequency methods.

The authors should point out that after this work had been completed, the article by
Benke [1] appeared, where certain related but more general constructions were given.
However, in the latter article, no connection with wavelet packet analysis was made, and
nothing about the constructions in [1] implies the existence of Haar–Walsh totally flat
systems of bases, which is the main point of the present article.

1. PRELIMINARIES

Throughout this paper we will need to talk about the binary expansions of nonnegative
integers, and the following functions will be used. Define thebinary length ofn by

`(n)= blog2nc,

where bxc denotes the largest integer which is not greater thanx. Note that`(0) is
undefined, and by convention any sum of the form

∑`(0)
j=0 will be taken to be the empty

sum and equal to zero, and any product of the form
∏`(0)
j=0 will be taken to be the empty

product and equal to one.
We defineνj (n) ∈ {0,1} to be thej th digit in the binary expansion ofn, so that

n=
`(n)∑
j=0

νj (n)2j .

We define

εj (n)= (−1)νj (n).

The Haar multiresolution analysis on[0,1] is defined by:

Vn =
{
f ∈L2([0,1]) | f is constant on all intervals of the form(k2−n, (k + 1)2−n)

}
.
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The Walsh functions are defined by:

W0(x)= χ[0,1)(x)
W2n(x)=Wn(2x)+Wn(2x − 1) (1)

W2n+1(x)=Wn(2x)−Wn(2x − 1).

Let r0(x) andr1(x) denote the first two Rademacher functions, extended periodically to
all of R. That is,r0(x)= 1, and

r1(x)=
{

1, if x ∈ [k, k + 1
2) for some integerk,

−1, otherwise.

We recall two standard lemmas about these objects.

LEMMA 1. The functionsW0, . . . ,W2N−1 are an orthonormal basis forVN .

LEMMA 2. For eachn≥ 0,

Wn(x)=
`(n)∏
j=0

rνj (n)(2
j x),

restricted to[0,1].
Functions of the formWn(2qx−k) are called Haar–Walsh wavelet packets. In the Haar–

Walsh context, these are the functions from which one chooses subsets to produce bases
corresponding to various partitionings of the phase plane. See, for example, [6, 5].

2. NOISELETS

In this section we will construct a family of bases subordinate to the Haar multiresolution
analysis. The sequence of bases will be seen to limit to a distributional resolution of the
identity. Each of the constructed functions will have all of its Haar–Walsh coefficients be of
modulus 1, up to the finest possible scale. The limiting distributions will have well-defined
Haar–Walsh coefficients, all of them of modulus 1. The functions will be supported on
[0,1] where they will have constant absolute value. For the extension toR, see Section 6.

Consider the family of functions defined recursively by:

f1(x)= χ[0,1)(x)
f2n(x)= (1− i)fn(2x)+ (1+ i)fn(2x − 1) (2)

f2n+1(x)= (1+ i)fn(2x)+ (1− i)fn(2x − 1).

Note the similarity with Eq. (1), and beware of the fact that here the iteration starts with
f1, while in Eq. (1), it starts withW0.

LEMMA 3. The set{fj | j = 2N, . . . ,2N+1− 1} is an orthogonal basis forVN .

Proof. By counting it is enough to show that if 2N ≤ j < k < 2N+1, then〈fj , fk〉 = 0.
WhenN = 0 there is nothing to prove, so suppose the theorem is true forN − 1. Now
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〈fj , fk〉 = 1

2
(1− ε0(j)i)(1+ ε0(k)i)〈fbj/2c, fbk/2c〉

+ 1

2
(1+ ε0(j)i)(1− ε0(k)i)〈fbj/2c, fbk/2c〉.

If bj/2c 6= bk/2c then the two terms on the right above are zero, by induction. Otherwise,
since we have assumed thatj < k, we have thatj is even andk = j +1. Let l = j/2. Then

〈fj , fk〉 = −i〈fl, fl〉 + i〈fl, fl〉 = 0.

LEMMA 4. For eachn≥ 1, ∫ 1

0
fn(x) dx = 1.

Proof. This follows immediately from Eqs. (2) by induction.

Let r̃0(x)= 1− ir1(x), andr̃1(x)= 1+ ir1(x).
LEMMA 5. For eachn≥ 1,

fn(x)=
`(n)−1∏
j=0

r̃νj (n)(2
j x),

restricted to[0,1].
Proof. Indeed, whenn= 1 we have an empty product, which equals (by definition) 1.

The result follows by induction and the observation that Eqs. (2) may be rewritten:

f2n(x)= r̃0(x)fn(2x mod1)

f2n+1(x)= r̃1(x)fn(2x mod1).

COROLLARY 6. For eachn≥ 1, and for allm such that̀ (m) < `(n),

fn(x)Wm(x)= ikfn′(x),

for all x ∈ [0,1], wherek =−∑`(m)
j=0 νj (m)εj (n) (i.e., the number of places in the binary

expansion wherem is 1 andn is 1, minus the number of places wherem is 1 andn is 0),
andn′ is defined byεj (n′)= εj (n)εj (m), for j = 0, . . . , `(n).

Proof. Simply combine Lemmas 2 and 5, and note that

r0(2
jx)r̃0(2

j (x))= r̃0(2j x)
r0(2

jx)r̃1(2
j (x))= r̃1(2j x)

r1(2
jx)r̃0(2

j (x))=−ir̃1(2j x)
and

r1(2j x)r̃1(2j (x))= ir̃0(2j x).
Combining this with Lemma 4 we get:
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COROLLARY 7. For eachn≥ 1 and allm such that̀ (m) < `(n), we have that∫ 1

0
fn(x)Wm(x) dx = ik,

wherek =−∑`(m)
j=0 νj (m)εj (n).

LEMMA 8. For eachn≥ 1 and allm such that̀ (m)≥ `(n), we have that∫ 1

0
fn(x)Wm(x) dx = 0.

Proof. On any dyadic interval of size 2−`(m), the functionWm has integral zero, and
when`(m)≥ `(n), the functionfn is constant on these intervals.

LEMMA 9. Givenn,m ∈ Z+, andl ≥ 0,∫
fm(x)Wk(x) dx =

∫
fn(x)Wk(x) dx

for all k < 2l if and only ifνj (m)= νj (n) for all 0≤ j < l.
Proof. Indeed, by Lemmas 7 and 8, the projection offn into Vl is f ′n whereνj (n′)=

νj (n) for 0≤ j < l, νl(n′)= 1, andνj (n′)= 0 otherwise. Hence, both hypotheses translate
into the statement thatfn andfm have the same projection onVl .

Lemma 7 showed that, up to the finest reasonable scale, the functionsfn are flat in the
Walsh basis. The next lemma shows that thefn ’s are actually flat up to the finest reasonable
scale in all Haar–Walsh wavelet packet bases.

LEMMA 10. Let q,m,n ∈ Z+. If q + `(m) < `(n), and0≤ k < 2q , then∫ 1

0
fn(x)2

q/2Wm(2
qx − k) dx

is an eighth root of unity. Otherwise (ifq + `(m)≥ `(n)), it is zero.

Proof. The functionWm(2qx−k) is supported on the interval[k2−q, (k+1)2−q]. The
functionsr̃0(2px) andr̃1(2px) are constant on that interval whenp < q . Hence,∫ 1

0
fn(x)2

q/2Wm(2
qx − k) dx =

∫ 1

0

`(n)−1∏
j=0

r̃νj (n)(2
jx)2q/2Wm(2

qx − k) dx

=
q−1∏
j=0

(1± i)
∫ 1

0

`(n)−1∏
j=q

r̃νj (n)(2
j x)2q/2Wm(2qx − k) dx

= eiπn′/4
∫ 1

0

l−1−q∏
j=0

r̃νj+q (n)(2
jx)Wm(x) dx.

By the previous lemmas, this last quantity is eithereiπn
′′/4 (when`(n)− q > `(m)) or 0

(when`(n)− q ≤ `(m)).



32 COIFMAN, GESHWIND, AND MEYER

Now let {εi}∞i=0 be any sequence with values in{−1,1}. Let νj = (1 − εj )/2, and
nk = 2k +∑k−1

j=0 νj2
j . By Lemma 9, ifk ≥ l thenfnk andfnl act as the same distribution

onVl ; hence we expect the limiting distribution to exist. The next result shows that this is
so and shows to what extent the spectrum of a noiselet is spread out or flat.

PROPOSITION 11. The distributional limit offni exists and is the|ξ |1/2-tempered
distributionfEε whose Fourier transform is

f̂Eε(ξ)= e−iξ/2
∞∏
j=2

(
cos(ξ/2j )+ εj−2 sin(ξ/2j )

)
.

Proof. This is essentially the standard argument (see, for example, [3]). One first notes
that there is some real numberC > 0 such that∣∣∣∣∣

N∏
j=2

(
cos(ξ/2j )+ εj−2 sin(ξ/2j )

)∣∣∣∣∣≤ C√1+ |ξ |, (∗)

whereC does not depend onN , and such that the product converges asN→∞, uniformly
on compact sets.

Now, definingK(x)= χ[0,1], andKN(x)= 2NK(2Nx), one has

fnN (x)= 2−N((1− ε0i)δ0+ (1+ ε0i)δ2−1)

× ((1− ε1i)δ0+ (1+ ε1i)δ2−2)

...

× ((1− εN−1i)δ0+ (1+ εN−1i)δ2−N−1)

×KN(x). (3)

But

((1± i)δ0+ (1∓ i)δ1)ξ = (1± i)+ (1∓ i)e−iξ = 2e−iξ/2(cos(ξ/2)∓ sin(ξ/2)).

Hence

f̂nN (ξ)= K̂N(ξ)
N+1∏
j=2

e−iξ/2j (cos(ξ/2j )+ εj−2 sin(ξ/2j )).

But |K̂N(ξ)| ≤ 1 andK̂N(ξ)→ 1, so, by virtue of the uniform bound (∗), f̂nN converges
to the well-defined limit stated in the proposition.

Next, we observe that the distributionsfEε are totally flat in the Haar–Walsh phase plane.
That is:

LEMMA 12. For anym,q ≥ 0, and0≤ k < 2q one has∣∣∣∣∫ fEε(x)2q/2Wm(x) dx

∣∣∣∣= 1.

Proof. One only needs to make sense of the integral. SincefEε is a tempered distribution
we can pair it with any Schwartz function. Although the Haar wavelet packets are not
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smooth, we can nevertheless pair with them as well. Indeed,fEε is a limit of functions
fni , andfnj agrees withfnk in the sense of distributions on all functions inVmin(j,k). In
particular,fEε agrees withfnj onVj . Hence this lemma follows from Lemma 10.

The noiselets introduced in this section are complex valued functions of a real variable.
As such, they can be graphed as curves in the complex plane. However, any give noiselet
assumes only four values, and hence the graph simply looks like an “X” in a box (i.e., a
complete graph on four vertices). The intricate structure of various noiselets is made clear
by plotting their indefinite integrals. Figure 1 shows graphs of the functions

Fn(t)=
∫ t

0
fn(x) dx

as curves in the complex plane, for then indicated, and arranged in a basis tree with
descendants according to Lemma 9.

3. THE DRAGON NOISELETS

The constructions in the preceding section give rise to a basis of distributions which have
a totally flat Haar–Walsh spectrum. Since the functionsfn have constant absolute value on
the interval[0,1], these distributions can be thought of as being totally spread out in time
and scale (see Section 6 for an extension from[0,1] toR).

One would ultimately like the distributions to be totally spread in all reasonable notions
of phase plane, and in particular in time and frequency.

In a sense which can be made precise, the constructions in the previous section
are related to a complexification of the automatic sequence known as the Thue–Morse
sequence. If one carries out a similar complexification of another automatic sequence, the
Rudin–Shapiro sequence, then one gets a family which does not arise from an infinite
convolution product and one has the head-start of basing the construction on a sequence
which was designed to produce Fourier-spread sequences.

It turns out that this notion gives rise to the distributional basis whose elements are
simply the distributional derivatives of the classical Dragon curves.

Consider the family of functions defined recursively by:

g1(x)= χ[0,1)(x)
g2n(x)= (1− i)gn(2x)+ (1+ i)gn(2− 2x) (4)

g2n+1(x)= (1+ i)gn(2x)+ (1− i)gn(2− 2x).

The proofs of the next two lemmas are word-for-word the same as for thefn ’s.

LEMMA 13. The set{gj | j = 2N, . . . ,2N+1− 1} is an orthogonal basis forVN .

LEMMA 14. For eachn≥ 1, ∫ 1

0
gn(x) dx = 1.

Now the functionsgn are not easily written as a recursive product because the second
terms in Eqs. (4) are flipped. But it is easy to compute the Haar–Walsh coefficients of the
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gn ’s directly from Eqs. (1) and (4). In fact, we could have taken this approach with thefn ’s
as well.

LEMMA 15. Letn ∈ Z+,m≥ 0. If `(m) < `(n), then∫ 1

0
gn(x)Wm(x) dx = ik′,

where

k′ = −
`(m)∑
j=0

εj (n) · 1− εj (m)εj+1(m)

2
.

Otherwise (if`(m) ≥ `(n)), it is zero. Note,k′ is the number ofj such that in the binary
expansion,n is 1 at thej th place andm is different at thej th andj + 1st place, minus the
number ofj for whichn is 0, andm has such a difference.

Proof. The theorem is true forn= 1, so we may proceed by induction.
Now, suppose thatn is even. Letl = n/2, letm′ = bm/2c. Then

〈gn,Wm〉 = 1/2〈(1− i)gl,Wm′ 〉 ± 1/2〈(1+ i)gl,Wm′ 〉
= il′ 〈gl,Wm′ 〉

for l′ = 0 or 3. In the first line, the “plus or minus” comes from the fact that the second
gl is flipped, so ifm′ is odd the sign changes once, by Eqs. (1). Also, ifm is odd the sign
changes once, by Eqs. (1). Sol′ = 0 or 3 depending on whetherm andm′ have the same
or different parity.

Whenn is odd, simply exchange the(1+ i) and(1− i) above, and get thatl′ = 0 or 1,
depending on whetherm andm′ have the same or different parity, respectively.

In any case,

〈gn,Wm〉 =
∏
j

il
′
j .

Hence the result follows by induction.

In the same way as in the previous section, we conclude:

COROLLARY 16. Givenn,m ∈ Z+, andl ≥ 0,∫
gm(x)Wk(x) dx =

∫
gn(x)Wk(x) dx

for all k < 2l if and only ifνj (m)= νj (n) for all 0≤ j < l.
LEMMA 17. Letn ∈ Z+, q,m≥ 0, and0≤ k < 2q . If q + `(m) < `(n), then∫ 1

0
gn(x)2q/2Wm(2qx − k) dx

is an eighth root of unity. Otherwise (ifq + `(m)≥ `(n)), it is zero.

Proof. The case where the integral is zero is the same as before; the rescaledWm has
integral zero on intervals over whichgn is constant.
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In the other case, notice that the functionWm(2qx − k) is supported on the interval
[k2−q, (k + 1)2−q]. It is easy to see by induction that on this interval the functiongn is
equal to someg′n, possibly time-reversed, timesq factors of the form 1± i. Hence it is
2q/2 times an eighth root of unity timesg′n possibly flipped. A Walsh function flipped
either stays the same or is multiplied by−1 (i.e., it is either even or odd about 1/2).
Hence, by a change of variables, it is enough to prove this in the caseq = 0. But this is just
Lemma 15.

Next, as in the previous section, we will see thatgni converges as a tempered distribution.
Since thegn’s do not arise from convolutions this will be slightly more involved. So, let
{εi}∞i=0 be any sequence with values in{−1,1}. Letνj = (−1)εj andnk = 2k+∑k−1

j=0 νj2
j .

PROPOSITION 18. The distributional limit ofgni exists and is a tempered distribution
gEε . If we define the distributionhEε(x)= gEε(1− x) then the Fourier transforms are given
by (

ĝEε(ξ)
ĥEε(ξ)

)
=
∞∏
j=0

( 1−εj i
2

1+εj i
2 e−πiξ/2j

1+εj i
2

1−εj i
2 e−πiξ/2j

)
·
(

1
1

)
,

with later multiplications on the right.

Note. The infinite product of unitary matrices above does not converge as a matrix.
However, it converges to a 4-cycle of matrices, each of which take the vector(

1
1

)
,

to the same place, so the infinite product of matrices applied to the vector does converge
(uniformly on compact sets).

Proof. From Eqs. (4) we know that

gnj (x)= (1− ε0i)gbnj /2c(2x)+ (1+ ε0i)gbnj /2c(2− 2x). (5)

Let hnj (x)= gnj (1− x). Then, from (5) we have(
gnj (x)

hnj (x)

)
=
(
(1− ε0i) (1+ ε0i)
(1+ ε0i) (1− ε0i)

)
·
(

gbnj /2c(2x)
hbnj /2c(2x − 1)

)
.

Taking Fourier transforms, one finds that(
ĝnj (ξ)

ĥnj (ξ)

)
=
( 1−ε0i

2
1+ε0i

2 e−πiξ
1+ε0i

2
1−ε0i

2 e−πiξ

)
·
(
ĝbnj /2c(ξ/2)
ĥbnj /2c(ξ/2)

)
.

It follows that(
ĝnN (ξ)

ĥnN (ξ)

)
=
N−1∏
j=0

( 1−εj i
2

1+εj i
2 e−πiξ/2j

1+εj i
2

1−εj i
2 e−πiξ/2j

)
·
(
K̂(ξ/2N)
K̂(ξ/2N)

)
,

= K̂(ξ/2N)
N−1∏
j=0

( 1−εj i
2

1+εj i
2 e−πiξ/2j

1+εj i
2

1−εj i
2 e−πiξ/2j

)
·
(

1
1

)
.
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Now, let

U =
N−1∏
j=0

( 1−εj i
2

1+εj i
2 e−πiξ/2j

1+εj i
2

1−εj i
2 e−πiξ/2j

)
.

ThenU is unitary, and forξ in any fixed compact set,∥∥∥∥( ĝnN+1(ξ)

ĥnN+1(ξ)

)
−
(
ĝnN (ξ)

ĥnN (ξ)

)∥∥∥∥
2

=
∥∥∥∥[K̂(ξ/2N+1)U

( 1−εNi
2

1+εNi
2 e−πiξ/2N

1+εNi
2

1−εNi
2 e−πiξ/2N

)
− K̂(ξ/2N)U

](
1
1

)∥∥∥∥
2

≤
∥∥∥∥(K̂(ξ/2N+1)− K̂(ξ/2N))U ( 1−εN i

2
1+εN i

2 e−πiξ/2N

1+εN i
2

1−εN i
2 e−πiξ/2N

)(
1
1

)∥∥∥∥
2

+
∥∥∥∥K̂(ξ/2N)U [( 1−εNi

2
1+εNi

2 e−πiξ/2N

1+εNi
2

1−εNi
2 e−πiξ/2N

)
− I
](

1
1

)∥∥∥∥
2

=√2
∣∣K̂(ξ/2N+1)− K̂(ξ/2N)∣∣

+ ∣∣K̂(ξ/2N)∣∣ ∥∥∥∥[( 1−εN i
2

1+εN i
2 e−πiξ/2N

1+εN i
2

1−εN i
2 e−πiξ/2N

)
− I
](

1
1

)∥∥∥∥
2

≤ C

2N
,

where the last inequality follows from the fact that its left-hand side is equal to 0 atξ = 0
and is differentiable, with bounded derivative on any compact set. Hence it is Lipschitz in
its argumentξ/2N , and asξ is supposed to be in some compact set, the inequality follows.

Hence this sequence of products is uniformly Cauchy on compact sets, and it converges
to:

∞∏
j=0

( 1−εj i
2

1+εj i
2 e−πiξ/2j

1+εj i
2

1−εj i
2 e−πiξ/2j

)
·
(

1
1

)
.

Since, as we will soon see, the above construction is related to the classical Rudin–
Shapiro sequence, the distributiongEε has semiflat Fourier spectrum. Specifically, we have:

COROLLARY 19. One has that|ĝEε(ξ)| ≤
√

2. WhenEε = (1,1, . . .), ĝEε(ξ) does not
decay at infinity.

Proof. Since each of the matrices in the expansion forĝEε are unitary, we have that

‖(gEε(ξ), hEε(ξ))‖2= ‖(1,1)‖2=
√

2.

Hence the bound on|ĝEε(ξ)|.
From the infinite product expansion, one sees that for anym,n ∈ Z+,

ĝEε(24n+1m)= ĝEε(2m),

since we have that ( 1−i
2

1+i
2

1+i
2

1−i
2

)4

=
(

1 0
0 1

)
.
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Also, by explicit computation̂gEε(2) 6= 0. Hence,ĝEε does not decay at infinity.

Note that a similar argument for otherEε shows that ifEε is a periodic sequence, thenĝEε
does not decay at infinity.

The nonvanishing of̂gEε on the above mentioned lacunary sequence is but the simplest
example. Much more can be said. A more detailed analysis will appear in another paper.

Figure 2 shows some dragon noiselets aranged in a basis tree as in Fig. 1.

3.1. Relation with paper folding and dragon curves

The functiongn is piecewise constant on intervals of size 2−`(n) and hence can be
identified with a sequence of length 2`(n) of eighth roots of unity.

Consider taking unit steps in the complex plane. We can interpret the sequences of eighth
roots of unity as lists of instructions to take each of these steps in one of eight possible
directions. The resulting curves are the classical dragon curves which arise from folding a
piece of paper in half, repeatedly, in either of the two possible ways (left over right or right
over left) and then unfolding each crease to 90◦ (see, for example, [4]). The presence of
eighth roots of unity, instead of fourth roots, simply rotates by 45◦ from one stage to the
next, so that extending a binary sequence will correspond to a refinement of the curve, up
to rescaling. Hence thegn ’s, up to a 45◦ rotation, come from the system:

g̃2n(x)= g̃n(2x)+ ig̃n(2− 2x)
(4′)

g̃2n+1(x)= g̃n(2x)− ig̃n(2− 2x).

When one unfolds a folded piece of paper out to 90◦ creases, one gets a sequence of turns
followed by that sequence flipped and rotated by±90◦. Hence the paper-folding dragon
curves are exactly the indefinite integrals of the dragon noiselets (since the process of
interpreting a piecewise constant function as instructions to take steps of a given size in the
indicated direction is the process of integration).

3.2. Relation with the Rudin–Shapiro sequence

Again thinking of theg̃n’s as sequences of fourth roots of unity arising from Eqs. (4′),
one sees that there is an alternate construction which parallels the classical Rudin–Shapiro
construction.

If one defines the sequencesP0= (1, i) andQ0= (1,−i) and forn≥ 1,

P2n = Pn ∧Qn
Q2n = Pn ∧−Qn

(4′′)
P2n+1=Qn ∧ Pn
Q2n+1=Qn ∧−Pn,

where∧ denotes string composition and− denotes the obvious operation of pointwise
negation, then one gets the same sequences as those arising from the sampled values of
the g̃n ’s in (4′).

But (4′′) mirrors the classical Rudin–Shapiro construction, with simply a different initial
condition. The fact that (4′′) is a unitary, basis-producing generalization of the Rudin–
Shapiro construction, which produces a basis of semiflat functions, was made by Byrnes
in [2], although the complex initial conditions were not made there.
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Note that the noiselets in Section 2 are related to another classical automatic sequence:
the Thue–Morse sequence. Automatic sequences are fixed points for string rewriting rules
which have the form of substitutions. All of our automatic sequences were also generated
by string compositions, so their automatic-sequence nature was not directly evident in the
definitions (2) and (4). However, all of our sequences do come from repeated applications
of certain substitutions (see the end of the next section). In order to get the noiselets in
Section 2 from the Thue–Morse construction (generalized to the Walsh basis), instead of
complexifying the initial conditions, we complexify the substitutions.

4. A LARGE NUMBER OF COMBINATIONS

It is worth mentioning that the two different constructions in the two previous sections
can be mixed. At each scale we fix a choice of whether to apply the construction in
Eqs. (2) or to apply the construction in Eqs. (4). For this fixed sequence of choices, the
family produced has all of the basis and Haar–Walsh properties of the preceding examples.
However, the semiflat Fourier spectrum property goes away as soon as we mix in any
definite amount of Eqs. (2), as these lead to growth of the Fourier transform like some
power ofξ (at least along certain sequences that accumulate at infinity).

Specifically, we letEβ = (β1, β2, . . .) and define

f Eβ,1= χ[0,1)

and

f Eβ,n = (1− ε0(n)i)f Eβ,bm/2c(2x)+ (1+ ε0(n)i)f Eβ,bm/2c
(
(−1)β`(n)2x − 1+ 3β`(n)

)
.

Then one sees that whenβ = (0,0,0, . . .), thenf Eβ,n = fn, and whenβ = (1,1,1, . . .),
we have thatf Eβ,n = gn. More generally, thenth digit of β determines whether we apply
Eqs. (2) or (4) to computef Eβ,m from f Eβ,bm/2c when`(m)= n.

LEMMA 20. For fixed Eβ , the set{f Eβ,j | j = 2N, . . . ,2N+1− 1} is an orthogonal basis
for VN .

LEMMA 21. For each Eβ and eachn≥ 1,∫ 1

0
f Eβ,n(x) dx = 1.

LEMMA 22. Letn ∈ Z+,m≥ 0. If `(m) < `(n), then∫ 1

0
f Eβ,n(x)Wm(x) dx = ik′,

where

k′ = −
`(m)∑
j=0

εj (n) · 1− εj (m)(εj+1(m))
βj

2
.

Otherwise (if̀ (m)≥ `(n)), it is zero.
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COROLLARY 23. For fixed Eβ, givenn,m ∈ Z+, andl ≥ 0,∫
f Eβ,m(x)Wk(x) dx =

∫
f Eβ,n(x)Wk(x) dx

for all k < 2l if and only ifνj (m)= νj (n) for all 0≤ j ≤ l.
LEMMA 24. Letn ∈ Z+, q,m≥ 0, and0≤ k < 2q . If q + `(m) < `(n), then∫ 1

0
f Eβ,n(x)2

q/2Wm(2qx − k) dx

is an eighth root of unity. Otherwise (ifq + `(m)≥ `(n)), it is zero.

As usual, let{εi}∞i=0 be any sequence with values in{−1,1}. Let νj = (−1)εj and
ni =∑i

j=0 νj2
j .

PROPOSITION 25. The distributional limit off Eβ,ni exists and is a tempered distribution
f Eβ,Eε . If we define the distributiong Eβ,Eε(x) = f Eβ,Eε(1− x) then the Fourier transforms are
given by (

f̂ Eβ,Eε(ξ)
ĝ Eβ,Eε(ξ)

)
=
∞∏
j=0

A Eβ,Eε,j (ξ/2
j ) ·
(

1
1

)
,

with later multiplications on the right, where

A Eβ,Eε,j (ξ)=
( 1−εj i

2
1+εj i

2 e−πiξ
1+εj i

2
1−εj i

2 e−πiξ

)
,

whenβj = 1, and

A Eβ,Eε,j (ξ)=
(

cos(ξ/4)+ εj sin(ξ/4) 0
0 cos(ξ/4)− εj sin(ξ/4)

)
,

whenβj = 0.

Figure 3 shows a basis tree of one family of mixed noiselets (withβ alternating
between 1 and 0).

As pointed out, the preceding constructions can each be described in a few different
ways. When one combines the constructions using (2) and (4) (analogous to mixing
the string composition rules in the automatic sequence definitions), the proofs go over
essentially unmodified.

It is possible to combine the constructions in another way, analogous to mixing the string
rewriting rules. The constructions are most easily described in terms of the sequences of
sampled values of the functions. We define the substitutions:

s0: 1 7→ 1+ i, −1 7→ −1− i, i 7→ i − 1, −i 7→ −i + 1, and
(S01)

s1: 1 7→ 1− i, −1 7→ −1+ i, i 7→ i + 1, −i 7→ −i − 1,

and

s2: 1 7→ 1+ i, −1 7→ −1− i, i 7→ −1+ i, −i 7→ −1− i, and
(S23)

s3: 1 7→ 1− i, −1 7→ −1+ i, i 7→ 1+ i, −i 7→ −1− i,
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where a substitution acts on a sequence of lengthn of fourth roots of unity to produce a
sequence of length 2n in the obvious way.

Up to multiplication by powers of 1± i, the functionsfn arise from repeated applications
of s0 ands1 according to the binary expansion ofn. The functionsgn arise from repeatedly
applyings2 and s3 according to the binary expansion ofn. However, if we apply either
(S01) or (S23) according to the digits ofβ , and the binary expansion ofn, we get something
other thanf Eβ,n. The resulting functions, when rescaled by appropriate multiples of 1± i
can be shown to have all of the Haar–Walsh, basis and distributional limit properties of
thef Eβ,n.

In this form, it is easier to analyze the resulting primitives (indefinite integrals) directly to
determine that the mixed constructions converge. Indeed, one can show that the sequences
of primitives have a martingale property with exponentially shrinking displacement from
one scale to the next. In fact the side lengths shrink like 2−n while the displacements shrink
like 2−n/2, so that all of the resulting curves are Hölder-1/2. The convergence is uniform,
so that such a sequence of noiselets converges to the distributional derivative of the limit
of its primitives. Hence each of these limiting primitives gives a sort of deterministic
Brownian motion, of which our deterministic white noise is the derivative.

5. COMMENTS

Since the noiselets are built from equations like (2) and (4), one has a fast algorithm for
noiselet packets and best noiselet packet bases, as in the wavelet packet case (see [6]). One
needs to observe thatf Eβ,n(1− x) = f Eβ,n′ (x) for somen′ such that̀ (n′) = `(n). This is
proved easily by induction. Hence in the recursive discrete algorithm, in situations where
one is at a stage where it is necessary to apply Eqs. (4), it is possible to proceed.

All of our functions and distributions are supported on the interval[0,1]. It is possible to
lift this restriction by simply repeating the construction out to infinity, hence producing a
distribution which has uniform absolute value and which has uniformly large Haar–Walsh
wavelet packet coefficients. The only change needed, in order to get convergence, is the
elimination of the eighth roots of unity. In other words, we take sequences such as

f Eβ,Eε,1(x)= f Eβ,Eε(x)
f Eβ,Eε,2n(x)= f Eβ,Eε,n(x)+ if Eβ,Eε,n(x − 2`(n)) and

f Eβ,Eε,2n+1(x)= f Eβ,Eε,n(x)− if Eβ,Eε,n(x − 2`(n)).

Thenf Eβ,Eε,n(x) is supported on[0,2`(n)], and along sequences of increasingni as in the
previous sections, there is obviously convergence to distributions which are supported on
[0,∞), and have Haar–Walsh coefficients all of modulus 1.

Similarly, we can take

g Eβ,Eε,1(x)= f Eβ,Eε(x)
g Eβ,Eε,2n(x)= g Eβ,Eε,n(x)+ ig Eβ,Eε,n(2`(n)+1− x) and

g Eβ,Eε,2n+1(x)= g Eβ,Eε,n(x)− ig Eβ,Eε,n(x − 2`(n)+1− x)
as in the dragon constructions, and the subsequences converge to distributions on[0,∞),
which are Haar–Walsh totally flat.
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Finally, the above two constructions can be mixed, as in the previous section.
The proofs of all of the above facts are essentially the same as in previous sections.
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