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Summary. We generalize earlier results concerning an asymptotic error expansion of
wavelet approximations. The properties of the monowavelets, which are the building
blocks for the error expansion, are studied in more detail, and connections between
spline wavelets and Euler and Bernoulli polynomials are pointed out. The expansion
is used to compare the error for different wavelet families. We prove that the leading
terms of the expansion only depend on the multiresolution subspacesVj and not
on how the complementary subspacesWj are chosen. Consequently, for a fixed set
of subspacesVj , the leading terms do not depend on the fact whether the wavelets
are orthogonal or not. We also show that Daubechies’ orthogonal wavelets need,
in general, one level more than spline wavelets to obtain an approximation with a
prescribed accuracy. These results are illustrated with numerical examples.
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1. Notation

A measurable functionf (x) belongs to the space Lp(R), 1≤ p <∞, if

‖f (x)‖p =

(∫ +∞

−∞
|f (x)|p dx

)1/p

< ∞ ,

and to L∞(R) if
‖f (x)‖∞ = sup

x∈R
|f (x)| < ∞ .

The inner product of two functionsf (x) andg(x) of the Hilbert space L2(R) is defined
as

〈 f, g 〉 =
∫ +∞

−∞
f (x) g(x) dx .
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The Fourier transform of a functionf (x) is given by

f̂ (ω) =
∫ +∞

−∞
f (x) e−iωx dx .

A countable set{fn} of a Hilbert space is aRiesz basisif every elementf of the
space can be written uniquely asf =

∑
n cn fn, and positive constantsA andB exist

such that
A ‖f‖2 ≤

∑
n

|cn|2 ≤ B ‖f‖2 .

The spaceD m is defined a the space of bounded functions that decay faster than an
inverse polynomial,

D m = {f (x) | |f (x)| ≤ C (1 + |x|)−(m+1+ε) , ε > 0} .
For a function of this space, its firstm + 1 moments are finite.

2. Introduction

We first briefly review wavelets and multiresolution analysis. For more detailed treat-
ments, one can consult [4, 9, 18, 23, 24].

2.1. Multiresolution analysis

A multiresolution analysisof L2(R) is defined as a set of closed subspacesVj with
j ∈ Z that exhibit the following properties:

1. Vj ⊂ Vj+1,
2. v(x) ∈ Vj ⇔ v(2x) ∈ Vj+1 andv(x) ∈ V0 ⇔ v(x + 1) ∈ V0,

3.
+∞⋃

j=−∞
Vj is dense in L2(R) and

+∞⋂
j=−∞

Vj = {0},

4. A scaling functionϕ(x) ∈ V0 exists such that the set{ϕ(x− l) | l ∈ Z} is a Riesz
basis ofV0.

As a result a sequence{hk | k ∈ Z}, exists such that the scaling function satisfies a
refinement equation

ϕ(x) = 2
∑
k

hk ϕ(2x− k) .(1)

The set of functions{ϕj,l | l ∈ Z} with ϕj,l(x) =
√

2j ϕ(2jx − l), is a Riesz basis
of Vj . Let Wj be a complementary space ofVj in Vj+1, such thatVj+1 = Vj ⊕Wj .
Consequently

+∞⊕
j=−∞

Wj = L2(R) .

Note thatWj is not unique.
A function ψ(x) is a wavelet if the set of functions{ψ(x− l) | l ∈ Z} is a Riesz

basis ofW0. Since the wavelet is also an element ofV0, a sequence{gk | k ∈ Z}
exists such that
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ψ(x) = 2
∑
k

gk ϕ(2x− k) .(2)

The set of wavelet functions{ψj,l(x) | l, j ∈ Z} is a Riesz basis of L2(R).
The projection operator ontoVj (resp.Wj) that corresponds to this splitting of L2

is denoted byPj (resp.Qj). It can be written with the use of adual scaling function
ϕ̃ (resp. wavelet̃ψ) as

Pjf (x) =
∑
l

〈 f, ϕ̃j,l 〉ϕj,l(x) and Qjf (x) =
∑
l

〈 f, ψ̃j,l 〉ψj,l(x) .

Hereϕ̃j,l andψ̃j,l are defined similarly as above. Such wavelets are calledbiorthog-
onal wavelets[7]. The dual functions also generate a multiresolution analysis with
subspaces̃Vj andW̃j , which are different from theVj andWj .

Taking the Fourier transform of Eqs. (1) and (2) yields

ϕ̂(ω) = H(ω/2) ϕ̂(ω/2) with H(ω) =
∑
k

hk e−ikω(3)

and
ψ̂(ω) = G(ω/2) ψ̂(ω/2), with G(ω) =

∑
k

gk e−ikω .(4)

Similar definitions and equations hold for the dual functions. A necessary condition
for biorthogonality is then

∀ω ∈ R : M̃ (ω)MT(ω) = 1 ,

where

M (ω) =

[
H(ω) H(ω + π)
G(ω) G(ω + π)

]
and similarly forM̃ (ω). Now Cramer’s rule says that

G̃(ω) = −H(ω + π)

∆(ω)
and H̃(ω) =

G(ω + π)

∆(ω)
,(5)

where∆(ω) = detM (ω). The determinant∆(ω) does not vanish if and only if the
wavelets generate complementary subspaces.

The definition of a multiresolution analysis implies that forf (x) ∈ L2(R),

lim
j→∞

Pjf (x) = f (x) and f (x) =
∑
j

Qjf (x) .

The error of the approximation inVj is denoted asEnf (x), with

Enf (x) = f (x)−Pnf (x) or Enf (x) =
∞∑
j=n

Qjf (x) .
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2.2. Orthogonal and semiorthogonal wavelets

A scaling function and wavelet are calledorthogonal if the set of functions{ϕj,l |
l ∈ Z} is an orthonormal basis ofVj and if the set{ψj,l | j, l ∈ Z} is an orthonor-
mal basis of L2(R). This implies thatWj is the orthogonal complement ofVj in
Vj+1. The projection operators ontoVj andWj are orthogonal and give the optimal
approximation in the L2-sense. The basis functions and dual functions coincide.

A biorthogonal basis is calledsemiorthogonalwhen the subspacesWj are the
orthogonalcomplement ofVj in Vj+1, but the basis of each subspace is not orthogonal.
In this case the projection operatorsPj andQj still are orthogonal projections. The
dual multiresolution analysis subspacesṼj and W̃j now coincide withVj andWj .
Essentially, the wavelets that live on different levels are orthogonal, while the ones
that live on the same level are not. These wavelets are also calledpre-wavelets. For
a more detailed treatment and examples, see [4, 19, 25, 26].

2.3. Wavelets and polynomials

The moments of the scaling function and wavelet are defined as

Mp =
∫ +∞

−∞
xp ϕ(x) dx and Np =

∫ +∞

−∞
xp ψ(x) dx with p ∈ N .

They are finite ifϕ(x) andψ(x) belong toD p. For the moments of the dual functions
we use the notationsM̃p and Ñp. The scaling functions cannot have a vanishing

integral and are normalized withM0 = M̃0 = 1. This implies thatH(0) = H̃(0) = 1.
Let N denote the number of vanishing moment of the dual wavelet,

Ñp = 0 for 0≤ p < N and ÑN 6= 0 .

This is the same as saying that̂̃ψ(ω) has a root of multiplicityN at ω = 0, and, sincễϕ(0) 6= 0, also thatG̃(ω) has a root of multiplicityN at ω = 0. From Eq. (5), we see
that this is equivalent toH(ω) having a root of multiplicityN at ω = π, which, by
using Eq. (3), implies that

ipϕ̂(p)(2kπ) = δk Mp for 0≤ p < N .(6)

Poisson’s summation formula yields that∑
l

(x− l)p ϕ(x− l) = Mp for 0≤ p < N .(7)

By rearranging the last expression, we see that any polynomial with degree less than
N can be written as a linear combination of the functionsϕ(x − l) with l ∈ Z.
Equation (6) is known as the Strang-Fix condition [15, 29, 31], and it implies that if
f ∈ C N , then

‖Enf (x)‖ = O(hN ) with h = 2−n .
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2.4. Contents of the paper

In the first part of the paper we derive an asymptotical error expansion forEnf (x)
in terms of powers ofh (h = 2−n) assuming thatf (x) is a sufficiently differentiable
function. Since the error decays asO(hN ) we write the expansion as

Enf (x) =
M∑
p=N

hp Tp−N (x) +O(hM+1) .

We show thatTp−N (x) consists of thep-th derivative off (x) multiplied with an os-
cillating function. We propose the name “monowavelets” for the oscillating functions.
This generalizes an earlier result that was only valid for orthogonal and compactly
supported wavelets [33]. In the case of spline wavelets we point out a connection
between the monowavelets and Euler and Bernoulli splines.

In a second part we use the expansion to compare different multiresolution anal-
yses that have the same number of dual vanishing moments and thus the same con-
vergence rate. The factorT0(x) in the leading term is calculated and compared for
different wavelet families. A first result is that it does not depend on how the com-
plementary spacesWj are chosen. Consequently, for a fixed set of subspacesVj ,
the leading term does not depend on the fact whether the wavelets are orthogonal or
biorthogonal. We show that this is also true for the firstÑ terms. In other words,
whether a projection is orthogonal or not, does essentially not make a difference in
case the function is smooth and the scale is sufficiently fine.

Finally, we show thatT0(x) in the case of Daubechies’ orthogonal wavelets
is roughly 2N times larger than in the case of spline wavelets (both orthogonal,
semiorthogonal and biorthogonal because of the first result). Thus, in order to obtain
an approximation with a certain accuracy, one needs, in general, one more level with
Daubechies’ orthogonal wavelets than with spline wavelets.

3. Asymptotic error expansion

In this section we deriveM + 1 terms of the asymptotic error expansion (where
M ≥ N ). Assume thatψ(x), ψ̃(x) ∈ D M+1, f (x) ∈ C M+1, and thatf (l)(x) is
bounded forl ≤M + 1. Recall that

Qnf (x) = 2n
∑
l

〈 f (y), ψ̃(2ny − l) 〉 ψ(2nx− l) =
∑
l

µn,l ψ(2nx− l) .(8)

Writing a Taylor formula aroundy = x in the definition ofµn,l yields (with y as
integration variable in the inner products):

µn,l = 2n 〈 f (y), ψ̃(2ny − l) 〉

= 2n 〈
M∑
p=0

f (p)(x)
(y − x)p

p!
+ f (M+1)(ξ(x, y))

(y − x)M+1

(M + 1)!
, ψ̃(2ny − l) 〉

with ξ(x, y) betweenx andy

=
M∑
p=0

2n f (p)(x)
p!

〈 (y − x)p, ψ̃(2ny − l) 〉 + ρn,l(x) ,
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with

ρn,l(x) = 2n 〈 f (M+1)(ξ(x, y))
(y − x)M+1

(M + 1)!
, ψ̃(2ny − l) 〉 .

As the derivatives off (x) are bounded and̃ψ(x) belongs toD M+1, all the inner
products are finite. The dual wavelet hasN vanishing moments so that

2n 〈 (y − x)p, ψ̃(2ny − l) 〉 = 0 for 0≤ p < N ,

and thus the firstN terms of the summation overp vanish. ForN ≤ p ≤ M we
have, using the transformationz = 2ny − l, that

2n 〈 (y − x)p, ψ̃(2ny − l) 〉 = 〈 (hz + hl − x)p, ψ̃(z) 〉

= hp
p∑
s=0

(
p

s

)
Ñp−s (l − 2nx)s .

The lastN terms of this sum again vanish, so the upper bound of the summation over
s can bep−N . Thus,

γn,l =
M∑
p=N

hp f (p)(x)
p!

p−N∑
s=0

(
p

s

)
Ñp−s (l − 2nx)s + ρn,l(x) .

Combining this expansion with Eq. (8) yields that

Qnf (x) =
M∑
p=N

hp f (p)(x)
p!

p−N∑
s=0

(
p

s

)
Ñp−s (−1)s σs(2nx) +Kn(x) .

Hereσp(x) is the first monowavelet, which is defined as

σp(x) =
∑
l

(x− l)p ψ(x− l) for 0≤ p < M −N ,

andKn(x) is given by

Kn(x) =
∑
l

ρn,l(x)ψ(2n x− l) .

Next we show thatKn(x) behaves likeO(hN ):

|Kn(x)| ≤
∑
l

|ρn,l(x)| |ψ(2n x− l)|

≤ ‖f (M+1)(x)‖∞
(M + 1)!

2n
∑
l

〈 |y − x|M+1, |ψ̃(2ny − l)| 〉 |ψ(2n x− l)|

= hM+1‖f (M+1)(x)‖∞
(M + 1)!

∑
l

〈 |z + l − x/h|M+1, |ψ̃(z)| 〉 |ψ(x/h− l)|

≤ hM+1‖f (M+1)(x)‖∞
(M + 1)!

·
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∑
l

M+1∑
j=0

mj |x/h− l|j
(
M + 1
j

) |ψ(x/h− l)|

with mj = 〈 |z|M+1−j , |ψ̃(z)| 〉 (finite sinceψ̃(x) ∈ D M+1)

≤ hM+1‖f (M+1)(x)‖∞
(M + 1)!

· max
0≤j≤M+1

mj ·

∑
l

M+1∑
j=0

|x/h− l|j
(
M + 1
j

) |ψ(x/h− l)|

= hM+1 ‖f (M+1)(x)‖∞
(M + 1)!

· max
0≤j≤M+1

mj ·∑
l

(|x/h− l| + 1)M+1 |ψ(x/h− l)| .

Since this last summation overl can be bounded independently ofx andh, it holds
that |Kn(x)| ≤ ChM+1 with C independent ofx andn. Now we combine the error
expansions forQn into one forEn. Therefore, we define a new monowaveletσ∗p(x)
and write

Qnf (x) =
M∑
p=N

hp f (p)(x)
p!

σ∗p−N (2nx) +Kn(x) ,(9)

with

σ∗p(x) =
p∑
s=0

(
N + p
s

)
ÑN+p−s (−1)s σs(x) .(10)

So

Qn+jf (x) =
M∑
p=N

hp f (p)(x)
p! 2jp

σ∗p−N (2n+jx) +Kn+j(x) .

Finally, adding the projectionsQn+j f (x) yields the desired expansion,

Enf (x) =
M∑
p=N

hp f (p)(x)
p!

τp−N (2nx) +O(hM+1) .(11)

Hereτp(x) is the third monowavelet, which is defined as

τp(x) =
∞∑
j=0

σ∗p(2jx)

2j(p+N )
.

We conclude by saying that the general term of the expansions consists of: a
power ofh, the same order of derivative off (x), and a monowavelet. We can look
at the monowavelet as the “oscillating” part and at the derivative as the “modulating”
part.
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4. Properties of monowavelets

4.1. Definition

Recall that the monowaveletσp(x) is defined as

σp(x) =
∑
l

(x− l)p ψ(x− l) .(12)

It is the periodization ofxp ψ(x) with period one. Ifψ(x) ∈ D p, then the series in
Eq. (12) converges uniformly on [0, 1] andσp(x) is bounded. This can be seen using
the WeierstrassM -test combined with the fact thatxp ψ(x) ∈ D 0. One can check
that this condition was always satisfied in the previous section. From the definition it
follows that ∫ 1

0
σp(x) dx = Np for p ∈ N ,

and thus the first̃N monowavelets have a vanishing mean.
The monowaveletτp(x) is defined as

τp(x) =
∞∑
j=0

σ∗p(2jx)

2j(p+N )
.(13)

The series in Eq. (13) converges uniformly on [0, 1], and the monowavelet is periodic
with period one. Also,

σ∗p(x) = τp(x)− τp(2x)
2N+p

,(14)

and ∫ 1

0
τp(x) dx =

2(N+p)

2(N+p) − 1

∫ 1

0
σ∗p(x) dx = 0 if p < Ñ .

Again the firstÑ monowavelets have a vanishing mean.

4.2. Invariance

There are obviously many possible choices for the waveletψ(x) whose translates and
dilates generate the same subspacesWj . A trivial alternative would beψ(x−1). From
its definition we see that the functionσp(x) depends on the particular choice forψ(x).
This is not true forσ∗p(x) and τp(x). Writing Eq. (9) withn = 0 in casef (x) is the
monomialxp with p > N yields

Q 0 x
p =

p∑
s=N

(
p

s

)
xp−s σ∗s−N (x) .(15)

It follows thatσ∗p(x) only depends on the multiresolution analysis subspacesWj and
not on which particular functionsψj,k(x) generate it. Soσ∗p(x) is more characteristic
for a multiresolution analysis thanσp(x). The same is true forτp(x) as

E0 x
p = (1−P0)xp =

p∑
s=N

(
p

s

)
xp−s τs−N (x) .(16)
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These dependencies are studied in more detail in Sect. 8. Note that

τ0(x) = xN −P0 x
N .

This is the error of the approximation of the lowest degree monomial that cannot be
approximated exactly. Equation (16) generalizes this to higher degree monomials.

This also explains the name “monowavelets”. The monowavelets come from pe-
riodizing amonomial multiplied with a wavelet or from projecting downmonomials.
These techniques are also used in spline theory where the resulting functions are
calledmonosplines[28].

4.3. Fourier series

Write the Fourier series of the monowaveletσp(x) as

σp(x) =
∑
k

sp,k ek(x) with ek(x) = exp(2πikx) ,

and

sp,k =
∫ 1

0
σp(x) ek(x) dx .

Poisson’s summation formula yields that

sp,k = ip ψ̂(p)(2kπ) .

The coefficients with even index can be written as

sp,2k = ip ψ̂(p)(4kπ) = (i/2)p
dp

dωp

[
G(ω) ϕ̂(ω)

]
ω=2kπ

.(17)

If p < Ñ , these terms vanish, since 2kπ is a root of orderÑ of G(ω). So only the
odd index terms, which are antisymmetric around 1/2, remain so that

σp(x + 1/2) = −σp(x) ,(18)

or ∑
l

(x + l/2)p ψ(x + l/2) = 0 for p < Ñ .

Equation (6) states that 2kπ, k 6= 0 is a root of orderN of ϕ̂(ω). This, together with
Eq. (17), yields that ifÑ ≤ p < Ntot = Ñ +N , thesp,2k with k 6= 0 will vanish, or

sp,2k = îpψ(p)(0)δk = Np δk .

So
σp(x + 1/2) +σp(x) = 2Np ,(19)

or ∑
l

(x + l/2)p ψ(x + l/2) = 2Np for Ñ ≤ p < Ntot .

The monowaveletσ∗p(x) has Fourier series
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σ∗p(x) =
∑
k

s∗p,k ek(x) ,

with

s∗p,k =
p∑
j=0

(
N + p
j

)
ÑN+p−j (−1)j sj,k .

Since they are defined as finite linear combinations of theσp(x), the σ∗p(x) with

p < Ñ also have vanishing even coefficients in their Fourier series and thus satisfy,

σ∗p(x + 1/2) = −σ∗p(x) for p < Ñ .(20)

The monowaveletτp(x) has Fourier series

τp(x) =
∑
k

tp,k ek(x) .(21)

Writing the Fourier series of both sides of Eq. (14) gives

tp,2k+1 = s∗p,2k+1 and tp,2k = s∗p,2k +
tp,k

2N+p
,

or, if p < Ñ and thuss∗p,2k = 0,

tp,k =
sp,2l+1

2m(N+p)
with k = 2m(2l + 1) .(22)

The transition fromσp(x) to τp(x) apparently corresponds to filling in the gaps at the
even indices in the Fourier spectrum.

4.4. Zeros

Lemma 1. If ψ(x) is continuous and inD p with p < Ñ , the monowaveletsσp(x) and
σ∗p(x) have at least two zeros in the interval[0, 1).

Proof. If ψ(x) is in D p, then the series in Eq. (12) converges uniformly andσp(x) is
continuous. Sinceσ∗p(x) is a finite linear combination, it is continuous too. The proof
then immediately follows from Eqs. (18) and (20). Also, ifx0 is a root in [0, 1), so
is (x0 + 1/2) mod 1. ut

Lemma 2. If ψ(x) is continuous and inDp with p < Ñ andN > 1, the monowavelet
τp(x) has at least two zeros in the interval[0, 1).

Proof. The functionτp(x) is defined as the limit of a uniformly convergent series of
continuous functions, so it is continuous. We have, using Eqs. (20) and (21),

τp(0) = τp(1) =
2(N+p)

2(N+p) − 1
σ∗p(0) and τp(1/2) = −2(N+p) − 2

2(N+p) − 1
σ∗p(0) .

This means we have at least two changes of sign.ut
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4.5. Symmetry

If the wavelet is even or odd,

ψ(−x) = (−1)m ψ(x) ,

so are the monowaveletsσp(x) andσ∗p(x) and, more precisely,

σp(−x) = (−1)m+p σp(x) and σ∗p(−x) = (−1)m+p σ∗p(x) .

More generally, if the wavelet is (anti)symmetric around an integerk,

ψ(2k − x) = (−1)m ψ(x) ,

so is the monowaveletσ∗p(x),

σ∗p(−x) = (−1)m+p σ∗p(x) .

This is true because the functionψ(x − k) generates the same spaceWj and thus
gives rise to the sameσ∗p(x) function whileψ(x − k) is even or odd. Note that we
cannot make a simple statement aboutσp(x). The following statements regarding the
zeros ofσp(x) (and consequently ofσ∗p(x)) andτp(x), for p < Ñ hold:

– If σp(x) is odd, it has zeros at the integers because ofσp(0) = 0 and the periodicity.
It then also has zeros at the integers + 1/2 because of Eq. (18).

– If σp(x) is even, this combined with Eq. (18) yieldsσp(x) = −σp(1/2−x). It thus
has zeros at the integers + 1/4, and again because of Eq. (18) also at the integers
+ 3/4.

– If τp(x) is odd, it has zeros at the half integers; if it is even we cannot tell more
about the position of its zeros this easily.

4.6. Connection with scaling function

The relationship betweenσp(x) for p < Ntot and the scaling function can be written
more explicitly using the Zak transform. Remember that the Zak transform of a
function f (x) ∈ L2(R) is defined as [16, 17]:

(Zf )(x, ω) =
∑
l

e−iωl f (x + l) for x, ω ∈ R ,

and satisfies
(Zf )(x, ω) =

∑
k

f̂ (ω + 2πk) ei(ω+2πk)x .

Define now:
γp = ipG(p)(π) =

∑
k

kp (−1)k gk .

Then
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sp,2k+1 = ip
dp

dωp

[
G(ω/2) ϕ̂(ω/2)

]
ω=(2k+1)2π

=

(
i
2

)p p∑
s=0

(
p

s

)
G(p−s)(π) ϕ̂(s)((2k + 1)π)

= 2−p
p∑
s=0

(
p

s

)
γp−s is ϕ̂(s)((2k + 1)π) .

Now, for p < Ñ ,

σp(x) = (Z xp ψ)(x, 0)

=
∑
k

sp,2k+1 e2k+1(x)

= 2−p
p∑
s=0

(
p

s

)
γp−s

∑
k

is ϕ̂(s)((2k + 1)π) e2k+1(x)

= 2−p
p∑
s=0

(
p

s

)
γp−s (Z xsϕ)(2x, π)

= 2−p
p∑
s=0

(
p

s

)
γp−s

∑
l

(−1)l (2x− l)s ϕ(2x− l) .

For Ñ ≤ p < Ntot holds that

σp(x) = Np + 2−p
p∑
s=0

(
p

s

)
γp−s

∑
l

(−1)l (2x− l)s ϕ(2x− l) .

In casep = 0 we have that

s0,2k+1 = G(π) ϕ̂((2k + 1)π) = ϕ̂((2k + 1)π) ,(23)

and
σ0(x) =

∑
l

(−1)lϕ(2x− l) = 2
∑
l

ϕ(2x− 2l)− 1 .(24)

5. Spline monowavelets

In this section we study the monowavelets in case the scaling function and wavelet
are spline functions. Therefore, we first introduce Euler and Bernoulli polynomials
and splines.

5.1. Euler and Bernoulli polynomials and splines

A sequence of polynomialsVm(x), m ∈ N, is an Appell sequenceif Vm(x) is a
polynomial of strict degreem and

V ′m(x) = mVm−1(x) .
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Fig. 1. Bm(x) for m = 1, 2, 3, 4

The Euler and Bernoulli polynomials are two Appell sequences, denoted withEm(x)
andBm(x) respectively, that satisfy [1, 14]

2 exz

ez + 1
=
∑
n

Em(x)
m!

zm for |z| < 2π ,

and
z exz

ez − 1
=
∑
n

Bm(x)
m!

zm for |z| < π .

The first elements of the sequences are

E0(x) = 1
E1(x) = x− 1/2
E2(x) = x2 − x
E3(x) = x3 − 3/2x2 + 1/4
E4(x) = x4 − 2x3 + x ,

and

B0(x) = 1
B1(x) = x− 1/2
B2(x) = x2 − x + 1/6
B3(x) = x3 − 3/2x2 + 1/2x.
B4(x) = x4 − 2x3 + x2 − 1/30 .

The Bernoulli polynomials satisfy

Bm(x + 1)−Bm(x) = mxm−1 ,

and consequently

B(p)
m (0) = B(p)

m (1) for 0≤ p ≤ m− 2 .

This means that, if we define a one-periodic functionBm(x) as

Bm(x) = Bm(x− [x]) ,

then this is a periodic spline of orderm+ 1 with integer knots that belongs toC m−2.
It is called theBernoulli periodic spline[21]. The first four are shown in Fig. 1. Its
Fourier series form ≥ 1 is

Bm(x) = − m!
(2πi)m

∑
k

′ ek(x)
km

.
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Fig. 2. Em(x) for m = 1, 2, 3, 4

The prime indicates that the term withk = 0 is omitted. The functionBm(x) has the
same parity (even/odd) asm.

Something similar is possible for the Euler polynomials. They satisfy

Em(x + 1) +Em(x) = 2xm ,

and consequently

E(p)
m (0) = −E(p)

m (1) for 0≤ p ≤ m− 1 .

This means that if we define a two-periodic functionEm(x) as

Em(x) = (−1)[x] Em(x− [x]) ,

then this is a periodic spline of orderm+ 1 with integer knots that belongs toC m−1.
It is called theEuler periodic spline[21, 28]. The first four are shown in Fig. 2. The
function Em(x) has the opposite parity (even/odd) asm. Also,

Em(j +m/2) = (−1)j εm .

It is sometimes normalized so thatεm = 1, see [3, 28]. It is then the cardinal spline
interpolant of the sequenceyk = (−1)k. Its Fourier series form > 1 is

Em(x) =
2m!

(πi)m+1

∑
k

e2k+1(x/2)
(2k + 1)m+1

.

5.2. Spline wavelets

We consider the multiresolution analysis whereV0 is the space of piecewise polyno-
mials of degreem−1 with integer knots that belong toC m−2. Note that this implies
thatN = m. From the dual multiresolution analysis we only require thatÑ > 0. The
dual scaling function and wavelet need not be splines. We supply the notation with
an extra superscript (m). A possible choice of scaling function isϕ(m)(x) = Nm(x),
the cardinal B–spline of orderm. We know that
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N̂m(ω) =

(
1− e−iω

iω

)m
,

so that (from Eqs. (22) and (23))

s(m)
0,2k+1 =

(
2
iπ

)m 1
(2k + 1)m

and t(m)
0,k = Ñ (m)

m

(
2
iπ

)m 1
km

.

We will show in Sect. 8 that, for all possible dual wavelets,

Ñ (m)
m = − m!

22m
.

This implies that

σ(m)
0 (x) =

2m−1

(m− 1)!
Em−1(2x) and τ (m)

0 (x) = Bm(x) .

The σp(x) and τp(x) functions withp > 0 here are also one-periodic splines of
orderm. Analytic expressions can be obtained, but the derivation is quite technical
and is omitted here. We refer to [32] for details. We only include the main result,
which states that

τ (m)
p (x) = (−1)p

(
m

p

)
Bm+p(x) for p < Ntot .

The fact that we have an analytic expression for the monowavelets here is extremely
useful in convergence acceleration algorithms as described in [33].

Remark 1.Equation (13) forp = 0 yields the following relationship between Euler
and Bernoulli splines:

Bm(x) = − m

2m+1

∞∑
i=0

Em−1(2i+1x)
2mi

.

Something similar is also true for the polynomials, as

Bm(x) = − m

2m+1

k∑
i=0

Em−1(2i+1x)
2mi

+
Bm(2k+1x)

2m(k+1)
,

and this is an iterated version of [1, Eq. (23.1.27)].

Remark 2.In [30, pp. 147–151], Strang and Fix construct an asymptotical error anal-
ysis for the projection in the space spanned by piecewise linear finite elements. This
result coincides with the one presented here in casem = 2 andM = 2.
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N = 8

Fig. 3. σ0(x) in the case of Deslauriers-Dubuc withN = 2, 4, 6, 8

6. Other examples of monowavelets

– For the Daubechies orthogonal wavelets with compact support [8, 9, 10] (the
extremal phase, closest-to-linear phase and coiflets), these functions were studied
in [33]. Some of the graphs can be found there too.

– The Deslauriers-Dubuc scaling functions and wavelets can be constructed as auto-
correlation functions of the Daubechies orthogonal scaling functions and wavelets
[11, 12, 13, 27]. Theσ0(x) for the casesN = 2, 4, 6, 8 are shown in Fig. 3.

– In case of the Meyer wavelet [24],̂ψ(ω) has support [−8π/3,−2π/3] ∪ [2π/3,
8π/3], so ψ̂(2kπ) is identically zero for|k| 6= 1. We have that̂ψ(±2π) = −√2/2,
so that

σ0,Meyer(x) = −
√

2 cos(2πx) .

The Meyer wavelet has faster than polynomial decay such that all the functions
σp(x) are defined. They will be all of the form

σp,Meyer(x) = ap sin(2πx− bp) .

The asymptotical error expansion, however, does not make sense in this case since
all the moments of this wavelet vanish (N = ∞).

– For the Shannon wavelet, where

ψShannon(x) =
sin(2πx)− sin(πx)

πx
,

one can see that ∑
l

ψShannon(x− l)

diverges. Note that the Shannon wavelet is not inD 0.
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For the Meyer wavelet, which has infinitely many vanishing moments, theσp(x)
monowavelet is a sine. In the case of spline wavelets, it is easily seen from their
Fourier series that the Euler and Bernoulli periodic splines converge to a sine or
cosine asm goes to infinity. For the different Daubechies families, the monowavelets
seem to converge to a sine function asN goes to infinity. So it appears that as the
number of vanishing moments goes to infinity, the monowavelets converge to sine
functions.

7. Interpolation

The leading term of the expansion looks like

hN τ0(x/h) f (N )(x)N ! .

Remember that we stated that it consists of an oscillating and a modulating part. The
modulating part is given by the envelopes

hN f (N )(x) τmax and hN f (N )(x) τmin ,(25)

where
τmax = max

x∈[0,1]
τ0(x)N ! and τmin = min

x∈[0,1]
τ0(x)N ! .

The first term oscillates between these two envelopes. As a result of Lemma 2 this
function has at least 2n+1 zeros per unit length. This leads to the following theorem:

Theorem 1. If f (x) is sufficiently smooth, the approximationPnf (x) asymptotically
interpolatesf (x) in at least2n+1 points per unit length.

The “asymptotically” here means that one can always find a large enoughn such that
the interpolating properties hold. Essentially, one needs to taken so that the remaining
terms do not influence the zeros of the first term. The examples of Sect. 9 will show
that n need not be very large. Note that the number of interpolation points is twice
the number of basis functions. The interpolation pointszk, wherePnf (zk) = f (zk),
satisfy

z2k = (x1 + k)h +O(h2) and z2k+1 = (x2 + k)h +O(h2) ,

wherex1 andx2 are zeros ofτ0(x) in [0, 1).

8. Comparison of multiresolution analyses

The error expansion can be used to compare different multiresolution analyses. The
error decays asO(hN ) and the constant in front of this factor is given by

T0(x) = τ0(x/h)
f (N )(x)
N !

.

For sufficiently smallh the leading term of the expansion provides a sufficiently
accurate approximation of the error. To compare different multiresolution analyses
we therefore look at

AN = ‖τ0(x)‖∞ ,

because
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‖En f (x)‖p ≈ hN ‖T0(x)‖p ≤ AN hN

N !
|f (x)|N,p .

Here the Sobolev seminorm is defined as

|f (x)|N,p = ‖f (N )(x)‖p .

8.1. Multiresolution analyses with differentVj subspaces

A first possibility is to compare different multiresolution analyses that have the same
number of vanishing dual wavelet moments. The order of convergence of the wavelet
approximation evidently is the same. Therefore, we compare the numerical value of
the constantAN . Table 1 givesAN as a function ofN for the Daubechies orthogonal
wavelets, spline wavelets, and Deslauriers-Dubuc wavelets. As we will see in the
next section,Am is the same for all spline wavelets (orthogonal, biorthogonal or
semiorthogonal) of orderm. The spline wavelets have by far the smallest constants.

The ratio betweenAN for Daubechies’ orthogonal wavelets and spline wavelets
behaves roughly like 2N . Consequently, an approximation using splines at a certain
leveln yields roughly the same error as an approximation using Daubechies’ orthogo-
nal scaling functions at leveln+1. In other words, in order to obtain an approximation
with a certain numerical error, one needs, in general, one more level with Daubechies’
orthogonal wavelets than with spline wavelets. Remember that one extra level doubles
the amount of work.
Note: The fact that the first non-vanishing dual wavelet moment plays a role in
comparing errors in the discrete case was also pointed out in [20].

Table 1.AN for different wavelet families

extremal closest-to- Deslauriers-
N phase linear phase coiflet spline Dubuc

1 0.500 0.500 0.5000
2 0.500 0.500 0.641 0.1667 0.1667
3 0.597 0.597 0.0481
4 0.865 0.915 0.856 0.0333 0.3000
5 1.904 1.918 0.0244
6 5.109 5.701 4.899 0.0238 1.7857
7 18.169 18.044 0.0261
8 70.927 71.865 59.436 0.0333 21.6176
9 310.398 303.921 0.0476

8.2. Multiresolution analyses with the sameVj subspaces

Another idea is to compareAN for a multiresolution analysis with fixedVj subspaces,
but differentWj subspaces and consequently different projection operators. Typically,
we want to compare biorthogonal bases with (semi)orthogonal ones. Recall that in
the latter case the projection operators are orthogonal and yield best approximations
in the L2 sense.

In order to compare the error expansion for different families of wavelets, we first
need to study some dependencies in a multiresolution analysis more carefully. Here
we always use the normalizations
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ϕ̂(0) = 1 and G(π) = 1 ,

to avoid non-uniqueness. The following dependencies now hold in any multiresolution
analysis:

– Given a scaling function, the subspacesVj are uniquely determined by

Vj = clos span{ϕj,l(x) | l ∈ Z} .
On the other hand, given the subspacesVj , infinitely many scaling functions
exist that generate these spaces. More precisely, ifϕ(x) is a such a function, any
functionϕ∗(x) with

ϕ̂∗(ω) = A(ω) ϕ̂(ω) ,(26)

whereA(ω) is a bounded 2π-periodic function that does not vanish andA(0) = 1,
generates the same subspacesVj . Moreover, any function generating the same
subspaces is of this form.

– A similar statement holds for the waveletψ(x) and the subspacesWj .
– Given the subspacesWj , the subspacesVj are uniquely determined by

Vj =
j−1⊕
i=−∞

Wi .

On the other hand, if theVj are given, infinitely many choices for complementary
spacesWj are possible, one choice being the orthogonal complements.

– Given the spacesWj , theW̃j are uniquely determined by the fact that

Wj ⊥ W̃j′ if j 6= j′ and
⊕
j

W̃j = L2(R) .

Figure 4 shows these dependencies in a graph.

-

-

-� �

�

6 6

ϕ(x)

ψ(x) Wj

Vj ϕ̃(x)

ψ̃(x)W̃j

Ṽj

Fig. 4. Dependencies in a multiresolution analysis

For each characteristic of a multiresolution analysis we now can define its de-
pendency:V -dependent,ϕ-dependent,W -dependent, orψ-dependent. Something is
calledϕ-dependent if it depends on the specific choice of scaling function. The other
dependencies are defined similarly. We always use the most characteristic dependency.
By looking at the dependency graph we see that something that isV -dependent is
alsoϕ-dependent, but we only use the termϕ-dependent for something that is not
V -dependent. In other words, something that isV -dependent does not change if the
scaling functionϕ(x) is replaced with a functionϕ∗(x) that generates the sameVj
spaces. In order to become more familiar with this terminology, we illustrate it with
some examples.
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– Anything that isV -dependent is alsoW -dependent.
– The projectionQnf (x) is W -dependent.
– The projectionPnf (x) is W -dependent too, as

Pn =
n−1∑
j=−∞

Qj .

– The number of vanishing dual wavelet moments (N ) is V -dependent.
– Theσ0(x) monowavelet isϕ-dependent because of Eq. (24).
– The σ∗p(x) and τp(x) monowavelet are, in general,W -dependent because of

Eqs. (15) and (16).
– Anything that isϕ-dependent andW -dependent at the same time isV -dependent.

We extend these properties with the following lemmas:

Lemma 3. The first non-vanishing dual wavelet moment isV -dependent and, more
precisely,

ÑN = −(i/2)N H (N )(π) = (−1/2)N
∑
k

(−)k kN hk .

Proof. We first prove that it isϕ-dependent. Pick, therefore, a scaling functionϕ(x)
that generates theVj . Recall that

G̃(ω) = −H(ω + π)

∆(ω)
,

with
∆(ω) = H(ω)G(ω + π)−H(ω + π)G(ω) .

Now,

ÑN = iN ̂̃ψ(N )

(0) = iN
dN

dωN

[
G̃(ω/2) ̂̃ϕ(ω/2)

]
ω=0

,

and, sinceω = 0 is a root of multiplicityN of G̃(ω),

ÑN = (i/2)N G̃(N )(0) .

Sinceω = π is a root of multiplicityN of H(ω), it holds that

G̃(N )(0) = −H
(N )(π)

∆(0)
.

The fact that∆(0) = 1 now yields theϕ-dependency.
To prove thatÑN is V -dependent, take a different scaling function,

ϕ̂∗(ω) = A(ω) ϕ̂(ω) ,

which has

H∗(ω) =
A(2ω)
A(ω)

H(ω) .

As A(0) = 1, andπ is a zero of orderN of H(ω), it holds that

H∗(N )(π) = H (N )(π)/A(π) ,

which yields the same first non-vanishing dual wavelet moment.ut
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Lemma 4. The leading term of the error expansion isV -dependent.

Proof. The monowaveletσ0(x) and ÑN areϕ-dependent, soσ∗0(x) = ÑN σ0(x) is
ϕ-dependent too. Asσ∗0(x) was alreadyW -dependent, it is thusV -dependent. So also
τ0(x) and consequently the leading term of the expansion areV -dependent. ut
Note: If the subspaceV0 is the space of the piecewise polynomials of degreem− 1
with integer knots that belong toC m−2, we can takeϕ(m)(x) to be the B-spline
Nm(x), so

H(ω) =

(
1 + e−iω

2

)m
,

such that

Ñ (m)
m = − m!

22m
,

and
Am = ‖Bm(x)‖∞ .

In the casem is even, we have a simple expression since

A2n = ‖B2n(x)‖∞ = |B2n| ,
whereB2n is the 2nth Bernoulli number. The leading term of the expansion is exactly
the same for Battle-Lemarié orthogonal spline wavelets [2, 22], Cohen-Daubechies-
Feauveau biorthogonal spline wavelets [7], and Chui-Wang semiorthogonal spline
wavelets [4, 5, 6].

The dependency of the higher order terms is studied in the following lemmas.

Lemma 5. GivenÑ , the firstNtot = N + Ñ moments of the dual scaling function are
ϕ-dependent.

Proof. Sinceϕ̃(x) is a dual function, it holds that∑
k

̂̃ϕ(ω + k2π) ϕ̂(ω + k2π) = 1 .

Taking thepth derivative of this expression atω = 0 yields

∑
k

p∑
s=0

(
p

s

) ̂̃ϕ(s)
(k2π) ϕ̂(p−s)(k2π) = 0 .(27)

Now, since
ip ϕ̂(p)(2kπ) = Mp δk for 0≤ p < N ,

and
ip ̂̃ϕ(p)

(2kπ) = M̃p δk for 0≤ p < Ñ ,

it holds that ∑
k

̂̃ϕ(l)
(k2π)ϕ̂(m)(k2π) = ̂̃ϕ(l)

(0)ϕ̂(m)(0)

for 0≤ l < Ñ or 0≤ m < N . The terms fork 6= 0 in Eq. (27) thus vanish ifs < Ñ
or p− s < N . Consequently, ifp < Ntot, then
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p∑
s=0

(
p

s

)
(−1)s M̃s Mp−s = 0 for 0< p < Ntot .

These relations show that the firstNtot moments of the dual scaling function only
depend on the firstNtot moments of the scaling function. ut
Note: a similar statement holds for the firstNtot discrete moments of the sequence
{hk}.

Lemma 6. The functionsQn x
p andEn x

p are V -dependent ifp < Ntot.

Proof. It follows from Lemma 5 that the functionPn x
p is V -dependent. The proof

then immediately follows from the fact thatEn = 1−Pn andQn = Pn+1−Pn. ut
Lemma 7. The functionsσ∗p(x) andτp(x) are V -dependent ifp < Ñ .

Proof. From Lemma 6, Eq. (15), and Eq. (16).ut
These lemmas can be combined into the following theorem:

Theorem 2. The firstÑ terms of the error expansion areV -dependent.

So we can conclude that for the approximation of a smooth function on a small
scale it does not really matter how the spacesWj are chosen. The outcome that orthog-
onal and biorthogonal projections almost give the same result might look surprising
at first sight, but one has to keep in mind that it only holds for smooth functions.

9. Numerical examples

We implemented a computer program that calculates the operatorPn f (x) from sam-
ples of a functionf (x). It employs quadrature formula to approximate the inner
products and a subdivision scheme to evaluate the basis functions. The error of these
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numerical approximation schemes is always negligible in comparison with the error
of the wavelet approximation. We consider the function

f (x) = exp
(−20(x− 1/2)2

)
,

and calculatePn f (x) for x ∈ [0, 1].
Figure 5 shows the errorE5f (x) in case the scaling function is the orthogonal

Daubechies function withN = 2. The dotted lines are the envelopes of the leading term
of the error expansion. At this level the leading term already provides a reasonable
approximation of the error. Note that the interpolation properties described in Sect. 7
hold.

Table 2. Error in the Daubechies and spline case (N = 4)

level Daubechies spline

1 7.53e-01 3.05e-01
2 4.01e-01 5.07e-02
3 5.00e-02 7.53e-03
4 3.16e-03 3.13e-04
5 1.52e-04 1.01e-05
6 9.45e-06 4.24e-07
7 6.06e-07 2.37e-08
8 3.82e-08 1.53e-09
9 2.39e-09 9.67e-11
10 1.50e-10 6.06e-12

Figure 6 shows the errorE5f (x) in case the scaling function is the B-spline of
orderN = 2 and the dual scaling function is the one with̃N = 2 constructed in [7].
Again the dotted line are the envelopes of the leading term of the error expansion.
One can clearly distinguish the shape of the Bernoulli spline of degree 2.

Table 2 compares maxx |Enf (x)| on different levels in two cases. In the first one
the scaling function is the orthogonal Daubechies scaling function withN = 4. The
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second one corresponds to the biorthogonal case withϕ(x) = N4(x) (N = 4) and
Ñ = 6. The order of convergence isO(h4) in both cases. On the finer levels the
error is indeed divided by 16 each time. This confirms what was predicted in Sect. 8:
The approximation using splines at a certain level yields roughly the same error as
an approximation using Daubechies’ scaling functions with the sameN at the next
(finer) level.
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