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Summary. We generalize earlier results concerning an asymptotic error expansion of

wavelet approximations. The properties of the monowavelets, which are the building

blocks for the error expansion, are studied in more detail, and connections between
spline wavelets and Euler and Bernoulli polynomials are pointed out. The expansion
is used to compare the error for different wavelet families. We prove that the leading

terms of the expansion only depend on the multiresolution subsgdcesd not

on how the complementary subspad®s are chosen. Consequently, for a fixed set

of subspaced’;, the leading terms do not depend on the fact whether the wavelets

are orthogonal or not. We also show that Daubechies’ orthogonal wavelets need,
in general, one level more than spline wavelets to obtain an approximation with a

prescribed accuracy. These results are illustrated with numerical examples.
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1. Notation

A measurable functiorf(z) belongs to the space’[R), 1 < p < oo, if

+00 1/p
1@, = ( / If(x)lpdw) < o0,

and to L*°(R) if
@)oo = sg£|f(x)| < 0.

The inner product of two function(z) andg(x) of the Hilbert space #(R) is defined
as

+00

(fig) = f(@) g(x) dex .
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The Fourier transform of a functiofi(z) is given by

+00

flw) = f@)e e de .

— 00

A countable sef f,,} of a Hilbert space is &iesz basisf every elementf of the
space can be written uniquely #s= Y " ¢, f,, and positive constantd and B exist

such that
ANfIP < lenl® < BII£I?

The spaceZ™ is defined a the space of bounded functions that decay faster than an
inverse polynomial,

T = {f@)] |f@)] < C@+]) 9 >0}

For a function of this space, its firgt + 1 moments are finite.

2. Introduction

We first briefly review wavelets and multiresolution analysis. For more detailed treat-
ments, one can consult [4, 9, 18, 23, 24].

2.1. Multiresolution analysis

A multiresolution analysisof L2(R) is defined as a set of closed subspaggsvith
j € 7Z that exhibit the following properties:

1. V C Vj+1,
2. v(x) eV & v(2x) € V1 andv(a?) eVosv(x+1l) eV,

3. U V; is dense in B(2) and ﬂ V; = {0},
j=—o00 j=—o0

4. A scaling functiony(z) € V4 exists such that the s¢pp(x —1) | I € Z} is a Riesz
basis ofl}.

As a result a sequendgy, | k € Z}, exists such that the scaling function satisfies a
refinement equation

(1) o) = 2 hepRr— k).

k

The set of functiongp;,; | | € Z} with p; () = V29 o(2/z — 1), is a Riesz basis
of V;. Let W; be a complementary space ©f in V;.1, such thatV;,, = V; & Wj.
Consequently

EB W, = LA(R).
je—oo
Note thatWW; is not unique.
A function ¢ (z) is awaveletif the set of functions{v)(x — ) | | € Z} is a Riesz
basis of Wy. Since the wavelet is also an elementl@f a sequencdgy, | k € Z}
exists such that
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©) () = 2 grpr—k).
k

The set of wavelet function&y; ;(z) | 1,7 € Z} is a Riesz basis of (R).
The projection operator ontd; (resp.W;) that corresponds to this splitting of L
is denoted by7; (resp.Z). It can be written with the use of dual scaling function

% (resp. wavelet)) as

o f(x) = Z<fv@j7l>§0j,l(x) and ¢ f(x) = Z(fﬂljﬂ%,z(xf

l l

Herep;, andeJ are defined similarly as above. Such wavelets are chiledhog-
onal wavelets[7]. The dual functions also generate a multiresolution analysis with
subspace®’; and W;, which are different from thé/; and ;.

Taking the Fourier transform of Eqgs. (1) and (2) yields

(3) Pw) = Hw/2)Pw/2) with H(w) = > hpe ™
k

and ~ R

(4) () = Gw/2)Y(w/2), with Gw) = Y gre ™.
k

Similar definitions and equations hold for the dual functions. A necessary condition
for biorthogonality is then

VweR : MwMTw) = 1,
where

- | Hw) H(w+m)
M) = | G) Glw+m
and similarly for M (w). Now Cramer’s rule says that

H(w+7)

(®) Gw) = - AW) = AW

where A(w) = detM (w). The determinantA(w) does not vanish if and only if the
wavelets generate complementary subspaces.
The definition of a multiresolution analysis implies that ft(t:) € L2(R),

lemOO;?Z;f(x) = f(x) and f(z) = > Gf).
J
The error of the approximation if; is denoted a5, f(x), with

“nf(@) = f2) = Af@) or &f(x) = > Gif).

j=n
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2.2. Orthogonal and semiorthogonal wavelets

A scaling function and wavelet are calletthogonal if the set of functions{y; ; |
l € Z} is an orthonormal basis df; and if the set{v;,; | j,l € Z} is an orthonor-
mal basis of E(R). This implies thatlV; is the orthogonal complement df; in
V;i+1. The projection operators onig; and IV; are orthogonal and give the optimal
approximation in the E-sense. The basis functions and dual functions coincide.

A biorthogonal basis is calledemiorthogonalwhen the subspacédd’; are the
orthogonalcomplement oV; in V;.1, but the basis of each subspace is not orthogonal.
In this case the projection operator§ and ¢; still are orthogonal projections. The

dual multiresolution analysis subspadésand I¥; now coincide withV; and W.
Essentially, the wavelets that live on different levels are orthogonal, while the ones
that live on the same level are not. These wavelets are also qgatedaveletsFor

a more detailed treatment and examples, see [4, 19, 25, 26].

2.3. Wavelets and polynomials

The moments of the scaling function and wavelet are defined as

+0oo +00

M, = / 2P p(x)dr and ., = / 2P p(x)dr with peN.

— 0 —0o0

They are finite ifo(x) and+(z) belong to”. For the moments of the dual functions

we use the notations#, and./,. The scaling functions cannot have a vanishing

integral and are normalized with?/, = . #Z; = 1. This implies that (0) = fI(O) =1
Let N denote the number of vanishing moment of the dual wavelet,

/iﬂp/: 0 for 0<p< N and ZNV;ZO

This is the same as saying thatw) has a root of multiplicityN' atw = 0, and, since

@(O) Z0, also thaﬁ(w) has a root of multiplicityN atw = 0. From Eq. (5), we see
that this is equivalent td{(w) having a root of multiplicity N at w = 7, which, by
using Eq. (3), implies that

(6) iPrpW(2kn) = 6.2, for 0<p<N.
Poisson’s summation formula yields that

(7 dw-DPo@—1) = .7, for 0<p<N.
l

By rearranging the last expression, we see that any polynomial with degree less than
N can be written as a linear combination of the functias(s — [) with [ € Z.
Equation (6) is known as the Strang-Fix condition [15, 29, 31], and it implies that if
fe &N, then

1%, @) = O(™) with h=2"".
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2.4. Contents of the paper

In the first part of the paper we derive an asymptotical error expansio#f,f@fx)
in terms of powers of. (h = 2=™) assuming thaff(x) is a sufficiently differentiable
function. Since the error decays @h”) we write the expansion as

M
Cuf@) = Y WP Ty n(@)+ O™ .
p=N

We show thatl},_ y(x) consists of they-th derivative of f(x) multiplied with an os-
cillating function. We propose the name “monowavelets” for the oscillating functions.
This generalizes an earlier result that was only valid for orthogonal and compactly
supported wavelets [33]. In the case of spline wavelets we point out a connection
between the monowavelets and Euler and Bernoulli splines.

In a second part we use the expansion to compare different multiresolution anal-
yses that have the same number of dual vanishing moments and thus the same con-
vergence rate. The factdip(x) in the leading term is calculated and compared for
different wavelet families. A first result is that it does not depend on how the com-
plementary spaced/’; are chosen. Consequently, for a fixed set of subsp&ges
the leading term does not depend on the fact whether the wavelets are orthogonal or
biorthogonal. We show that this is also true for the filstterms. In other words,
whether a projection is orthogonal or not, does essentially not make a difference in
case the function is smooth and the scale is sufficiently fine.

Finally, we show that7p(x) in the case of Daubechies’ orthogonal wavelets
is roughly 2V times larger than in the case of spline wavelets (both orthogonal,
semiorthogonal and biorthogonal because of the first result). Thus, in order to obtain
an approximation with a certain accuracy, one needs, in general, one more level with
Daubechies’ orthogonal wavelets than with spline wavelets.

3. Asymptotic error expansion

In this section we derive\/ +1 terms of the asymptotic error expansion (where
M > N). Assume that)(z),(x) € ZM*, f(x) € M and thatfO(x) is
bounded forl < M + 1. Recall that

8) Guf(z) = 2> (fW), bRy —1) @'z —1) = Y pnitb(@z—1).
l

l

Writing a Taylor formula around, = x in the definition ofu,; yields (with y as
integration variable in the inner products):

g = 2V (fy), 0@y 1))

< =) , s -
= on <Z f(P)(x) ol + f( )(f(xv v)) (M +1)
p=0 . |

with £(x, y) betweenz andy

l‘)M+l

D(2my 1))

M 5n p(p) o
= > ’ fp[!) @ ((y =), 92"y = 1)) + pna(z),

p=0
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with
)IVI+1

puate) = 2 e D@ )

As the derivatives off(x) are bounded andz(x) belongs tozM*!, all the inner
products are finite. The dual wavelet hdsvanishing moments so that

2" ((y— )P, 92"y —1)) =0 for 0<p<N,

and thus the firstV terms of the summation over vanish. ForN < p < M we
have, using the transformation= 2"y — [, that

2 ((y — 2P 0@y~ 1)) = ((hz+hl—2)"9())
o (P T o onns
= hp§(8>v/lp_s(l 2"1)° .

The lastV terms of this sum again vanish, so the upper bound of the summation over
s can bep — N. Thus,

(2] —
Yt = Z hpfp (ZI)) Z ( )l{)—s (l _ an)e +pn7l(x) .
p=N
Combining this expansion with Eq. (8) yields that
®) ——
Cuf @) = Z f “" Z ( >% (-1 0u(2"2) + Ko (2)
p=N

Hereo,(x) is the first monowavelet, which is defined as

op(@) = > (@—DPe@—1) for 0<p<M-N,
l

and K, (x) is given by

Ko@) = Y pna(@) @tz —1).
l

Next we show that,, (z) behaves likeO(h"):

Kn@)| < D lpna(@)] [0(2" 2 = 1)]
l

(M+1) _
”f(M f”iif"” 20 (ly — =M 0@y = D) |92  z = 1)
) 1
s | FOT @)
(M +1)!

pM+L ||f(M+l)(fU)||
(M + 1)

Z (|2 +1—a/hM2 ()]} [l /h — 1)

IN
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M+1 ; M+1
Xl:[;mw/h—l ( ; )] b/ — 1)

with m; = (|| |4(2)]) (finite sinced(z) € &M+

hM+1||f(M+1)(5C)”oo )
(M +1)! 0<j<M+1

M+1 ; M+1
Z[;L@/h—l ( ; )] [(a/h — 1)

l

pM+1 ||f(M+1)(3€)||oo .
(M +1)! 0<j<M+1

> (/b =1+ DM /b= 1))
l

IN

mj-

mj-

Since this last summation ovércan be bounded independently ofand i, it holds
that |K,,(z)] < ChM** with C independent of: andn. Now we combine the error
expansions forZ, into one for#,,. Therefore, we define a new monowaveig(r)
and write

M

(p)

©) @ = 3" o @y ko).

p=N ’
with
(10 7@ = 3 (V7)Ao 1) ).

s=0
So

M pp @) (2) _

Cnrif(2) = ) o5 N2 3) + Kpej(@)

19j
oy pl 2Jp

Finally, adding the projectiong/..; f(x) yields the desired expansion,

M hP @) (2)
>

p=N

(11) ;5nf(m) = Tp-N(ZnI) + O(h]\/1+l) )

Here7,(z) is the third monowavelet, which is defined as

< ¥ (2x)
p(2) = 2? (p+N)
§=0

We conclude by saying that the general term of the expansions consists of: a
power of i, the same order of derivative ¢f(z), and a monowavelet. We can look
at the monowavelet as the “oscillating” part and at the derivative as the “modulating”
part.
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4. Properties of monowavelets
4.1. Definition

Recall that the monowavelet,(x) is defined as
(12) op(a) = Y (@Dl —1).
l

It is the periodization ofc? 1)(x) with period one. Ify)(z) € P, then the series in

Eq. (12) converges uniformly on [@] ando,(z) is bounded. This can be seen using
the Weierstrass\/-test combined with the fact that’ ¢(z) € Z°. One can check
that this condition was always satisfied in the previous section. From the definition it
follows that

1
/ op(z)dz = A, for pel,
0

and thus the firstV monowavelets have a vanishing mean.
The monowavelet,(z) is defined as

>, o5(2x)
2j(p*+N)
=0

(13) mp(r) =

The series in Eg. (13) converges uniformly on) and the monowavelet is periodic
with period one. Also,

0y = p(2)
(14) op(@) = n(@)— 3

and
1 2(N+p) o . ~
/0 Tp(x)dx = 2(N+p)_1/0 o (x)dz =0 if p<N.

Again the firstN monowavelets have a vanishing mean.

4.2. Invariance

There are obviously many possible choices for the wavg{e} whose translates and
dilates generate the same subspdgesA trivial alternative would be)(xz —1). From
its definition we see that the functien, (x) depends on the particular choice iofr).
This is not true foro,(x) and 7,(z). Writing Eqg. (9) withn = 0 in casef () is the
monomialz? with p > N vyields

(15) Cor? =Y @ T ().

s=N

It follows thato; () only depends on the multiresolution analysis subsp&iceand
not on which particular functiong; () generate it. S, (z) is more characteristic
for a multiresolution analysis thaw,(z). The same is true for,(x) as

P
(16) “oaP = (1— AP = Z (i) 2P n(T) .

s=N
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These dependencies are studied in more detail in Sect. 8. Note that
1o(z) = 2V — RV .

This is the error of the approximation of the lowest degree monomial that cannot be

approximated exactly. Equation (16) generalizes this to higher degree monomials.
This also explains the name “monowavelets”. The monowavelets come from pe-

riodizing amonamial multiplied with a wavelet or from projecting downonamials.

These techniques are also used in spline theory where the resulting functions are

calledmonosplineq28].

4.3. Fourier series

Write the Fourier series of the monowavetgi(x) as

op(@) = > spren(a) with ex(z) = exp(2rikz)
k

and L
i = [ o) ds
Poisson’s summation formula yields that
spr = PP (2km) .

The coefficients with even index can be written as

@ s PO = 62 ) 6@R)]|

If p < N, these terms vanish, sinc&is a root of orderN of G(w). So only the
odd index terms, which are antisymmetric aroun@,Iremain so that

(18) op(z+1/2) = —o,(z),
or

D @+i/2P Y +1/2) = 0 for p<N.
l

Equation (6) states that:2, k 7 0 is a root of ordetV of p(w). This, together with
Eqg. (17), yields that itV < p < Nyt = N + N, the s, 2, with & Z 0 will vanish, or

Sp2k = pr(p)(o) 6k = l;,ék .

So
(29) oplx +1/2) +o,(z) = 2.4, ,

or
D (@+1/2P Y@ +1/2) = 2.4, for N <p < Nigt -
l

The monowavelet, () has Fourier series
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op(@) = Y shpen()
k

with
p

N + — P
Spk = Z ( . p>'/7/N+pj (=1 sjk -
=0~/
Since they are defined as finite linear combinations of d¢her), the o;(z) with
p < N also have vanishing even coefficients in their Fourier series and thus satisfy,
(20) oi(z+1/2) = —oi(x) for p<N.

The monowavelet,(x) has Fourier series
(21) @) = > tyren(a).
k

Writing the Fourier series of both sides of Eq. (14) gives

tp.k
— * — * D,
tpoksl = Spopey AN tpop = 5,0+ ON+p

or, if p< N and thuss ,, =0,

(22) bk = i With k=272 +1).

The transition fromo,(x) to 7,(x) apparently corresponds to filling in the gaps at the
even indices in the Fourier spectrum.

4.4, Zeros

Lemma 1. If ¢»(x) is continuous and ifZ? with p < N, the monowavelets,(x) and
o,(z) have at least two zeros in the intenal 1).

Proof. If ¢(x) is in 7, then the series in Eq. (12) converges uniformly apl) is
continuous. Since;(z) is a finite linear combination, it is continuous too. The proof
then immediately follows from Eqgs. (18) and (20). Alsoxi is a root in [Q 1), so

is (xo+1/2)mod1. O

Lemma 2. If () is continuous and ir%Z, with p < N and N > 1, the monowavelet
Tp(x) has at least two zeros in the intervi@, 1).

Proof. The function,(x) is defined as the limit of a uniformly convergent series of
continuous functions, so it is continuous. We have, using Egs. (20) and (21),

2N*p) 2N*p) 2
TP(O) = 7—17(1) = 2(N+p) _ 1Up(0) and Tp(l/z) = 72(N+p) _ 1Up(0)-

This means we have at least two changes of sign.



Asymptotic error expansions of wavelet approximations 387

4.5. Symmetry

If the wavelet is even or odd,
Y(—x) = (1" (),
so are the monowavelets,(r) ando,(z) and, more precisely,
op(—2) = (-1)™"Po,(x) and o,(-z) = (=1 o, (z) .
More generally, if the wavelet is (anti)symmetric around an intdger

Y2k —x) = (=1)" ¢(x)

so is the monowavelet; (z),
o,(-x) = (1) o,(z) .

This is true because the functiaf(z — k) generates the same spadg and thus
gives rise to the same; (z) function whiley(xz — k) is even or odd. Note that we
cannot make a simple statement abeptr). The following statements regarding the

zeros ofo,(z) (and consequently af ;(x)) and7,(z), for p < N hold:

— If o,(2) is 0dd, it has zeros at the integers because, (@) = 0 and the periodicity.
It then also has zeros at the integers /2 because of Eq. (18).

— If o,(z) is even, this combined with Eq. (18) yields(z) = —0,(1/2—z). It thus
has zeros at the integers ¥4, and again because of Eg. (18) also at the integers
+ 3/4.

— If 7,(z) is odd, it has zeros at the half integers; if it is even we cannot tell more
about the position of its zeros this easily.

4.6. Connection with scaling function

The relationship betweem,(z) for p < Nyt and the scaling function can be written
more explicitly using the Zak transform. Remember that the Zak transform of a
function f(x) € L2(R) is defined as [16, 17]:

(Zf)a,w) = > e fla+l) for zwek,
l

and satisfies
(Zf)ww) = Y Flw+2rk) derzrie,
k

Define now:

W = GO = Y k(1) g
k

Then
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dP

spas = 1 1G(/2)3(w/2)]

dwP w=(2k+1)2r

= ( '2> )3 (p) G~ () 9@k + 1))

s=0

= 2 Z (p) s i° (2K + 1)) .

S
s=0

Now, for p < N,
op(z) = (K aPP)(z,0)
= Z Sp,2k+1 €2k+1()
k
»
=27 Z (p> Tp—s Z i* 2O((2k + 1)) eap1(2)
%

S
s=0

P
=27y (Zs)> To-s (L) (2r, m)
s=0
p
S

> (p> Yoms D (1 (22 =) (22 1) .
1

s=0
For N < p < Nyt holds that

op(x) = A +27P i (]5)) Yp—s Z(—l)l 2z —0D° 2z —1).
s=0

l

In casep = 0 we have that

(23) soar+1 = G(m) P((2k + D)m) = §((2k + 1)m)

and

(24) oo(r) = > (-Dpr—1) = 2> p@r—2)-1.
l l

5. Spline monowavelets

In this section we study the monowavelets in case the scaling function and wavelet
are spline functions. Therefore, we first introduce Euler and Bernoulli polynomials
and splines.

5.1. Euler and Bernoulli polynomials and splines

A sequence of polynomial¥;,(z), m € N, is an Appell sequencéf V,,(x) is a
polynomial of strict degreen and

Vin(@) = mVin_a(2) .
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0.5 0.2 T T
0.1
0
0
-05 -0.1
0 1 2 3 0 1 2 3
0.05 T T 0.04 T T
0 0
v \/ -002 ) \/ \
. . -0.04 . .
1 2 1 2

-0.05
0

3 0 3

Fig. 1. By, (z) for m =1,2,3,4

The Euler and Bernoulli polynomials are two Appell sequences, denotedhyijth)
and B,,,(z) respectively, that satisfy [1, 14]

2% En(z) ,,
ez+1—z R for |z| <2m,

and
ze"® Z B ()

m
o1 ml Z for |z| <.

The first elements of the sequences are

Eo(z) = 1 Bo(z) = 1

Ei(z) = x-1/2 Bi(x) = x-1/2

Ey(x) = 2?2 —x and By(x) = 22-1+1/6

E3(z) = 2%-3/222+1/4 Ba(z) = 2°-3/222+1/2x.
Eg(x) = 2*—22%+z, Ba(r) = 2*—-22%+2%-1/30.

The Bernoulli polynomials satisfy
Bp(z+1)— Bp(z) = ma™ 1,
and consequently
B®0) = BP1) for 0<p<m-—2.
This means that, if we define a one-periodic functi®dp(z) as
Bi(z) = Bn(z —[z])

then this is a periodic spline of order + 1 with integer knots that belongs ™2,
It is called theBernoulli periodic spling[21]. The first four are shown in Fig. 1. Its
Fourier series form > 1 is

_ m/! 1 ex(x)
Bu(e) = _(27ri)m§k: km
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0.2+ 4

-0.50 - - -0.40
0.4 T T T 0.4
S AN ANA!
0 0

NAVARVE RN

04 : : : 04 : :
0 1 2 3 4 0 1 2

w
IN

Fig. 2. Epu(z) for m =1,2,3,4

The prime indicates that the term with= 0 is omitted. The functio,,,(x) has the
same parity (even/odd) as.
Something similar is possible for the Euler polynomials. They satisfy

Ep(x+1)+E,(x) = 2z2™
and consequently
EP(0) = ~ER(1) for 0<p<m—1.
This means that if we define a two-periodic functiégp,(z) as
En(z) = (D En(z —[2])

then this is a periodic spline of order + 1 with integer knots that belongs 6™ ~1.
It is called theEuler periodic spling[21, 28]. The first four are shown in Fig. 2. The
function E,,,(x) has the opposite parity (even/odd)ras Also,

En(j+m/2) = (1Y €, -

It is sometimes normalized so that, = 1, see [3, 28]. It is then the cardinal spline
interpolant of the sequenag, = (—1)*. Its Fourier series forn > 1 is

_ 2ml eap+1(r/2)
Em(ﬂﬁ) - (ﬂ-i)m+l; (Zk. + 1)'rn,+1 :

5.2. Spline wavelets

We consider the multiresolution analysis whé{gis the space of piecewise polyno-
mials of degreen — 1 with integer knots that belong t6™~2. Note that this implies
that N = m. From the dual multiresolution analysis we only require tNat- 0. The

dual scaling function and wavelet need not be splines. We supply the notation with
an extra superscripti). A possible choice of scaling function {8 (z) = N,,(x),

the cardinal B—spline of orden. We know that
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Fa = (T0T)

so that (from Egs. (22) and (23))

(m) _ (m) — 4 (m)
= . and ¢ = . .
50,2k+1 (Iﬂ') (Zk + 1)m 0.k m (Iﬂ') km

We will show in Sect. 8 that, for all possible dual wavelets,

m/!

T -
I o

This implies that

m—1

(m_ 1)| EnL—l(ZI) and Tém)(gj) = Bm(]}) .

ol™(x) =

The o,(x) and 7,(x) functions withp > 0 here are also one-periodic splines of
orderm. Analytic expressions can be obtained, but the derivation is quite technical
and is omitted here. We refer to [32] for details. We only include the main result,
which states that

7(z) = (-1 <m> Bosp(@) fOr p< N
p

The fact that we have an analytic expression for the monowavelets here is extremely
useful in convergence acceleration algorithms as described in [33].

Remark 1.Equation (13) forp = 0 yields the following relationship between Euler
and Bernoulli splines:

_ m s Epo1(2)
Bm(l') - _2m+l Z omi :
=0
Something similar is also true for the polynomials, as

rn 1(2”1‘%) Bm(2k+lx)
Bm (x) 2,n+1 Z 277” 2m(k+1) ’

and this is an iterated version of [1, Eq. (23.1.27)].

Remark 2.In [30, pp. 147-151], Strang and Fix construct an asymptotical error anal-
ysis for the projection in the space spanned by piecewise linear finite elements. This
result coincides with the one presented here in ease2 andM = 2.



392 W. Sweldens and R. Piessens

1.0 ; ; 1.0

0.0F ———F—————— -\ - - — D0F ———F——————— -\ - - —

00F === F-=m o= = 2\ = = 00 == —F-=—-—- -\ -

—0.5 --0.5

~1.0 1 1 L -1.0
1 0

0 1/2 ) 1/2 1

Fig. 3. op(x) in the case of Deslauriers-Dubuc wifti = 2, 4,6, 8

6. Other examples of monowavelets

— For the Daubechies orthogonal wavelets with compact support [8, 9, 10] (the
extremal phase, closest-to-linear phase and coiflets), these functions were studied
in [33]. Some of the graphs can be found there too.

— The Deslauriers-Dubuc scaling functions and wavelets can be constructed as auto-
correlation functions of the Daubechies orthogonal scaling functions and wavelets
[11, 12, 13, 27]. Thero(zx) for the casesV = 2,4, 6,8 are shown in Fig. 3.

— In case of the Meyer wavelet [24@2@0) has support{8r/3, —27 /3] U [27/3,
8m/3], sov(2kr) is identically zero forlk| # 1. We have thath(£2r) = —/2/2,
so that

ooMeyed) = —V/2 cos(2rr) .

The Meyer wavelet has faster than polynomial decay such that all the functions
op(z) are defined. They will be all of the form
op Meyed ) = ap SIN(2rx — by) .

The asymptotical error expansion, however, does not make sense in this case since
all the moments of this wavelet vanisi (= c0).
— For the Shannon wavelet, where

sin(2rx) — sin(rz)

YshannokT) = )
T

one can see that

Z shannok — 1)
l

diverges. Note that the Shannon wavelet is notf.
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For the Meyer wavelet, which has infinitely many vanishing momentsgi(e)
monowavelet is a sine. In the case of spline wavelets, it is easily seen from their
Fourier series that the Euler and Bernoulli periodic splines converge to a sine or
cosine asn goes to infinity. For the different Daubechies families, the monowavelets
seem to converge to a sine function &Esgoes to infinity. So it appears that as the
number of vanishing moments goes to infinity, the monowavelets converge to sine
functions.

7. Interpolation

The leading term of the expansion looks like
BN 1o(z/h) fN ()N .

Remember that we stated that it consists of an oscillating and a modulating part. The
modulating part is given by the envelopes

(25) hY f(N)(CL') Tmax and A f(N)(x) Tmin

where

Tmax = Erg[g\?l(]m(x)N! and Tmin = xI'ETE(i)I:II]To(LU)N! .
The first term oscillates between these two envelopes. As a result of Lemma 2 this
function has at least2* zeros per unit length. This leads to the following theorem:

Theorem 1. If f(x) is sufficiently smooth, the approximaties, f(x) asymptotically
interpolatesf(x) in at least2"*! points per unit length.

The “asymptotically” here means that one can always find a large enesgbh that
the interpolating properties hold. Essentially, one needs tortadeethat the remaining
terms do not influence the zeros of the first term. The examples of Sect. 9 will show
thatn need not be very large. Note that the number of interpolation points is twice
the number of basis functions. The interpolation pointswhere ), f(zx) = f(zk),
satisfy

zor = (@t k)h+O(h?) and zzp = (z2+k)h+O(R?) ,

wherezx; andzx, are zeros of(z) in [0, 1).

8. Comparison of multiresolution analyses

The error expansion can be used to compare different multiresolution analyses. The
error decays a®(h'V) and the constant in front of this factor is given by

()
N!

For sufficiently smallh the leading term of the expansion provides a sufficiently
accurate approximation of the error. To compare different multiresolution analyses
we therefore look at

To(2) = ro(w/h)

An = |I10(@)]l oo

because
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. An hN
1% F@p ~ BV [To@)p < "N 1f@) Ny -

- NI
Here the Sobolev seminorm is defined as

f@np = I N@), -

8.1. Multiresolution analyses with differel} subspaces

A first possibility is to compare different multiresolution analyses that have the same
number of vanishing dual wavelet moments. The order of convergence of the wavelet
approximation evidently is the same. Therefore, we compare the numerical value of
the constantd . Table 1 givesdy as a function ofV for the Daubechies orthogonal
wavelets, spline wavelets, and Deslauriers-Dubuc wavelets. As we will see in the
next section,A,, is the same for all spline wavelets (orthogonal, biorthogonal or
semiorthogonal) of ordem. The spline wavelets have by far the smallest constants.
The ratio betweer ; for Daubechies’ orthogonal wavelets and spline wavelets
behaves roughly like 2. Consequently, an approximation using splines at a certain
level n yields roughly the same error as an approximation using Daubechies’ orthogo-
nal scaling functions at level+1. In other words, in order to obtain an approximation
with a certain numerical error, one needs, in general, one more level with Daubechies’
orthogonal wavelets than with spline wavelets. Remember that one extra level doubles
the amount of work.
Note: The fact that the first non-vanishing dual wavelet moment plays a role in
comparing errors in the discrete case was also pointed out in [20].

Table 1. A for different wavelet families

extremal closest-to- Deslauriers-
N phase linear phase  caoiflet spline Dubuc
1 0.500 0.500 0.5000
2 0.500 0.500 0.641 0.1667 0.1667
3 0.597 0.597 0.0481
4 0.865 0.915 0.856 0.0333 0.3000
5 1.904 1.918 0.0244
6 5.109 5.701 4.899 0.0238 1.7857
7 18.169 18.044 0.0261
8 70.927 71.865 59.436 0.0333 21.6176
9 310.398 303.921 0.0476

8.2. Multiresolution analyses with the sar¥ig subspaces

Another idea is to comparé  for a multiresolution analysis with fixed; subspaces,
but differentW; subspaces and consequently different projection operators. Typically,
we want to compare biorthogonal bases with (semi)orthogonal ones. Recall that in
the latter case the projection operators are orthogonal and yield best approximations
in the L2 sense.

In order to compare the error expansion for different families of wavelets, we first
need to study some dependencies in a multiresolution analysis more carefully. Here
we always use the normalizations
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p0) =1 and G(n) = 1,
to avoid non-unigueness. The following dependencies now hold in any multiresolution
analysis:

— Given a scaling function, the subspadésare uniquely determined by
V; = clos spady;(z) |l € Z} .

On the other hand, given the subspadés infinitely many scaling functions
exist that generate these spaces. More precisely(aif is a such a function, any
function ¢* () with
(26) P (w) = Aw) o) ,
where A(w) is a bounded 2-periodic function that does not vanish ad{0) = 1,
generates the same subspabgs Moreover, any function generating the same
subspaces is of this form.

— A similar statement holds for the wavelg{z) and the subspacé§’;.

— Given the subspacdd’;, the subspaceg; are uniquely determined by

j—1
Vj = @WL

i=—

On the other hand, if th&; are given, infinitely many choices for complementary
spacesd/V; are possible, one choice being the orthogonal complements.

— Given the space¥/;, the Wj are uniquely determined by the fact that

Wi LW it j75 and W, =L®).
i

Figure 4 shows these dependencies in a graph.

e -V Vj < )
A A
(=) - W - W e

Fig. 4. Dependencies in a multiresolution analysis

For each characteristic of a multiresolution analysis we now can define its de-
pendency:V-dependentyp-dependent}V -dependent, ot)-dependent. Something is
called o-dependent if it depends on the specific choice of scaling function. The other
dependencies are defined similarly. We always use the most characteristic dependency.
By looking at the dependency graph we see that something tHatdependent is
also p-dependent, but we only use the tepadependent for something that is not
V-dependent. In other words, something thaViglependent does not change if the
scaling functiony(x) is replaced with a functiop*(z) that generates the samég
spaces. In order to become more familiar with this terminology, we illustrate it with
some examples.
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— Anything that isV'-dependent is alstl’-dependent.
— The projection?, f(x) is W-dependent.
— The projection~,, f(x) is W-dependent too, as

n—1
7= 3G

(oo}

=

— The number of vanishing dual wavelet momenis) (s V'-dependent.

— The og(x) monowavelet isp-dependent because of Eq. (24).

— The o,(z) and 7,(z) monowavelet are, in generaly-dependent because of
Egs. (15) and (16).

— Anything that isp-dependent an®l’-dependent at the same timelisdependent.

We extend these properties with the following lemmas:

Lemma 3. The first non-vanishing dual wavelet momen¥islependent and, more
precisely,

In = =Y HO@) = (<1/2)V S8 e -
k

Proof. We first prove that it isp-dependent. Pick, therefore, a scaling functigi)
that generates thg;. Recall that

ay = 1T
A(w)
with
Aw) = Hw)Gw+7) — Hw+ 1) GW) .
Now,

el _ovodV oy >
Ay =iV = L Gw/2)Rw)]

and, sincev = 0 is a root of multiplicity NV of @(w),
v = (/2N GM0).
Sincew =7 is a root of multiplicity N of H(w), it holds that
HW)(r)
A(0)
The fact thatA(0) = 1 now yields thep-dependency.

To prove that Jy is V-dependent, take a different scaling function,
P'(w) = Aw) p(w) ,

GM) = —

which has
A(2w)

Aw)
As A(0) = 1, andr is a zero of ordetV of H(w), it holds that

H*™M(x) = H™N () /A(m) ,

which yields the same first non-vanishing dual wavelet momeri.

H*(w) = H(w) .
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Lemma 4. The leading term of the error expansionlisdependent.

Proof. The monowaveleto(x) and d%}vare p-dependent, soj(z) = l.@\}/ao(x) is
p-dependent too. Asj(x) was alreadyV -dependent, it is thut’-dependent. So also
To(z) and consequently the leading term of the expansiorVadependent. O

Note: If the subspac#j is the space of the piecewise polynomials of degree 1
with integer knots that belong t& ™2, we can takep(™(z) to be the B-spline

N’!VL(x)’ SO .
1+ei@\™
H =
@=("")

such that |

“(m) — m!

l/m( ) 22m, ’
and

Am = [[Bn(®)]|oo -
In the casen is even, we have a simple expression since
AZn = ||BZrL(x)||oo = |BZTL| )

whereB,, is the Z:ith Bernoulli number. The leading term of the expansion is exactly
the same for Battle-Lemdgiorthogonal spline wavelets [2, 22], Cohen-Daubechies-
Feauveau biorthogonal spline wavelets [7], and Chui-Wang semiorthogonal spline
wavelets [4, 5, 6].

The dependency of the higher order terms is studied in the following lemmas.

Lemma 5. GivenN, the firstNy,; = N + N moments of the dual scaling function are
p-dependent.

Proof. Sinceg(x) is a dual function, it holds that

> Glw + k2m) Glw + k2m) = 1.
k

Taking thepth derivative of this expression at= 0 yields

p
P\ =) PV

27 ;;(S)w (k2r) po-9(k2r) = O
Now, since

i 3O (2%kn) = My6, for 0<p< N,
and ”

73 (2km) = Moy for 0<p< N,
it holds that

~(1 -
> 3 k2myami2r) = 30030 (0)
k

for0< < N or 0< m < N. The terms fork # 0 in Eq. (27) thus vanish i < N
or p — s < N. Consequently, i) < Ny, then
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p
3 (’;) (—1)* Ay My = O fOr 0<p< Ni.

s=0

These relations show that the firdk,; moments of the dual scaling function only
depend on the firsiVi,; moments of the scaling function. O

Note: a similar statement holds for the fidt,; discrete moments of the sequence

{he}
Lemma 6. The functionsZ,, ¥ and &,, zP are V-dependent ip < Ny.

Proof. It follows from Lemma 5 that the functiow;, 2P is V-dependent. The proof
then immediately follows from the fact that, =1— &, and,, = “.1 — &,,. O

Lemma 7. The functionsr;(z) and 7,(z) are V-dependent ip < N.
Proof. From Lemma 6, Eq. (15), and Eg. (16).0
These lemmas can be combined into the following theorem:

Theorem 2. The firstN terms of the error expansion afié-dependent.

So we can conclude that for the approximation of a smooth function on a small
scale it does not really matter how the spaldgsare chosen. The outcome that orthog-
onal and biorthogonal projections almost give the same result might look surprising
at first sight, but one has to keep in mind that it only holds for smooth functions.

9. Numerical examples
We implemented a computer program that calculates the opergtg(x) from sam-

ples of a functionf(x). It employs quadrature formula to approximate the inner
products and a subdivision scheme to evaluate the basis functions. The error of these
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numerical approximation schemes is always negligible in comparison with the error
of the wavelet approximation. We consider the function

f(x) = exp(—20@ — 1/2)%) ,

and calculate”;, f(x) for z € [0, 1].

Figure 5 shows the errof’sf(x) in case the scaling function is the orthogonal
Daubechies function witfV = 2. The dotted lines are the envelopes of the leading term
of the error expansion. At this level the leading term already provides a reasonable
approximation of the error. Note that the interpolation properties described in Sect. 7
hold.

Table 2. Error in the Daubechies and spline casé € 4)

level Daubechies spline

7.53e-01 3.05e-01
4.01e-01 5.07e-02
5.00e-02 7.53e-03
3.16e-03 3.13e-04
1.52e-04 1.01e-05
9.45e-06 4.24e-07
6.06e-07 2.37e-08
3.82e-08 1.53e-09
2.39e-09 9.67e-11
0 1.50e-10 6.06e-12

P OO~NO O~ WNERE

Figure 6 shows the errofs f(x) in case the scaling function is the B-spline of
order N = 2 and the dual scaling function is the one with= 2 constructed in [7].
Again the dotted line are the envelopes of the leading term of the error expansion.
One can clearly distinguish the shape of the Bernoulli spline of degree 2.

Table 2 compares maxe,, f(x)| on different levels in two cases. In the first one
the scaling function is the orthogonal Daubechies scaling function With 4. The
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second one corresponds to the biorthogonal case (i) = Ny(x) (N = 4) and

N = 6. The order of convergence ®(h*) in both cases. On the finer levels the
error is indeed divided by 16 each time. This confirms what was predicted in Sect. 8:
The approximation using splines at a certain level yields roughly the same error as
an approximation using Daubechies’ scaling functions with the sAha the next
(finer) level.
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