
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Critically Sampled Wavelets with Composite
Dilations

Glenn R. Easley*, Member, IEEE, and Demetrio Labate

Abstract— Wavelets with composite dilations provide a general
framework for the construction of waveforms defined not only
at various scales and locations, as traditional wavelets, but also
at various orientations and with different scaling factors in
each coordinate. As a result, they can process the geometric
information which often dominate multidimensional data much
more efficiently than traditional wavelets. The shearlet system, for
example, is a particular well-known realization of this framework
which provides optimally sparse representations of images with
edges. In this work, we further investigate the constructions
derived from this approach to develop critically sampled wavelet
transforms with composite dilations for the purpose of image
coding. Not only we show that many nonredundant directional
contructions recently introduced in the literature can be derived
within this setting. We also introduce new critically sampled
discrete transforms which achieve much better non-linear ap-
proximation rates for images containing edges than traditional
discrete wavelet transforms, and outperform the other critically
sampled multiscale transforms recently proposed.

Index Terms— Contourlets, directional filter banks, image
coding, nonlinear approximations, shearlets, wavelets

I. INTRODUCTION

Several successful methods were recently introduced in the
literature to overcome the limitations of traditional separable
wavelets. Indeed, while 1D wavelets are optimal at approx-
imating point singularities, their 2D separable counterparts,
which are obtained by taking tensor products of 1D wavelets,
have a limited ability to process geometric information and, as
a result, are not equally effective at approximating singularities
along curves (e.g., edges in images). This fact was already
observed in early papers from the filter bank literature, such
as [1], [2], [3], where it was first recognized the need to
better deal with directional information and the importance
of directional sensitivity to more effectively process image
features such edges [4]. More recently, spurred by remark-
able advances in computational harmonic analysis, new and
more sophisticated variants of the wavelet approach were
introduced, which combine multiscale analysis and directional
filtering in a way which is specifically designed to handle
multidimensional data with (near) optimal efficiency. The
most notable of these constructions, in dimension n = 2,
are the curvelets [5], the contourlets [6] and the shearlets
[7], which are obtained by defining systems of analyzing
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waveforms ranging not only at various scales and locations,
like traditional wavelets, but also at various orientations, with
the number of orientations increasing at finer scales. Thanks
to their localization, anisotropy and directional properties,
these systems provide near optimally sparse representations
for images containing edges [8], [6], [9], which makes their
applications highly competitive in imaging problems such
denoising, edge detection and feature extraction, deconvolution
and image separation [10], [11], [5], [12].

However, all these recent directional variants of wavelets
form redundant systems (specifically, Parseval frames) rather
than orthonormal bases. While this is not a limitation in many
image processing applications (or it is even beneficial as in
image denoising), redundancy is not desirable in other tasks
such as image coding. Thus, a number of very interesting
methods were proposed during the last few years to construct
nonredundant versions of these systems [13], [14], [15], [16],
[17]. All these nonredundant constructions are inspired by
the contourlet transform and use an appropriate combina-
tion of subband coding and directional filtering. Similarly to
contourlets, they exhibit a very rich set of directions which
is useful for their approximation properties and set them
apart from more traditional directional wavelets; unlike the
curvelets, however, they use critically sampled filter banks.
Notice that other notable nonredundant ‘directional’ wavelet-
like systems include bandelets [18], directionlets [19], and
nonredundant complex wavelets [20]. However these systems
are either adaptive (i.e., bandelets), which requires more
computations, or they allow only a small number of directions,
which limits their flexibility and approximation properties.

In this paper, we take a more general and systematic point
of view, and show that all of these newly introduced nonredun-
dant variants of the contourlet transform can be derived and
analyzed within the framework of wavelets with composite
dilations. This approach, originally developed by the authors
and their collaborators in [7], [21], [22], is a far-reaching
generalization of the classical theory of affine systems (from
which traditional wavelets are derived) and it provides a very
flexible setting for the construction of truly multidimensional
wavelets (see also recent results in [23], [24], [25], [26]). The
shearlets, in particular, are a special 2-dimensional realization
of wavelets with composite dilations.

Not only will the approach described in this paper provide
a unified setting for the construction of a large class of
nonredundant directional multiscale systems, including new
ones. In addition, its great flexibility will be useful to design
multiscale systems with ‘any’ desirable directional features
and the affine mathematical framework will provide a natural
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transition from the continuous to the discrete setting. As a
result, the new critically sampled algorithms proposed in this
paper compare very favorably against other schemes recently
proposed in the literature.

Another theme of this paper is the trade-off between sparsity
and critical sampling. Shearlets, as well as curvelets and
contourlets, were proved to be (near) optimally sparse thanks
in part to the so-called parabolic scaling; that is, the frequency
support of the analyzing elements satisfies the property that
width ∝ length2 [8], [9]. Our observations will show that
‘enforcing’ this property in critically sampled discrete trans-
forms, as frequently done in many of the proposed schemes,
does not always improve the algorithm performance. It turns
out to be more important to understand how the magnitudes
of edges are affected by directional filtering and anisotropic
scaling depending on the properties of the data (see [27], [28],
[12]). This appears to be a key element in the design of highly
effective representation algorithms. In the following, we will
exploit this property to develop a simple adaptive critically
sampled discrete transform. This allows us to achieve a further
improvement in the algorithms performance at the expense of
a minor additional computational cost.

II. WAVELETS WITH COMPOSITE DILATIONS

The classical affine or wavelet systems generated by Ψ =
{ψ1, . . . , ψL} ⊂ L2(Rn) and A = {ai : i ∈ Z}, are the
collections of functions of the form

AA(Ψ) = {Da Tk ψm : a ∈ A, m = 1, . . . , L}, (1)

where Ty is the translation operator, defined by

Ty f(x) = f(x− y), y ∈ Rn,

and Da, a ∈ GLn(R), is the dilation operator, defined by

Da f(x) = | det a|−1/2 f(a−1x).

If
‖f‖2 =

∑

i∈Z

∑

k∈Zn

|〈f,Di
aTkψ〉|2,

for all f ∈ L2(Rn), then AA(Ψ) is a Parseval frame and Ψ
is called a multiwavelet or, simply, a wavelet if Ψ = {ψ}.
If, in addition, AA(Ψ) is an orthonormal basis, then Ψ is an
orthonormal (multi)wavelet.

The affine systems with composite dilations where intro-
duced in [7] as a way to describe wavelet-like waveforms
exhibiting a much richer set of geometrical features than
standard wavelets. They have the form

AAB(Ψ) = {DaDb Tk Ψ : k ∈ Zn, a ∈ A, b ∈ B},
where A, B ⊂ GLn(R) and the matrices b ∈ B satisfy
|det b| = 1. If AAB(Ψ) is a Parseval frame (orthonormal
basis), then Ψ is called a composite or AB-multiwavelet
(orthonormal composite wavelet). The theory of these systems
generalizes the classical theory of wavelets and provides a
simple and flexible framework for the construction of an-
alyzing signals which exhibit useful geometric features. In
fact, the matrices a ∈ A are expanding and are associated
with the usual multiscale decomposition; by contrast, the

matrices b ∈ B are non-expanding and are associated with
rotations and other orthogonal transformations. As a result, one
can construct composite wavelets with good time-frequency
decay properties whose elements contain “long and narrow”
waveforms with many locations, scales, shapes and directions.
The shearlets, in particular, which provide (almost) optimally
sparse representations for images with edges, are derived as a
special case of these constructions for n = 2 [7], [9].

Many other constructions are obtained in higher dimensions
as well. Remarkably, the theory of wavelets with composite
dilations extends many of the standard results of the classical
wavelet theory (see [7], [21], [22] for a details). In particular,
using these ideas, one can easily obtain the following simple
conditions for the constructions of composite wavelets where
the generator ψ is chosen such that ψ̂ = χS , where S ⊂ R2.

Theorem 1: Let ψ = (χS)∨ and suppose that S ⊂ F ⊂ R2,
where

1) R̂2 =
⋃

k∈Z2(F + k);
2) R̂2 =

⋃
a∈A,b∈B S (ab)−1,

where the union is essentially disjoint and A,B are subsets
of GL2(R). Then the composite wavelet system AAB is a
Parseval frame for L2(R2). If, in addition, ‖ψ‖ = 1, then AC
is an ONB for L2(R2).

As in the theory of traditional wavelets, it is more difficult
to construct multiscale directional systems which are also well
localized. Some additional comments and results will be given
below.

A. Some Constructions
Using Theorem 1, we will now construct several examples

of composite wavelets which provide the framework for a
number of nonredundant discrete directional multiscale trans-
forms.
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Fig. 1. Example of composite wavelet where a = Q.

1) Construction 1: Let a = Q = ( 1 1
−1 1 ) and consider B =

{b0, b1, b2, b3} where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ),

b3 = ( 0 −1
−1 0 ).

Let ψ̂(ξ) = χS(ξ) where the set S is the union
of the triangles with vertices (1, 0), (2, 0), (1, 1) and
(−1, 0), (−2, 0), (−1,−1) and is illustrated in Figure 1. Notice
that S satisfies the assumptions of Theorem 1. Hence the
system

{Di
a Db Tk ψ : i ∈ Z, b ∈ B, k ∈ Z2, }

is an ONB for L2(R2) (in fact, it is a Parseval frame and
‖ψ‖ = 1).
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Indeed, the frequency partition achieved by the Hy-
brid Quincunx Wavelet Directional Transform (HQWDT)
from [15] is a simple modification of this construction, which
is obtained by splitting each triangle of the set S into 2 smaller
triangles, say, S = S1∪S1, so that we have the frequency tiling
illustrated in Figure 2. This can be expressed as the composite
wavelet system

{Di
a Db Tk ψm : i ∈ Z, b ∈ B, k ∈ Z2,m = 1, 2},

where ψ̂m(ξ) = χSm
(ξ), m = 1, 2.

S B_1

S B_3
S B_2

S B_1

S B_3
S B_2

S=S1 U S2

S=S1 U S2

Fig. 2. Example of composite wavelet system with a = Q.

2) Construction 2: Let a = ( 2 0
0 2 ) and consider B =

{b, b1, b2, b3} where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ),

b3 = ( 0 −1
−1 0 ).

Let R be the union of the trapezoid with vertices
(1, 0), (2, 0), (1, 1), (2, 2) and the symmetric one with vertices
(−1, 0), (−2, 0), (−1,−1), (−2,−2). Next, we partition each
trapezoid into equilateral triangles Rm, m = 1, 2, 3 as il-
lustrated in Figure 3. Hence we define ψ̂m(ξ) = χRm(ξ),
m = 1, 2, 3. Then the system

{Di
a Db Tk ψm : i ∈ Z, b ∈ B, k ∈ Z2,m = 1, 2, 3}

is an orthonormal basis for L2(R2).
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Fig. 3. Example of composite wavelet system with a = 2I .

3) Construction 3: Another example of composite wavelet
system is obtained by keeping the same dilation matrix
a of Example 2, and redefining B as the set {b` :
−3 ≤ ` ≤ 2} where b is the shear matrix ( 1 1

0 1 ).
Then, by letting R be the union of the trapezoid with ver-
tices (1, 0), (2, 0), (1, 1/3), (2, 2/3) and the symmetric one
with vertices (−1, 0), (−2, 0), (−1,−1/3), (−2,−2/3), and

ψ̂m(ξ) = χRm(ξ), where Rm = R bm, it follows that the
system

{Di
a Db Tk ψm : i ∈ Z, b ∈ B, k ∈ Z2,m = 1, 2, 3}

is an orthonormal basis for L2(D0) = {f ∈ L2(R2) :
supp f̂ ⊂ D0}, where D0 = {(ω1, ω2) : |ω2/ω1| ≤ 1}. To
obtain an orthonormal basis for the whole space L2(R2), it
is sufficient to add a similar system which is an orthonormal
basis for L2(D1) where D1 = {(ω1, ω2) : |ω2/ω1| ≥ 1}. This
is given by

{Di
a Db Tk ψ̃m : i ∈ Z, b ∈ B̃, k ∈ Z2,m = 1, 2, 3},

where B̃ = {(bT )` : −3 ≤ ` ≤ 2}. Finally, the low
frequency region of the spectrum is covered using a standard
wavelet basis. The frequency tiling corresponding to this
system is illustrated in Figure 4. This frequency tiling is

R 

R b^(−1)

R b^2

R b

R 

R b

R b^2

R b^2 A 

R b A 

R A

R b^(−1) A 

Fig. 4. Example of composite wavelet system with a = 2I and shearing
matrix.

similar to the one used for the NonUniform Directional Filter
Bank (NUDFB) in [29]. If this construction is combined
with a separable generator, then one obtains the frequency
tiling which corresponds to the Hybrid Wavelet Directional
Transform (HWDT) from [15] and to the directional filter bank
construction used in [17].

4) Additional Constructions: The contourlet and shearlet
systems mentioned in the introduction are also based on
a frequency tiling similar to Construction 3. In this case,
however, the dilations matrix a is given by a = ( 4 0

0 2 ), so
that the number of directional bands increases at fine scales.
Indeed, in the shearlet approach, one can construct a well
localized system of functions, where the generator ψ̂ is a
smooth waveform rather than the characteristic function of a
set. This idea leads to the development of the Parseval frame
(PF) of shearlets (for details see [9], [10]). This is also true of
our other constructions presented below, as we shall explain.

For Constructions 1 and 2 it is possible to obtain well
localized versions of these systems. For example, using the
matrices from Construction 1, let ψ ∈ L2(R2) be defined in
the frequency domain as

ψ̂(ξ) = ψ̂(r, θ) = V (r)U(θ).

We assume that V ∈ C∞(R) is compactly supported in [0, 1
2 ]

and it satisfies
∑

i∈Z
|V ((

√
2)ir)|2 = 1 a.e. on [0,∞).
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We also assume that U ∈ C∞([−π, π]) is periodic, compactly
supported inside [−π, π] and it satisfies:

3∑

`=0

|U(θ + `
π

4
)|2 = 1 a.e. on [−π, π].

Hence ψ is a well-localized function, with supp ψ̂ ⊂
[−1/2, 1/2]2. Notice that

ξ Qi b` = ((
√

2)ir, θ + i
π

4
+ `

π

4
),

where we have used the fact that Q =
√

2 Rπ
4

, where Rπ
4

is
the rotation matrix by π/4. Hence

∑

i∈Z

3∑

`=0

|ψ̂(ξ Qi b`)|2

=
∑

i∈Z

3∑

`=0

|ψ̂(
√

2)ir, θ + i
π

4
+ `

π

4
|2

=
∑

i∈Z
|V ((

√
2)ir)|2

3∑

`=0

|U(θ + (` + i)
π

4
|2 = 1,

for a.e. ξ ∈ R2. Hence we conclude that:
Theorem 2: The system

{Di
Q Db`

Tk ψ : i ∈ Z, ` = 0, 1, 2, 3, k ∈ Z2, }
is a Parseval Frame for L2(R2), and an ONB if ‖ψ‖ = 1.
The elements of this system are well localized and their
frequency tiling corresponds approximately 1 to Figure 1.

Finally, it is useful to observe that the framework of
composite wavelets allows one even greater flexibility in
the construction of angular subdivisions, since the matrices
B in the expression (1) do not need to be of the form
{b`} nor need to form a group, but can be designed as an
essentially arbitrary set of (nonexpanding) matrices depending,
possibly, on the resolution level. Thanks to this flexibility, it
is possible to refine the directional sensitivity depending on
the properties of the data and this will be especially useful
for the digital implementations described below, where new
critically sampled multiscale and multidirectional transforms
are introduced.

III. CRITICALLY SAMPLED TRANSFORMS

We will describe the discrete implementations of criti-
cally sampled directional multiscale transforms whose spatial-
frequency tilings is consistent with some of the constructions
described above. In particular, these implementations will
take advantage of a critically sampled 2D separable discrete
wavelet transform (DWT) and of a quincunx-based discrete
wavelet transform (QDWT). For brevity, we will only describe
in detail the construction using a critically sampled 2D sepa-
rable DWT; the case of QDWT is similar and will be omitted.

Given a 1D scaling function φ and a wavelet function ψ, 2D
separable wavelets [30] are obtained as ψ1(x) = φ(x1)ψ(x2),

1The figure illustrates the essential frequency support of the elements of
this composite wavelets system, rather than their actual frequency support;
their supports do overlap.

ψ2(x) = ψ(x1)φ(x2) and ψ3(x) = ψ(x1)ψ(x2). As usual, let
us denote as Vj and Wj the 1D approximation space and detail
space determined by the 1D scaling and wavelet functions.
Hence, for p = 1, 2, 3, the functions

{ψp
j,n(x) = 2j/2ψp(2jx− n) : n ∈ Z2}

determine the ON bases for the detail subspaces Vj ⊗ Wj ,
Wj ⊗ Vj , and Wj ⊗Wj , respectively. The 2D approximation
space Vj ⊗ Vj is generated by {2j/2φ2(2jx− n)}n∈Z2 where
φ2(x) = φ(x1)φ(x2).

Next, in the frequency domain, we define the functions:

S(0)(ω) = S1(ω1)S2(ω2
ω1

), S(1)(ω) = S1(ω2)S2(ω1
ω2

),

where S1,S2 ∈ C∞(R) and are compactly supported. Under
appropriate assumptions on S1, S2 (as in the discrete shearlet
construction in [10]), we can choose Φ ∈ C∞0 (R2) to satisfy

|Φ(ω)|2 +
1∑

d=0

∑

j≥0

2j−1∑

`=−2j

|S(d)(ωa−jb−`
d )|2 χDd

(ξ) = 1

where b0 = ( 1 1
0 1 ), b1 = bT , ω ∈ R2, Dd is given in Construc-

tion 3 and φ = (Φ)∨. Notice that each element S(d)(ωa−jb−`
d )

is associated with a scale level j and an orientation index `,
according to the action of the shear matrix b−`

d ; the index d
indicates either the mostly horizontal (d = 0) or the mostly
vertical (d = 1) elements. Correspondingly, in the space
domain, we have the elements s

(d)
j,`,k(x) = 2

3j
2 s(d)(b`

da
jx−k),

where s(d) = (S(d))∨. It turns out that the collection of
{φ(x− k) : k ∈ Z2} together with

{s(d)
j,`,k(x) : j ≥ 0, −2j + 1 ≤ ` ≤ 2j − 2, k ∈ Z2, d = 0, 1}

and

{s̃(d)
j,`,k(x) : j ≥ 0, ` = −2j , 2j − 1, k ∈ Z2, d = 0, 1},

is a Parseval frame for L2(R2). Notice that the last set, where
S̃

(d)
j,`,k = S

(d)
j,`,k χDd

, is needed to take care of the corner
elements [10].

To obtain a directional decomposition of the 2D detail
subspaces at each level j ≥ 0 we proceed as follows. For each
p = 1, 2, 3 (corresponding to the detail subspaces Vj ⊗ Wj ,
Wj ⊗Vj , and Wj ⊗Wj , respectively) and d = 0, 1, we define
the functions

ν
(d)
j,`p,k(x) =

∑

k′
s
(d)
j,`p,k−k′(x)ψp

j,k′(x),

where k ∈ Z2 and −2jp(j) + 1 ≤ `p ≤ 2jp(j) − 2, and

ν̃
(d)
j,`p,k(x) =

∑

k′
s̃
(d)
j,`p,k−k′(x)ψp

j,k′(x),

where k ∈ Z2 and `p = −2jp(j), 2jp(j) − 1. Notice that
the orientation index `p depends both on the scale index
j and the detail subspace index p. These functions form
the basis elements for the directional subspaces associated
to each of the detail subspaces at scale level j. Since the
transform based on this decomposition combines a discrete
wavelet transform (DWT) and a directional filtering based on
the shearlet transform, it will be referred to as the DWTShear
transform.
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Because the directional filtering component entails the use
of compactly supported functions in the Fourier domain, we
use a Meyer-based filtering as developed by the authors in [10],
[31]. This is a key element in the construction that guarantees
an infinite number of vanishing moments and was needed
to prove the optimality of the shearlet representation for
images with edges [9]. It is also an important element in
the numerical implementation, that was demonstrated to be
effective in representing and processing edges [10], [34].

Since the detail subspaces of the DWT are each decomposed
by a Parseval Frame, it follows that the DWTShear system is
a Parseval Frame for L2(R2):

Theorem 3: The elements {ν(d)
j,`p,k(x), : j ≥ 0,−2jp(j) +

1 ≤ `p ≤ 2jp(j) − 2, k ∈ Z2, d = 0, 1, p = 1, 2, 3}, together
with {ν̃(d)

j,`p,k(x) : j ≥ 0, k ∈ Z2, `p = −2jp , 2jp − 1, d =
0, 1, p = 1, 2, 3} and {φk : k ∈ Z2} form a Parseval Frame
for L2(R2).

As mentioned above, a similar approach is used to obtain
a directional transform which uses a quincunx-based discrete
wavelet transform (QDWT) rather than the DWT. We will refer
to this new transform which combines QDWT and the shearlet-
based directional filtering as QDWTShear. This produces the
frequency tiling described in Construction 1. A similar result
to the Theorem 3 above is true for the QDWTShear system.

Another interesting variant of our composite transforms is
obtained by using the NUDFB and applying our shearlet-
based directional decomposition to each of the 5 directional
components. This will be referred to as CShear, which is short
for a composite-wavelet shearlet transform.

A. An adaptive variant

Curvelets and shearlets provide a non-adaptive method for
the representation of images which achieves optimal efficiency
thanks to its ability to capture the geometry of edges. To recall
the heuristic idea at the core of their construction, let f be
an image containing an edge along a regular curve. Using
a traditional wavelet system, at scale 2−j , each analyzing
wavelet has essential support on a region of size 2−j × 2−j ,
so that it takes about 2j wavelet coefficients to accurately
represent the edge. By contrast, shearlets and curvelets have
support on a region of size 2−j × 2−j/2. Since the analyzing
elements are directional and only those aligned with the
edge produce significant coefficients, it only takes 2j/2 such
coefficients to accurately represent the edge at scale 2−j . This
observation indicates how directional multiscale systems with
parabolic scaling are able to achieve sparser image represen-
tations. One should also notice, however, that curvelets and
shearlets are built using a larger dictionary than wavelets. In
particular, at scale 2−j , for signals on [0, 1]2, there are 22j

elements in an ON wavelet basis but about 5 · 22j elements
in a tight frame of shearlets [10]. The size of the dictionary
of analyzing waveforms is necessarily reduced when non-
redundancy is imposed on a representation system so that a
formal enforcement of parabolic scaling does not guarantee a
sparser representation. This is why we have allowed the range
of the orientation index `p, at each scale level j, to depend
also on the detail subspace index p.
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Fig. 5. Decay of the magnitudes of the coefficients for the Barbara image
and the Zebra image for various transforms.

To illustrate how the choice of the number of orien-
tations affects performance of the DWTShear, we have
tested several versions of the algorithm. For brevity of
notation, we will express the special choice of direc-
tional decomposition of the DWTShear using the list
(j1(1)j2(1)j3(1)j1(2)j2(2)j3(2) . . . ), where jp(j) indicates
that, at the scale level j, in the detail subspace associated
with p, there are 2jp(j) orientations. For example, DWTS-
hear(223111) indicates that, at the level j = 1, there are
4,4,8 orientations corresponding to the subspace indices p =
1, 2, 3, respectively and, at the level j = 2, there are 2
orientations in each detail subspace. Examples of the non-
linear approximation rates are illustrated in Figure 5 using
some of the images displayed in Figure 6.

For many of the example images tested, the decomposi-
tion DWTShear(223111), which corresponds essentially to a
parabolic-like scaling, works very well. It is clear that the
performance of the discrete transform, in terms of its nonlinear
approximation properties, can be improved if the parameters
jp(j) are found adaptively. Indeed, Figure 5 clearly suggests
that, in some cases, if the parameters jp(j) are not chosen
appropriately, the approximation rate may be only slightly
better in certain ranges of the percentage of the number
of coefficients used. Notice, however, that our choice of
DWTShear(223111) performs well for either image.
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Our adaptive modification is obtained by sequentially
increasing each parameter jp(j) and testing the
resulting Shannon-Weaver entropy function E(f) =
−∑

n |fn|2 log |fn|2 to find the value that gives the
minimum entropy value. Since the jp(j) + 1 decomposition
of a region is computed from the jp(j) decomposition of the
same region, this processes can be efficiently done and the
process can be stopped once the measurements of entropy no
longer decrease. This idea is clearly related to the Wavelet
Packet Basis approach [30]. At the same time, our multiscale
decomposition does not follow exactly into the framework
of Wavelet Packets. In particular, this new adaptation will
produce a much simpler decomposition structure, such as a
set of 6 integers indicating jp(j). For example, consider the
case of a quadrant containing an angled linear segment that
goes through the center of the quadrant and has an angle that
is not a multiple of π/2. An adaptive angular subdivision
will produce a decomposition so that one or at most two
angular segments contain information regarding the linear
segment whereas a wavelet packet subdivision will produce a
square dyadic decomposition that contains many small dyadic
squares in the vicinity of the linear segment.

Numerical examples of the adaptive scheme are illustrated
in Figure 7. Note that the adaptive variant has found a
unique decomposition of Lenna that clearly shows more edge
information is located in regions p = 1 and p = 3.

IV. EXPERIMENTAL RESULTS

In this section, we present extensive numerical demonstra-
tions of our proposed algorithms and compared their nonlinear
approximation (NLA) capabilities to those of the full hybrid
DWT (HDWT), the full hybrid QDWT (HQDWT) [15], the
non-uniform directional filter based (NUDFB), the quincunx
non-uniform directional filter based (QNUDFB) [29], and the
critically sampled contourlet transform (CSCT) [16]. For a ba-
sic reference we also compared against the shearlet transform.

We used the images Peppers, Lamp, Barbara, Lenna, Zebra,
and Cat shown in Figure 6. In our implementations, we
tested either a 3 level or 5 level decomposition of the various
transforms to demonstrate the differences in performance. The
DWT was implemented with the Daubechies 9/7 filters. These
filters were also used for the DWT component of the DWT-
Shear implementation. For the DWTShear decompositions
either j1(1) = 2,j2(1) = 2,j3(1) = 3,j1(2) = 1,j2(2) = 1,
and j3(2) = 1 were used or jp(j) were adaptively determined
for j = 1, 2 and p = 1, 2, 3. In the case of QDWTShear
decomposition, we set jp(j) = 3 for j = 1, 2, 3. The CShear
transform tested was with jp(j) = 1 for p = 1, . . . , 5 and
j = 1, 2. The shearlet transform was implemented with
angular subdivisions of 2, 4, 4 or 2, 4, 4, 8, 8. from coarse
to fine scale depending on the number of levels tested for
the particular experiment. Figure 7 illustrates some example
decompositions. Comparison of the proposed algorithms with
the other recently introduced critically sampled is illustrated
in Figures 8 through 10 and detailed numerical results are
presented in Tables I through VII.

As indicated above, it turns out that, in many experiments,
the parabolic-like DWTShear(223111) achieves the best per-

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Images used in this paper for different experiments. (a) Peppers
image (512 × 512), (b) Lamp image (256 × 256), and (c) Barbara image
(512× 512), (d) Lenna image (1024× 1024), (e) Zebra image (256× 256),
(f) Cat image (2000× 2048).

formance. This indicates that this version will be very well
suited to applications where adaptive routines are prohibitive.
Yet it can be observed that the adaptive variant (easily
identified as having a decomposition other than 223111) in
several cases improves the performance by almost a half to
one decibel.

In certain ranges of the number of coefficients used for some
particular images, a few of the competitive routines performed
below the DWT’s NLA rate, as illustrated in Figure 8. This can
be understood in part by referring to Figure 5. Since the energy
among the coefficients remains the same, in the finite domain
setting, the NLA rate of a composite wavelet will eventually
intersect and cross the NLA rate of a DWT or another
critically sampled transform. These experiments succeed in
demonstrating that these competitive transforms fail to have
NLA rates that decay as rapidly as does DWTShear(223111)
or the adaptive variant.

We also tested the performance of the Embedded Zerotree
Wavelet (EZW) [32] and the Set Partitioning in Hierarchal
Trees (SPIHT) [33] coding algorithms when combined with
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TABLE I
PSNR VALUES OF THE NLA FOR THE PEPPERS IMAGE.

Num. of coeff. 5225 5669 6113 6557 7000
DWTshear(223111) 28.47 29.19 29.91 30.37 30.91
DWTshear(416100) 28.52 29.25 29.82 30.17 30.68

HDWT 26.91 27.11 27.49 27.67 27.87
CSCT 26.89 27.33 27.92 28.28 28.67

NUDFB 28.06 28.90 29.16 29.21 29.46
CShear 28.22 28.54 28.82 29.41 29.70
DWT 27.77 28.52 29.13 29.61 30.07

QDWTshear 27.37 27.93 28.25 28.69 28.96
HQDWT 27.32 28.00 28.43 28.74 29.08
QNUDFB 27.99 28.49 28.98 29.40 29.87

QDWT 27.56 27.61 28.18 28.56 28.91
Shearlet 27.15 27.73 28.17 28.52 28.85

TABLE II
PSNR VALUES OF THE NLA FOR THE BARBARA IMAGE-5 LEVELS.

Num. of coeff. 5225 5669 6113 6557 7000
DWTshear(223111) 26.47 26.85 27.14 27.33 27.79
DWTshear(333312) 27.00 27.17 27.41 27.53 27.70

HDWT 26.18 26.26 26.42 26.63 26.78
CSCT 25.90 26.11 26.32 26.53 26.74

NUDFB 25.58 25.77 25.99 26.08 26.24
CShear 25.55 25.68 25.80 25.99 26.04
DWT 25.36 25.58 25.72 25.92 26.11

QDWTshear 25.28 25.65 25.88 26.13 26.37
HQDWT 25.70 25.97 26.16 25.96 25.96
QNUDFB 24.90 24.62 24.91 25.19 25.58

QDWT 24.06 24.13 24.29 24.52 24.70
Shearlet 24.79 25.06 25.38 25.46 25.76

DWTShear transform on the Barbara image. A 5-level de-
composition was used for both the DWT and DWTShear.
The results are reported in Table VIII and further illustrated
in Figure 11. In addition, Figure 12 shows the difference in
performance between DWTShear and DWT using the SPHIT
encoder as a function of bit per pixel rate.

Whereas we do not consider these coding techniques as
optimized to take full advantage of the structure inherent in
DWTShear, it clearly indicates the possibility that many cur-
rent wavelet-based compression routines might benefit greatly
with a simple adjustment to the DWTShear structure and
could be easily integrated in many of today’s state-of-the-
art compression schemes. It is expected that when many new
coding schemes that exploit the NLA rate or more accurate
parent-children relations are incorporated, even more signifi-
cant improvements will be possible. We leave this development
for future work.

V. CONCLUSION

In this paper, we have shown that the framework of wavelets
with composite dilations provides a very flexible tool to:
1) analyze and generalize a number of oriented transforms
that recently appeared in the literature; 2) construct new
improved ones. Within this setting, we have derived some
new critically sampled transforms and demonstrated their
nonlinear approximation rate capabilities. Of particular value
was the DWTShear construction that was demonstrated to
efficiently represent a wide class of images and achieve

TABLE III
PSNR VALUES OF THE NLA FOR THE LENNA IMAGE.

Num. of coeff. 17000 19100 21200 23300 25400
DWTshear(223111) 30.56 32.91 34.44 35.47 36.25
DWTshear(414113) 30.56 32.91 34.45 35.47 36.26

HDWT 28.39 29.40 30.02 30.42 30.85
CSCT 29.61 31.57 32.67 33.67 34.30

NUDFB 30.35 32.09 33.52 33.83 34.23
CShear 30.35 32.30 33.16 33.70 34.40
DWT 29.97 32.12 33.73 34.57 35.42

QDWTshear 29.97 32.53 33.28 34.05 34.88
HQDWT 29.70 31.85 32.64 33.47 34.26
QNUDFB 30.26 32.22 33.49 34.34 35.00

QDWT 29.67 31.73 32.86 33.76 34.52
Shearlet 29.89 31.92 33.09 33.94 34.28

TABLE IV
PSNR VALUES OF THE NLA FOR THE ZEBRA IMAGE.

Num. of coeff. 3700 4225 4750 5275 5800
DWTshear(223111) 23.66 24.17 24.52 24.94 25.41
DWTshear(320211) 23.71 24.20 24.87 25.29 25.85

HDWT 23.00 23.23 23.67 23.69 24.12
CSCT 22.38 22.68 23.12 23.53 23.83

NUDFB 22.24 22.47 22.73 22.87 23.34
CShear 23.02 22.54 22.82 23.24 23.28
DWT 23.12 23.61 24.06 24.54 24.95

QDWTshear 23.44 23.77 23.95 23.97 24.32
HQDWT 22.32 22.75 23.33 23.57 23.94
QNUDFB 22.61 23.20 23.61 23.96 24.26

QDWT 22.45 22.84 23.27 23.70 23.81
Shearlet 21.96 22.38 23.17 23.29 23.71

excellent nonlinear approximation properties. In many cases,
it achieves nearly 1 to 2 dB improvement over the DWT. A
key observation over related transforms was not to strictly and
“blindly” enforce a parabolic scaling relation. It particular,
an extremely simple adaptive variant was devised that could
automatically determine the best angular partitioning with
negligible overhead in structure calculation and description.
Our results also show that the DWTShear transform can be
used in combination with some of the well-known wavelet-
based coding systems such as EZW and SPIHT to improve
coding results. We envision that many current state-of-the-art
wavelet-based coding schemes would greatly benefit without
a significant computational overhead if the framework of the

TABLE V
PSNR VALUES OF THE NLA FOR THE CAT IMAGE -5 LEVELS.

Num. of coeff. 4195 5244 6292 7341 8389
DWTshear(223111) 27.48 30.82 32.27 33.13 34.02
DWTshear(160161) 28.64 31.73 33.34 34.25 35.11

HDWT 25.70 27.32 28.11 28.57 28.91
CSCT 26.25 29.62 30.88 32.02 32.71

NUDFB 26.22 29.55 31.52 32.58 33.38
CShear 26.22 29.55 31.20 32.19 32.97
DWT 26.25 28.78 29.98 31.06 32.26

QDWTshear 27.32 29.06 30.55 31.31 32.03
HQDWT 27.32 29.69 31.03 31.73 31.96
QNUDFB 26.16 28.96 30.96 32.13 33.31

QDWT 27.32 28.86 29.90 30.59 31.55
Shearlet 26.10 28.46 29.57 30.53 31.11
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Fig. 7. Examples of the DWTShear decompositions of the Peppers image and the Lenna image. The image on the right is an example of the adaptive
DWTShear decomposition of Lenna; its decomposition is succinctly described as DWTShear(414113).
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Fig. 8. Nonlinear approximation performance plots for Lamp image using J = 3. (a) Non-quincunx-based transforms. (b) Quincunx-based transforms.
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Fig. 9. Nonlinear approximation performance plots for Barbara image using J = 5. (a) Non-quincunx-based transforms. (b) Quincunx-based transforms.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Details of the nonlinear approximations using 5225 coefficients ( 1.99% of total number of coefficients) with the Peppers image. (a) Original
image. (b) CShear (PSNR=28.22 dB). (c) DWT (PSNR=27.77 dB). (d) DWTShear(223111) (PSNR=28.47 dB). (e) NUDFB (PSNR=28.06 dB). (f) QNUDFB
(PSNR=27.99 dB).
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(a)

(b) (c)

Fig. 11. Close-up images of coding results using the SPIHT algorithm for Barbara image at rate of 0.22 bpp. (a) Original image. (b) DWT (PSNR=26.99
dB). (c) DWTShear(223111) (PSNR=28.10 dB).
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Fig. 12. PSNR versus bit per pixel rate for the Barbara image using J = 5
for DWTShear(223111).

TABLE VI
PSNR VALUES OF THE NLA FOR THE LAMP IMAGE.

Num. of coeff. 1007 1268 1529 1790 2050
DWTshear(223111) 24.25 29.95 31.77 32.94 34.10
DWTshear(010010) 24.25 29.88 31.76 33.02 34.31

HDWT 23.90 26.63 27.25 27.79 28.40
CSCT 23.86 28.24 29.30 30.19 30.97

NUDFB 24.14 28.85 30.10 30.81 31.42
CShear 24.14 28.50 29.77 30.72 31.33
DWT 23.86 28.89 30.61 31.98 33.12

QDWTshear 24.62 28.34 29.67 30.81 31.45
HQDWT 23.66 28.40 29.91 30.87 31.78
QNUDFB 23.71 28.95 30.24 31.45 32.28

QDWT 24.62 28.39 29.93 30.98 31.58
Shearlet 23.86 28.01 29.55 30.46 31.34

DWTShear were utilized to replace the standard DWT.
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