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Abstract

The paper discusses which properties of filter sets used in local structure estimation that are the most important.
Answers are provided via the introduction of a number of fundamental invariances. Mathematical formulations
corresponding to the required invariances leads up to the introduction of a new class of filter sets termed loglets. Loglets
are polar separable and have excellent uncertainty properties. The directional part uses a spherical harmonics basis.
Using loglets it is shown how the concepts of quadrature and phase can be defined in n-dimensions. It is also shown how
a reliable measure of the certainty of the estimate can be obtained by finding the deviation from the signal model
manifold.

Local structure analysis algorithms are quite complex and involve a lot more than the filters used. This makes
comparisons difficult to interpret from a filter point of view. To reduce the number ‘free’ parameters and target the filter
design aspects a number of simple 2D experiments have been carried out. The evaluation supports the claim that loglets
are preferable to other designs. In particular it is demonstrated that the loglet approach outperforms a Gaussian
derivative approach in resolution and robustness.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The first steps towards analysis of images were

T taken 4 decades ago. From the very start detecting
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of local image structure has been suggested in a
seemingly never ending stream Local image
orientation, scale, frequency, phase, motion and
locality of estimates are prominent examples of
features that have been considered central in the
analysis [12,13,24,27,6,5,28,36,19,29,20,9,32,21,2,
26,34,35,22,15,8,4,11,33].

Apart from sheer curiosity, the main force
driving the research has been the need to analyze
data produced by increasingly capable imaging
devices. Presently produced data are also often
intrinsically more complex. Both the outer and
the inner dimensionality can be higher, e.g.
volume sequence data and tensor field data
respectively.

Regardless of this development the first stages in
the analysis remain the same. In most cases the
processing starts by performing local linear
combinations of image values, e.g. convolution
operators. Perhaps somewhat surprising after
30 years of research the design of these filters
is still debated. In fact the object of this paper
is to contribute to this discussion in a way that
hopefully will help in bringing it to an end by
providing what we believe to be a valid line of
reasoning.

1.1. Image signal models

The mathematical framework used to character-
ize image signals is the foundation for develop-
ment and evaluation of all image processing
methods. Methods in image processing can in
most cases be classified as belonging to the
deterministic or the statistical world. This is
unfortunate since none of the approaches alone
is well suited for modeling real life images. Edges,
lines, corners etc are naturally deterministically
modeled whereas textures and noise belong
naturally to the statistical world. Real life images
clearly has components from both worlds. Objects
moving in front of textured backgrounds and
borders between textured areas provide obvious
examples. A fusion of appropriate parts from both
worlds will potentially provide a much more
powerful image analysis model. This is the spirit
in which the remainder of this paper should be
read.

2. What, exactly, is orientation and motion

There is a strong correspondence between the
problems of estimating velocity and estimating
signal orientation. If the signal is band-limited so
as to not contain frequencies above the Nyquist
limit the problems are in fact identical. For the
case of constant illumination this identity is
manifested in the Fourier domain by that all
non-zero values can be found on a plane through
the origin. The normal to the plane, m, is directly
related to the velocity through:

P,

= s 1
"= P O
where P, projects m onto the spatial frequency
plane, P, projects i onto the temporal frequency
axis.

2.1. Invariances and images of reality

In a Newtonian world the true motion and
orientation of a rigid object is a well defined entity
that is obviously independent of the visual
appearance of the object itself. When orientation
and/or velocity is estimated using images it is,
however, equally obvious that the properties of,
for example, the imaging device, the light sources
and the object surface directly influence the
transfer of pertinent information, see e.g. [16].
For this reason, a fundamental part of any
estimation method is the incorporation of appro-
priate invariances. The implications of a number
of important invariances are discussed below.

2.2. Event identity and estimate locality

For a single highly localized feature it is, all else
being equal, desirable to maximize spatial locality
of the feature estimate. Retaining feature identity
also requires that the estimate is smoothly varying
and centered on the feature.! These two require-
ments counteract each other in a fundamental
way and there exist many possibilities to define

Tt would be reasonable to require a unimodal response but
we will not do so as it may be perceived as giving the quadrature
approach to much of an advantage.
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a measure of goodness. Reasonable definitions
will, however, produce similar results. We have
decided to use the traditional uncertainty product
as a quality measure, [12], as this product is
relatively shape tolerant and yet severely punishes
large deviations from the desired behavior.

2.3. Sample shift invariance

In most cases the signal and the sampling
process are not synchronized and it is natural to
require that estimates are insensitive to the precise
space-time position of the sample grid. For a
properly band-limited signal a shifting of the
signal by 4, can be obtained by multiplying the
Fourier transform F(u) by e ' For test
purposes a signal with spectrum cos(u/2) is used.
This is the most spatially concentrated band-
limited signal there is, [12]. The upper left part of
Fig. 5 shows the corresponding spatial signal
computed at eight different positions over a period
of one pixel (one for each row). This signal will
efficiently reveal any sampling shift dependencies
in the signal processing.

2.4. Invariance to the ‘signal cross section’

Estimates of object velocity should be invariant
to the image of the object itself. A generalization
of this statement is that for a spatio-temporal
signal that is constant on lines oriented by m, i.e.
s(x) = f([I — " ]x) the estimate of 7, should be
invariant to the ‘signal cross section’ g(-). This
seemingly harmless and simple requirement has far
reaching consequences. It is equivalent to the
statement that the estimate of the normal to the
non-zero plane in the Fourier domain should be
invariant to what the signal looks like in the plane.
To make the argument as clear as possible we will
discuss the 2-dimensional case where the non-zero
plane reduces to a line.

For the estimate to be invariant to the signal on
the line it is required that the ratio between the
filters involved are the same everywhere on the
line. This must hold for all velocities, i.e. line
orientations, implying that the Fourier domain
ratios between the filters involved can depend only
on orientation. More precisely the filter set can be

expressed as: Fi(u) = Di(a)G(u). 1t is simple to see
that using filters that are polar separable in the
Fourier domain will solve this problem, i.e.
Fi(u) = Di()G(p). The generalization of this
argument to higher dimensional signals is straight-
forward.

Perhaps the simplest example of a polar separ-
able filter set is the Gaussian derivative filters used
in traditional optical flow analysis. In the Fourier
domain these filters are given by

Fi(u) = ur G(p) = pG(p) cos(@y), (@)

where p is the radius in the frequency domain, ¢,
the angle between u and the u; axis and G(p) is a
Gaussian.

In a 3D spatio-temporal signal the orientational
part of these filters are spherical harmonics® of
order 1 as cos(¢,) can be expressed in this basis,
see also Section 4.3, [18]. The use of only order 1
functions limits the performance of the velocity
estimation. Furthermore the implied radial func-
tion, (R(p) = pG(p)), have a number of undesir-
able consequences that can be avoided by using
the proposed loglets filter set. (See Sections 2.5
and 3.2).

2.5. Invariance to illumination

Many image processing tasks require that the
analysis is insensitive to spatio-temporally varying
lighting conditions. In particular, it is natural to
make the analysis invariant to the following two
properties when object motion estimation is the
task:

o Slowly varying mean level.
e Slowly varying signal amplitude.

Note that, in the present context, this is in sharp
contrast to the optical flow approach which sets
out to estimate the local spatio-temporal structure

2Spherical harmonics allow rotation invariant formulations,
[18]. A general n:th order polynomial can be expressed by
spherical harmonics of order 0 to n on the unit sphere. Spherical
harmonics exist for spaces of any dimension. In 2D spherical
harmonics correspond to the common cos(ng) and sin(ng)
functions. The number of spherical harmonics of order n are
(2n+1) in 3D and (n + 1)* in 4D.
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of the image sequence itself and not the object
motion. Standard optical flow estimates are
invariant to global mean level and global signal
amplitude but not to variations in these. The
analysis can be made invariant to certain classes of
such variations by the use of suitable filters. We
will in the following assume that changes in
illumination can be modeled as an addition of a
low-order spatio-temporal polynomial to the im-
age of the moving object.’ Invariance to illumina-
tion can then be obtained by using filters that are
orthogonal to the subspace spanned by the
polynomial basis.

3. Loglets—vector valued filters

We here introduce a new set of filters termed
loglets which are suitable for the purposes
discussed above and in addition have a number
of other useful properties which are discussed in
Sections 3.2 and 3.3. Loglets have distinct simila-
rities to the filter-banks introduced by Knutsson
[19], and are polar separable in the Fourier domain
as opposed to e.g. Gabor filter-bank approaches
[13,1].

The definition of loglets is given by the product
of a scalar radial part and a vector valued
directional part.

Q) = Ry(p)Di(@), p = |lul|. 3)
The subscript s indicates the scale and k indicates
the orientation of the individual loglet.

3.1. Multi-dimensional directional part

The directional part can be defined for multi-
dimensional signals and consist of a set of vector
functions, Dy (@) given by

1
Dyl = (&)(fﬁﬁk)z“, 4

where & is a unit vector in the frequency domain,
ny. is a filter directing unit vector, a >0 is an integer

3This simplifies the following discussion but for this
assumption to be reasonable the logarithm of the image signal
should be used.

setting the directional selectivity of the loglet.
(Half integers may be used but will imply an
alternate phase definition.)

The last part of Eq. (4) define the direction and
selectivity of the angular envelope of the filter. The
first part define angular modulations correspond-
ing to spherical harmonics of order zero (the ‘1)
and one (a), see Fig. 2. This approach enables a
straightforward generalization of the phase con-
cept, see Section 3.3.

The realization of the envelope part will require
spherical harmonics of even order from [0, ..., 24]
(odd order [1,...,24d] if a is half-integer). Conse-
quently the required set of directional filters span a
spherical harmonics space of order 2a + 1. Thus
the individual filters can simply be constructed as a
weighted sum of spherical harmonics basis func-
tions. In this way filtering results for a large
number of orientations can be obtained in a highly
efficient way. Also note that the odd part of Dy (&)
corresponds to the Hilbert transform in the 1-
dimensional case and the Riesz transform for
higher dimensions [30].

3.2. Radial part

The radial function set, Ry(p), is given by
RY(p) =f€+l(p) _fy(p)a

£(p) = Lerflalog(8p/po), (5)

where s is an integer defining the scale of the filter,
p>1 sets the relative ratio of adjacent scales, o
determines the filter shape and overlap.

This function set was designed in the spirit of the
wavelet approach and has features particularly
interesting in this context: (1) %Rs(p) =0; Vn or
in wavelet vocabulary Ry(p) has an infinite number
of vanishing moments, [25]. (2)The limit f§ — 1
yields a lognormal filter [19]. (3) The sum of Ry(p)
over all scales is constant for all non-zero
frequencies. For a finite number of consecutive
scales the sum is given by: Rgm(p) =
S5 (@) =[5, (p). 1.e. the sum will tend to be flat
inside the ‘pass-band’ range. This is the main
advantage over a lognormal filter set.

The latter makes the continuous loglets ortho-
gonal to all polynomials indicating the suitability
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for the present purpose. In practice discrete loglets
will have to be used naturally limiting the number
of vanishing moments. Discrete loglets can be
optimized using multiple subspace criteria as
outlined in [23]. Fig. 1 shows Ry(p) for a sequence
of scales.

3.3. Generalized quadrature and phase

Applying the loglets to a d-dimensional signal
will produce a (d + 1)-dimensional vector response
signal, ¢, for each loglet. The amplitude, ¢, of
the response is simply defined as the norm of the
response and the generalized phase, 60, as the
normalized response, i.e.

g=lgl and 0=§ givingq = q0. (6)

This definition of phase is identical to the
definition due to Knutsson presented in [15,14].
For 1-dimensional signals it reduces to the classical
definition of amplitude and phase: f = fe' 20 =
f 0 [3]. More recent related work can be found in,
e.g. [10]. The construction of classical quadrature
filters, [19], is based on the analytic signal and
requires a pre-defined filter direction. The general-
ized quadrature approach elegantly removes this
requirement.

o

_0_" T - - i
0 /4 /2 3m/4 s

Fig. 1. Top: R(p) for six loglets separated by one octave and the
sum, pp==n, f=2, o« =3 and s=[0,1,...,5]. Bottom: the
radial parts are computed as differences of the erf-functions
shown, see Eq. (5).

The generalized phase concept also naturally
lends itself to a further extension. An order n phase
can be defined by including spherical harmonics of
order 0 — n in the vector part of Eq. (4). This will
increase the descriptive power but will also
decrease the spatial resolution and significantly
increase the number of filters involved.

4. The local structure tensor

Representation of orientation has had a long
standing central position in the development of the
image processing framework of today. In 1978
Granlund suggested a representation for 2-dimen-
sional orientation, [13]. The requirements for
representing 3-dimensional orientation were dis-
cussed and outlined by Knutsson 1985 [20]. In
1987 this work lead to the formulation of the local
structure tensor approach, [21,22], that is now
common practice.

In order to take the quadrature/gradient com-
parison one step further we will use the Gaussian
derivative outer product matrix suggested by
Bigiin and Granlund [2].* Although the two
approaches are fundamentally different they end
up using the same orientation representation
which allows for a direct comparison.

In the following, for reasons that will soon
become apparent, a slightly modified form using
the /; norm of the filter responses will be used:

K
T=> lgl* M, @)
k=1

where ¢, are the responses from single scale
loglets, M are the filter orientation tensors,
[22,14].

4.1. Direct tensor estimation from spherical
harmonics basis

As mentioned in Section 3.1 the spherical
harmonics basis allows the number of orientations,
K, used in Eq. (7) to be increased with only

“In this work orientation representation is not the issue, the
approach is based on a least squares problem formulation and
no mention of tensors is made.
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a minor additional computational cost as the
result for any orientation can be computed from
the responses of the basis filters. An interesting
observation can be made if the number of
orientations is increased to the limit, K — oo.
The equivalent of Eq. (7) for this case is given by
the integral:

T / ()12 M) di, ®)

where ¢(#n) is the response from a loglet in the n
direction, M () the dual tensor corresponding to 7.

Without explicitly going through the calcula-
tions it can be realized that computing T from
Eq. (8) will result in weighted sets of sums of
products of the basis filter outputs, one sum for
each tensor component, ¢,, i.e.

b =33 ayH @) Hi(@), 9)

J
J=1 =1

where J is the total number of spherical harmonics
functions used, a,; the weighting coefficient for
filter product (j,/) and tensor component n, H;(&t)
the j:th spherical harmonics function.

Note that the phase invariant property of the
quadrature filter based tensor, of Eq. (7) is
preserved in Eq. (9) for J>2o + 1 although the
individual spherical harmonic filters are not phase
invariant. Further, Eq. (8) can be seen as a
projection onto M(n). As M(n) only has zeroth
and second-order components only filter products
containing order 0 and/or order 2 components will
contribute to the sum in Eq. (9). In fact most of the
coefficients, a,;, will be equal to zero.

4.2. Direct tensor estimation in 2D

It is helpful to have a more detailed look at the
2D case. Here it is convenient to express the
spherical harmonics basis filters of order 0 — 3 as
complex functions in the Fourier domain:

H; = R(p)e’*;  —3<j<3, (10)
where p, ¢ are polar coordinates in the Fourier
domain.

Writing T as

i 12
T = 11
(llz l22> (b

and denoting the complex output from filter H; by
h; it turns out that T is given by

1
1 = ﬁ(iR[6h0h2 — 3h% + 3h3h_1]
+ 4lho|* + 51k * + 21| + |hs]?),

1
22 = 57 (~R(Ghohy ~ 3k + 3hsh_]

+ 4lho|* + 51hi * + 2o |* + |hs]?),

1
1 = 57 (S6hohy — 30 + 3hsh-]). (12)

The computation is straightforward but cumber-
some and is for that reason left out in this
presentation. Note that the sum of the indices of
the filters making up the output products involved
is either 2 (for the terms in the square brackets) or
0 (for the rest). Also note that the filters with
negative indices are given by H_; = H} implying
that these responses need not be separately
computed.

4.3. Derivatives, spherical harmonics and
quadrature

In the traditional gradient approach the local
structure is estimated by the Gaussian derivative
outer product matrix. In loglet terms this implies
that the radial part of the filter functions is set to
pG(p) and only the first-order spherical harmonics
filters, h; in Eq. (12), is used. In fact derivative
operators of any order are polar separable in the
Fourier domain having order n spherical harmo-
nics as the directional part and p” as the radial
part. This observation provides links to a large
number of traditional image processing ap-
proaches and in particular to the work of
Danielsson et al. e.g. [6,7].

The concept of quadrature is however in direct
conflict with the use of derivative operators. To
attain a quadrature response all filters making up
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Fig. 2. A 2D loglet i the x-direction in the Fourier domain. From left: orientation selective envelope and the envelope modulated by

cos(¢p) and sin(¢).

the response must have the same radial function
and the combined sensitivity must be the same for
even and odd signals. As odd and even order
derivatives necessarily have different radial beha-
vior this cannot be accomplished by combining
outputs from derivative operators.” That Eq. (12)
will produce quadrature responses for all tensor
components is shown by the fact that the sum of
the magnitude of the coefficients are equal for the
odd and the even filter products.

5. Local certainty estimation

Certainty estimates play an important role in
many image processing applications. Certainty can
be interpreted as a measure of how well the present
signal fits the adopted signal model. In the
following we will refer to the part of the signal
that is not explained by the signal model as the
residue. A measure of residue magnitude is only
possible to attain when the measured properties of
the signal space contain more information than is
required by the signal model. A classical example
of relative residue estimation is the certainty
estimate based on the eigenvalues of T: ¢; = %
where T = ilélélT + izézég, see Fig. 3. Here
A1> /3 =~ 0 corresponds to a neighborhood with
a well defined orientation without noise while and
an isotropic neighborhood is characterized by
A1 & Jy. Another example of how the residue can
manifest itself is given by the behavior of loglet
phase.

SUsing BP-pyramids these problems will be reduced which is
not surprising as doing so will, in fact, yield resulting filters that
are more ‘loglet like’.

5.1. Phase consistency based certainty

A new measure of certainty estimate can be
obtained using a generalized definition of phase.

o= 29Ok _ 11D x4
S ol

For simple signals, i.e. signals that can be
expressed as s(x) = g(i' x), [14], the loglet phase
will be the same for all g, making the certainty
estimate ¢y equal to unity. Local deviations from a
simple signal will tend to cause a varying phase
and, as a consequence, produce a smaller value.

Fig. 3 shows an example of certainty estimation.
Here ¢ is defined by the loglet shown in Fig. 2. The
generalized order one phase representation com-
prise a cos’(¢) angular window (left in Fig. 2)
which is modulated by cos(¢) and sin(¢p), (middle
and right). Using 12 orientations the phase
invariant local structure tensor, Eq. (7), and the
phase consistency based certainty, ¢y in Eq. (13),
was estimated. The left part in Fig. 3 shows the test
image. The middle image shows the traditional
certainty based on the eigenvalues of T: ¢, =
(A1 — 42)/21. The right image shows the phase
consistency based certainty c¢g. Note that certainty
estimates ¢, and ¢y clearly have different properties
picking up different parts of the local ‘non-
simplicity’.

(13)

5.2. Certainty and the signal representation
manifold

A more general approach to certainty estima-
tion is to view the representation space as a
manifold embedded in the signal space defined by
the set of basis filters used. Estimating certainty
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Fig. 3. Certainty estimation example. Left: test image comprising three overlayed structures, a circular modulated sine wave pattern, a
random vertical stripe pattern in the left part and white noise in the lower half (may be less visible due to the print resolution), making
up four differently structured image quadrants. Middle: orientation consistency ¢; = (4; — 42)/4;. Right: phase consistency based

certainty cg.

then becomes a task of measuring the distance to
the representation manifold, i.e. the residue. The
main advantage of the representation manifold
view is that the intrinsic dimensionality of the
residue can be found. Suppose there are J filters
and L different independent ways to change an
ideal signal in a way that can be seen by the filters.
The intrinsic dimensionality of the ideal signal
manifold, and of any consistent representation,
will then be L. The intrinsic dimensionality of the
residue will be J — L. In the 2D case the signal
representation manifold is described by the follow-
ing four constraints:

lho| — |2 = 0,
| — |hs| = 0,
I} + hohy| = || + [hohs|,

\h} + hsh}| = |h}| + |3k} (14)

The intrinsic dimensionality of simple signals
viewed through loglets is n 4 1. The joint intrinsic
dimensionality of an ideal (rank 1) local structure
tensor and the local phase is also n+ 1. The
dimensionality of the loglet space (using o = 1 in
Eq. (4)) is 7 in 2D and 16 in 3D. This gives residue
intrinsic dimensionalities of 4 in 2D and 12 in 3D.
The higher this number the better the estimates of
the residue will be from a statistical point of view.

Using only first-order spherical harmonics, e.g.
first-order derivatives, implies that » filter will be

used. This will exactly suffice to represent orienta-
tion and magnitude. Neither signal phase nor
deviations from the ideal signal case can be
estimated locally. In other words, all signal are
seen as ideal. It should be noted, however, that
averaging of local estimates remedies this draw-
back to some extent.

5.3. Certainty weighted tensor averaging

Using loglets local certainty estimates can be
used to improve the orientation estimates. Esti-
mating certainty is preferably done based on the
discussion in Section 5.2. The estimated residue
can be thought of as local noise. Traditional
estimation theory states that if several estimates of
the same signal are available they should be
weighted together using weights inversely propor-
tional to the corresponding noise variances. This is
the background for suggesting local certainty, ¢, to
be computed in practice as

= V(Etor — Eres)

= , 15
Eres + VEtot ( )

where Ey, is the total signal energy picked up by
the filter set used, E. is the energy of the residue,
y is a factor related to how much the actual filters
used deviate from the ideal filter shape.

This certainty estimate will range from 0 to 1.
The sensitivity of the estimate can be adjusted
through y.
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6. Experiments and locality evaluation

Commonly used local structure analysis algo-
rithms are quite complex and involve a lot more
than the filters used. The effects of the filters cannot
be separated from the rest of the analysis and this
makes comparisons difficult to interpret from a
filter point of view. In addition different approaches
can be expected to be preferable in different
situation. To reduce the number ‘free’ parameters
and target the filter design aspects a number of
simple 2D experiments have been carried out. The
experiments in this section were designed to
demonstrate the high locality of the loglet approach
as well as the performance in a few simple
situations. The intention is obviously not to prove
that our approach is always better but simply to
indicate the nature of the qualities gained.

The first experiment is based on the test signal
described in Section 2 which is shown in the upper
left part of Fig. 5. The local energy is computed

577

using both gradient and quadrature filters. The
quadrature filters were designed to mimic the
gradient filter for positive frequencies, see Fig. 4.
The dotted LP-filter is used to average the square
of the gradient response. Fig. 5 shows the results.
The spatial standard deviation, ¢, of the low-pass
filter is chosen such that the variance of the
spectrum is equal for the quadrature and gradient
filters, see Table 1. Note that this ¢ is a bit too

Table 1
Variances and uncertainty products for the quadrature and
gradient responses in Fig. 5

Small filters Large filters

Ox Ou Ox0y Ox Ou Ox0y
Loglets 0.894 0.566 0.506 1.672  0.300 0.502
Gradient  1.106  0.567  0.627 2.224  0.300  0.667

Theoretical uncertainty min value is 0.5. The table refer to the
filters in Fig. 4.

Small filters Largefilters
Quadrature Gradient Quadrature Gradient
-3 -2 -1 0 1 2 3 -2 -1 0 1 2 -8 -6 4 -2 0 2 4 6 8 -8 6 -4 -2 0 2 4 6 8
- -T2 0 n2 - -T/2 0 2 s - -T2 0 2 mo-n -T2 0 n2 s

Fig. 4. Compact support quadrature and gradient filters in the spatial domain (top row) and the Fourier domain (bottom row). The
dotted LP-filter is used to average the square of the gradient response.

Original Gradient

LP-Gradient Quadrature

- -T2 0 2 no-T -T2 0 2

n

-

< 2 -
-T2 0 2 T -T2 0 2 s

Fig. 5. Test signal and spatial results for eight different positions (top row) and corresponding spectra (bottom row). The LP-gradient

spectra is repeated (dotted) in the quadrature plot for comparison.
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Testimage

Testimage with shading

Fig. 6. Left: 2-dimensional spatio-temporal test image of an accelerating small dark object in front of a constant velocity background.

Right: the same image with a slight vertical shading added.

Shading case

Loglets

Gradients

Fig. 7. Result and orientation errors for the shaded spatio-temporal test image. The very small shading markedly increases the error of
the gradient based estimate but the loglet estimate seems to be unaffected.

small to completely remove the two peaks in the
gradient image.

From Fig. 5 and the uncertainty products in
Table 1 it is obvious that the localization of the
quadrature filters are superior compared to the
gradient filters. The experiment was carried out in
two scales and in both experiments the width in the
spatial domain (and the uncertainty product) is
more than 25% smaller for the quadrature filters.
The apparent aliasing for the small gradient filter
in Fig. 5 may suggest that the performance of the
gradient method can be improved by oversam-
pling. The results for the large filters in Table 1
show that this is not the case.

6.1. Orientation/velocity estimation

The second experiment comprises a 2D spatio-
temporal test signal where a small dark object is
moving in front of a moving background, Fig. 6
left. Also, for test purposes, a second test image
was constructed by adding a slight vertical shading
(barely visible) to this image, Fig. 6 right.

The velocity (or orientation) is estimated by
both quadrature filters and gradient filters.
The gradient filters in Fig. 4 where used but the
quadrature filters are now loglets. Both for the
gradient outer product matrix and the quadrature
tensors the orientation errors where estimated as

T B T
Ap=sin!y |5 D A" — 28] 1. (16)
=1

where ¢; is the eigenvector belonging to the largest
eigenvalue, i defines the true velocity (orientation)
of the image, N is the number of instances
summed.

The results are displayed in Figs. 7 and 8. In
Fig. 7 it is apparent that the slight shading present
in the signal misleads the estimation of the velocity
using the gradient approach. Without shading the
performances are more comparable but the quad-
rature approach still outperforms the gradient
approach. This is mainly due to better localization
properties as can be studied in Fig. 8.

In Fig. 9 plots of estimation errors are
shown for a range of tensor LP-filter sizes.
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No shading case
Loglets Gradients

Fig. 8. Results and errors for the spatio-temporal test image without shading. Results for three different sizes of tensor LP-filters are
shown, the spatial standard deviations are: top 0.4, middle 0.8, bottom 1.2. All of the loglet results are still better than the gradient
results.

No shading With shading
40 - - - - - - - - 40 - - - - - - - -
st 1 st ]
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20t 1 20} : -
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0 0.2 0.4 0.6 0.8 1 12 14 16 0 0.2 0.4 0.6 0.8 1 12 1.4 16

Fig. 9. Plots showing estimation errors (in degrees) for a range of tensor LP-filter sizes. The top curves are the gradient based errors,
the middle curves are the loglet errors and the bottom curves are loglet errors using certainty weighted tensor averaging.

The top curves are the gradient based errors, can be attained by using certainty weighted
the middle curves are the loglet errors and averaging of the tensors using ¢ from Eq. (15)
the bottom curves show the improvement that (y =0.01).
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