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Abstract

We propose an ICA contrast based on the density estimation of the observed signal and its
marginals by means of wavelets. The risk of the associated moment estimator is linked with
approximation properties in Besov spaces. It is shown to converge faster than the at least
expected minimax rate carried over from the underlying density estimations. Numerical
simulations performed on some common types of densities yield very competitive results,
with a high sensitivity to small departures from independence.
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1. Introduction

In signal processing, blind source separation consists in the identification of analogical,
independent signals mixed by a black-box device. In psychometry, one has the notion of
structural latent variable whose mixed effects are only measurable through series of tests; an
example are the Big Five (components of personality) identified from factorial analysis by
researchers in the domain of personality evaluation (Roch, 1995). Other application fields
such as digital imaging, biomedicine, finance and econometrics also use models aiming to
recover hidden independent factors from observation. Independent component analysis
(ICA) is one such tool; it can be seen as an extension of principal component analysis, in
that it goes beyond a simple linear decorrelation only satisfactory for a normal distribution;
or as a complement, since its application is precisely pointless under the assumption of
normality.

Papers on ICA are found in the research fields of signal processing, neural networks, statis-
tics and information theory. Comon (1994) defined the concept of ICA as maximizing the
degree of statistical independence among outputs using contrast functions approximated
by the Edgeworth expansion of the Kullback-Leibler divergence.

The model is usually stated as follows: let x be a random variable on R
d, d ≥ 2; one tries

to find couples (A, s), such that x = As, where A is a square invertible matrix and s a
latent random variable whose components are mutually independent. This is usually done
through some contrast function that cancels out if and only if the components of Wx are
independent, where W is a candidate for the inversion of A.
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Maximum-likelihood methods and contrast functions based on mutual information or other
divergence measures between densities are commonly employed. Cardoso (1999) used
higher-order cumulant tensors, which led to the Jade algorithm, Bell and Snejowski (1990s)
published an approach based on the Infomax principle. Hyvarinen and Oja (1997) presented
the fast ICA algorithm.

In the semi-parametric case, where the latent variable density is left unspecified, Bach and
Jordan (2002) proposed a contrast function based on canonical correlations in a reproducing
kernel hilbert space. Similarly, Gretton et al (2003) proposed kernel covariance and kernel
mutual information contrast functions.

The density model assumes that the observed random variable X has the density fA given
by

fA(x) = |detA−1|f(A−1x)

= |detB|f1(b1x) . . . f
d(bdx),

where bℓ is the ℓth row of the matrix B = A−1; this resulting from a change of variable if
the latent density f is equal to the product of its marginals f1 . . . fd. In this regard, latent
variable s = (s1, . . . , sd) having independent components means the indepence of the random
variables sℓ ◦ πℓ defined on some product probability space Ω =

∏

Ωℓ, with πℓ the canonical
projections. So s can be defined as the compound of the unrelated s1,. . . , sd sources.

Tsybakov and Samarov (2002) proposed a method of simultaneous estimation of the di-
rections bi, based on nonparametric estimates of matrix functionals using the gradient of
fA.

In this paper, we propose a wavelet based ICA contrast. The wavelet contrast Cj compares
the mixed density fA and its marginal distributions through their projections on a multires-
olution analysis at level j. It thus relies upon the procedures of wavelet density estimation
which are found in a series of articles from Kerkyacharian and Picard (1992) and Donoho
et al. (1996).

As will be shown, the wavelet contrast has the property to be zero only on a projected
density with independent components. The key parameter of the method lies in the choice
of a resolution j, so that minimizing the contrast at that resolution yields a satisfactory
approximate solution to the ICA problem.

The wavelet contrast can be seen as a special case of quadratic dependence measure, as
presented in Achard et al. (2003), which is equal to zero under independence. But in our
case, the resolution parameter j allows more flexibility in controlling the reverse implication.
Let’s mention also that the idea of comparing in the L2 norm a joint density with the product
of its marginals, can be traced back to Rosenblatt (1975).

Besov spaces are a general tool in describing smoothness properties of functions; they also
constitute the natural choice when dealing with projections on a multiresolution analysis.
We first show that a linear mixing operation is conservative as to Besov membership; after
what we are in position to derive a risk bound that will hold for the entire ICA minimization
procedure.

Under its simplest form, the wavelet contrast estimator is a linear function of the empirical
measure on the observation. We give the rule for the choice of a resolution level j minimizing
the risk, assuming a known regularity s for a latent signal in some Besov space Bspq.
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The estimator complexity is linear in the sample size but exponential in the dimension
d of the problem; this is on account of an implicit multivariate density estimation. In
compensation to this computational load, the wavelet contrast shows a very good sensitivity
to small departures from independence, and encapsulates all practical tuning in a single
parameter j.

2. Notations

We set here the main notations and recall some definitions for the convenience of ICA
specialists. The reader already familiar with wavelets and Besov spaces can skip this part.

Wavelets

Let ϕ be some function of L2(R) such that the family of translates {ϕ(. − k), k ∈ Z} is an
orthonormal system; let Vj ⊂ L2(R) be the subspace spanned by {ϕjk = 2j/2ϕ(2j .−k), k ∈ Z}.

By definition, the sequence of spaces (Vj), j ∈ Z, is called a multiresolution analysis (MRA)
of L2(R) if Vj ⊂ Vj+1 and

⋃

j≥0 Vj is dense in L2(R); ϕ is called the father wavelet or scaling
function.

Let (Vj)j∈Z be a multiresolution analysis of L2(R), with Vj spanned by {ϕjk = 2j/2ϕ(2j . −
k), k ∈ Z}. Define Wj as the complement of Vj in Vj+1, and let the families {ψjk, k ∈ Z} be
a basis for Wj , with ψjk(x) = 2j/2ψ(2jx− k). Let αjk(f) =< f, ϕjk > and βjk(f) =< f, ψjk >.

A function f ∈ L2(R) admits a wavelet expansion on (Vj)j∈Z if the series

∑

k

αj0k(f)ϕjk +

∞
∑

j=j0

∑

k

βjk(f)ψjk

is convergent to f in L2(R); ψ is called a mother wavelet.

The definition of a multiresolution analysis on L2(R
d) follows the same pattern. But an

MRA in dimension one also induces an associated MRA in dimension d, using the tensorial
product procedure below.

Define V d
j as the tensorial product of d copies of Vj. The increasing sequence (V d

j )j∈Z defines

a multiresolution analysis of L2(R
d) (Meyer, 1997):

for (i1 . . . , id) ∈ {0, 1}d and (i1 . . . , id) 6= (0 . . . , 0), define Ψ(x)i1...,id =
∏d

ℓ=1 ψ
(iℓ)(xℓ), with

ψ(0) = ϕ, ψ(1) = ψ, so that ψ appears at least once in the product Ψ(x) (we now on omit
i1 . . . , id in the notation for Ψ, and in (1), although it is present each time);

for (i1 . . . , id) = (0 . . . , 0), define Φ(x) =
∏d

ℓ=1 ϕ(xℓ);

for j ∈ Z, k ∈ Z
d, x ∈ R

d, let Ψjk(x) = 2
jd
2 Ψ(2jx− k) and Φjk(x) = 2

jd
2 Φ(2jx− k);

define W d
j as the orthogonal complement of V d

j in V d
j+1; it is an orthogonal sum of 2d − 1

spaces having the form U1j . . .⊗Udj, where U is a placeholder for V or W ; V or W are thus
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placed using up all permutations, but with W represented at least once, so that a fraction of
the overall innovation brought by the finer resolution j+1 is always present in the tensorial
product.

A function f admits a wavelet expansion on the basis (Φ,Ψ) if the series

∑

k∈Z
d

αj0k(f)Φj0k +
∞
∑

j=j0

∑

k∈Z
d

βjk(f)Ψjk, (1)

is convergent to f in L2(R
d).

In fact, with the concentration condition

∑

k

|ϕ(x + k)| ≤ C a.s., (2)

verified in particular for a compactly supported wavelet, any function in L1(R
d) admits a

wavelet expansion. Otherwise any function in a Besov space Bspq(R
d) admits a wavelet

expansion.

In connection with function approximation, wavelets can be viewed as falling in the category
of orthogonal series methods, or also in the category of kernel methods.

The approximation at level j of a funtion f that admits a multiresolution expansion is the
orthogonal projection Pjf of f onto Vj ⊂ L2(R

d) defined by:

(Pjf)(x) =
∑

k∈Z
d

αjkΦjk(x),

where αjk = αjk1...,kd =
∫

f(x)Φjk(x) dx.

With the concentration condition above, the projection operator can also be written

(Pjf)(x) =

∫

R
d

Kj(x, y)f(y)d(y),

with Kj(x, y) = 2jd
∑

k∈Z
d Φjk(x − k)Φjk(y − k). Kj is an orthogonal projection kernel with

window 2−jd (which is not translation invariant).

Besov spaces

Let f be a function in Lp(R
d) and h ∈ R

d. Define the first order difference ∆hf by ∆hf(x) =
f(x+h)−f(x) and the kth order difference ∆k

hf = ∆h∆k−1
h f (k = 1, 2, . . . with ∆0

hf = f, ∆1
hf =

∆hf).

The modulus of continuity of order k of f in the metric of Lp, along direction h, is defined
by (Nikol’skĭı, 1975, p.145-160)

ωk
h(f, δ)p = sup

|t|≤δ

‖∆k
thf(x)‖p, δ ≥ 0, |h| = 1.

4



The modulus of continuity of order k of f in the direction of the subspace R
m ⊂ R

d is
defined by

Ωk
R

m(f, δ)p = sup
|h|=1,h∈R

m

ωk
h(f, δ)p.

If the function f has arbitrary derivatives of order ̺ relative to the first m coordinates, one
can define, for h ∈ R

m,
f

(̺)
h =

∑

|n|=̺

f (n)hn,

with h = (h1, . . . , hm, 0, . . . , 0), |h| = 1, |n| =
∑m

1 ni and hn = hn1

1 . . . hnm
m = hn1

1 . . . hnm
m 00 . . . 00.

The modulus of continuity of order k of the derivatives of order ̺ of f is then defined by

Ωk
R

m(f (̺), δ)p = sup
|h|=1,h∈R

m

ωk
h(f

(̺)
h , δ)p =

∑

|n|=̺

Ωk
R

m(f (n), δ)p.

Let s = [s] + α; the Hölder space Hs
p(Rd) is defined as the collection of functions in Lp(R

d)
such that

‖∆hf
(n)‖p ≤M |h|α, ∀n = (n1, . . . , nd), with |n| =

d
∑

1

ni = [s],

or equivalently, Ω
R

d(f ([s]), δ)p = sup
h∈R

d

ωh(f ([s]), δ)p ≤Mδα,

where M does not depend on h.

Besov spaces introduce a finer scale of smoothness than is provided by Hölder spaces. For
each α > 0 this can be accomplished by introducing a second parameter q and applying (α,
q) quasi-norms (rather than (α, ∞)) to the modulus of continuity of order k.

Let s > 0 and (̺, k) forming an admissible pair of nonnegative integers satisfying the in-
equalities k > s−̺ > 0. By definition, f ∈ Lp(R

d) belongs to the class Bspq(R
d) if there exist

generalized partial derivatives of f of order n = (n1, . . . , nd), |n| ≤ ̺, and one of the following
semi-norms is finite:

J ′
spq(f) =

∑

|n|=̺

(
∫ ∞

0

|t−(s−̺)Ωk
R

d(f (n), t)p|
q dt

t

)
1
q

,

J ′′
spq(f) =

(
∫ ∞

0

|t−(s−̺)Ωk
R

d(f (̺), t)p|
q dt

t

)
1
q

.

(3)

For fixed s and p, the space Bspq gets larger with increasing q. In particular, for q = ∞,
Bspq(R) = Hs

p(R); various other embeddings exist since Besov spaces cover many well known
classical concrete function spaces having their own history.

Finally, Besov spaces also admit a characterization in terms of wavelet coefficients, which
makes them intrinsically connected to the analysis of curves via wavelet techniques.
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f belongs to the (inhomogeneous) Besov space Bspq(R
d) if

Jspq(f) = ‖α0.‖ℓp
+





∑

j≥0

[

2js2dj( 1
2
− 1

p )‖βj.‖ℓp

]q





1
q

<∞, (4)

with s > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and ϕ, ψ ∈ Cr, r > s (Meyer, 1997).

A more complete presentation of wavelets linked with Sobolev and Besov approximation
theorems and statistical applications can be found in the book from Härdle et al. (1998).
General references about Besov spaces are Peetre (1975), Bergh & Löfström (1976), Triebel
(1992), DeVore & Lorentz (1993).

3. Wavelet contrast, Besov membership

Let f be a density function with marginal distribution in dimension ℓ,

xℓ 7→

∫

R
d−1

f(x1. . . , xd) dx1 . . . dxℓ−1dxℓ+1 . . . dxd,

denoted by f⋆ℓ.

As integrable positive functions, f and the f⋆ℓ admit a wavelet expansion on a basis (ϕ, ψ)
verifying the concentration condition (2). One can then consider the projections up to
order j, that is to say the projections of f and f⋆ℓ on V d

j and Vj respectively, namely

Pjf(x) =
∑

k∈Z
d

αjkΦjk(x) and P ℓ
j f

⋆ℓ(xℓ) =
∑

kℓ∈Z

αjkℓϕjkℓ (xℓ),

where αjkℓ =
∫

f⋆ℓ(xℓ)ϕjkℓ (xℓ) dxℓ and αjk = αjk1...,kd =
∫

f(x)Φjk(x) dx.

Proposition 3.1 (wavelet contrast)

Let f be a density function on R
d and let ϕ be the scaling function of a multiresolution analysis

verifying the concentration condition (2).

Define the contrast function

Cj(f) =
∑

k1...,kd

(αjk1...,kd − αjk1 . . . αjkd )2,

with αjkℓ =
∫

R
f⋆ℓ(xℓ)ϕjkℓ (xℓ) dxℓ and αjk1...,kd =

∫

Rd f(x)Φjk1 ,...,kd(x) dx.

The following relation hold:
f factorizable =⇒ Cj(f) = 0.

If f and ϕ are compactly supported or else if f ∈ L2(R
d), the following relation hold:

Cj(f) = 0 =⇒ Pjf =

d
∏

ℓ=1

P ℓ
j f

⋆ℓ.
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Proof

As for the first assertion, with f = f1 . . . fd, one has f⋆ℓ = f ℓ, ℓ = 1, . . . d. Whence for
k = (k1, . . . , kd) ∈ Z

d, one has by Fubini theorem,

αjk(f) = αjk(f⋆1 . . . f⋆d) =

∫

R
d
f⋆1 . . . f⋆dΦjk(x)dx

=

∫

R

f⋆1ϕjk1 (x1)dx1 . . .

∫

R

f⋆dϕjkd (xd)dx = αjk1 (f⋆1) . . . αjkd(f⋆d).

For the second assertion, Cj = 0 entails αjk(f) = αjk1 (f⋆1) . . . αjkd(f⋆d) for all k ∈ Z
d. So

that for Pjf ∈ Lp(R
d),

Pjf =
∑

k

αjk(f)Φjk =
∑

k

αjk1 (f⋆1)ϕjk1 . . . αjkd(f⋆d)ϕjkd

=
∑

k1

αjk1 (f⋆1)ϕjk1 . . .
∑

kd

αjkd (f⋆d)ϕjkd

= P 1
j f

⋆1 . . . P d
j f

⋆d,

with passage to line 2 justified by the fact that (αjk(f)Φjk)k∈Z
d is a summable family of

L2(R
d) or else is a finite sum for a compactly supported density and a compactly supported

wavelet.

For the zero wavelet contrast to give any clue as to whether the non projected difference
f − f⋆1 . . . f⋆d is itself close to zero, a key parameter lies in the order of projection j.

Under the notations of the preceding proposition, with a zero wavelet contrast and assuming
existence in Lp, one has ‖Pjf − P 1

j f
⋆1 . . . P d

j f
⋆d‖p = 0, and so

‖ f − f⋆1 . . . f⋆d ‖p ≤ ‖f − Pjf‖p + ‖P 1
j f

⋆1 . . . P d
j f

⋆d − f⋆1 . . . f⋆d‖p

= ‖f − Pjf‖p + ‖Pj(f
⋆1 . . . f⋆d) − f⋆1 . . . f⋆d‖p.

If we now impose some regularity conditions on the densities, in our case if we now require
that f and the product of its marginals belong to the (inhomogeneous) Besov space Bspq(R

d),
the approximation error can be evaluated precisely. With a r-regular wavelet ϕ, r > s, the
very definition of Besov spaces implies for any member f that (Meyer, 1997)

‖f − Pjf‖p = 2−js ǫj , {ǫj} ∈ ℓq(N
d). (5)

Remark

In the special case where fA and the product of its marginals belong to L2(R
d), Parseval

equality implies that Cj is equal to the square of the L2 norm of PjfA−P 1
j f

⋆1
A . . . P d

j f
⋆d
A . And

one can write,

Cj(fA)
1
2 = ‖Pj(f

⋆1
A . . . f⋆d

A ) − PjfA‖2

≤ ‖fA − PjfA‖2 + ‖fA − f⋆1
A . . . f⋆d

A ‖2 + ‖Pj(f
⋆1
A . . . f⋆d

A ) − f⋆1
A . . . f⋆d

A ‖2,
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hence with notation K⋆(A, f) = ‖fA − f⋆1
A . . . f⋆d

A ‖2,

|K⋆(A, f) − Cj(fA)
1
2 | ≤ ‖fA − PjfA‖2 + ‖Pj(f

⋆1
A . . . f⋆d

A ) − f⋆1
A . . . f⋆d

A ‖2, (6)

which gives another illustration of the shrinking with j distance between the wavelet con-
trast and the true norm evaluated at fA. In particular when A 6= I, Cj(fA) cannot be small
and for A = I, Cj must be small, for j big enough.

Continuing on the special case p = 2, the wavelet contrast can be viewed as an example of
quadratic dependence measure as presented in the paper from Achard et al (2003).

Using the orthogonal projection kernel associated to the function ϕ, one has the writing

Cj(fA) =

∫

R
d

(

En
fA
Kj(x, Y ) −

d
∏

i=1

En
fA
Ki

j(x
i, Y i)

)2

dx,

with Kj(x, y) = 2jd
∑

k∈Z
d Φjk(x− k)Φjk(y− k) and Ki

j(x, y) = 2j
∑

k∈Z
ϕjk(xi − ki)ϕjk(yi − ki).

This is the form of the contrast in the paper from Achard et al. (2003), except that in
our case the kernel is not scale invariant; but the ICA context is scale invariant by feature,
since the inverse of A is conventionally determined up to a scaling diagonal or permutation
matrix, after a whitening step.

To take advantage of relation (5) in the ICA context, we need a fixed Besov space containing
the mixed density fA and the product of its marginals, for any invertible matrix A.

The two following propositions check that the mixing by A is conservative as to Besov
membership, and that the product of the marginals of a density f belongs to the same
Besov space than f . It is equivalent to assume that f is in Bspq(R

d) or that the factors f i

are in Bspq(R). If the factors have different Besov parameters, one can theoretically always
find a bigger Besov space using Sobolev inclusions

Bs′pq′ ⊂ Bspq for s′ ≥ s, q′ ≤ q;

Bspq ⊂ Bs′p′q for p ≤ p′ and s′ = s+ d/p′ − d/p.

Proposition 3.2 (Besov membership of marginal distributions)

If f is a density function belonging to Bspq(R
d) then each of its marginals belong to Bspq(R).

proof

Let us first check the Lp membership of the marginal distribution. For p ≥ 1, by convexity
one has,

∫

R
d

|fA|
p dx =

∫

R

∫

R
d−1

|fA|
p dx⋆ℓdxℓ ≥

∫

R

∣

∣

∣

∣

∫

R
d−1

fA dx
⋆ℓ

∣

∣

∣

∣

p

dxℓ =

∫

R

|f⋆l
A |p dxℓ;

that is to say ‖f⋆l
A ‖p ≤ ‖fA‖p.
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With the ℓth canonical vector of R
d denoted by eℓ and for t ∈ R, one has,

∆k
t f

⋆ℓ(xℓ) =
k
∑

l=0

(−1)l+kCl
kf

⋆ℓ(x+ t) =
k
∑

l=0

(−1)l+kCl
k

∫

R
d−1

f(x+ teℓ)dx∗ℓ =

∫

R
d−1

∆k
teℓf(x)dx∗ℓ;

so that

‖∆k
t f

⋆ℓ‖p
Lp(R)

=

∫

R

∣

∣

∣

∣

∫

R
d−1

∆k
teℓf(x)dx∗ℓ

∣

∣

∣

∣

p

dxℓ ≤

∫

R
d

∣

∣∆k
teℓf(x)

∣

∣

p
dx ≤ ‖∆k

teℓf‖
p

Lp(Rd)
,

and
ωk(f⋆ℓ, δ)p = sup

|t|≤δ

‖∆k
t f

⋆ℓ‖Lp(R) ≤ sup
|t|≤δ

‖∆k
teℓf‖Lp(Rd) = ωk

eℓ(f, δ)p,

and
Ωk(f⋆ℓ, δ)p = ωk(f⋆ℓ, δ)p ≤ ωk

eℓ(f, δ)p ≤ sup
|h|=1,h∈R

d

ωk
h(f, δ)p = Ωk

R
d(f, δ)p.

Using the admissible pair (k, ̺) = ([s] + 1, 0), one can see from (3) that J ′
spq(f

⋆ℓ) ≤ J ′
spq(f).

Next, we check that the mixed density fA belongs to the same Besov space than the original
density f .

Proposition 3.3 (Besov membership of the mixed density)

Let f = f1 . . . fd and fA(x) = |detA−1|f(A−1x).

(a) if f ∈ Lp(R
d), or if each f ℓ belongs to Lp(R), then fA and the product

∏

f⋆ℓ
A belong to Lp(R

d).

(b) f and fA have same Besov semi-norm up to a constant.

Hence f and fA belong to the same (inhomogeneous) Besov space Bspq.

proof

For (a), with p ≥ 1, as in Prop. 3.2 above, one has ‖f⋆ℓ
A ‖p ≤ ‖fA‖p. Also, with the

determinant of A denoted by |A|,

‖fA‖p = |A|−p

∫

|f(A−1x)|p dx = |A|−p

∫

|f(x)|p |A| dx = |A|1−p ‖f‖p.

And finally by Fubini theorem, ‖f‖Lp(Rd) = ‖f1‖Lp(R) . . . ‖f
d‖Lp(R), so that f ∈ Lp(R

d) ⇐⇒

f ℓ ∈ Lp(R), ℓ = 1 . . . d .

For (b), with a change of variable in the integral one has,

‖∆thfA‖p = |A|−1+ 1
p ‖∆tA−1hf‖p ;

so that

ωh(fA, δ)p = sup
|t|≤δ,|h|=1

‖∆thfA‖p = |A|−1+ 1
p sup

|t|≤δ|A−1h|,|h|=1

‖∆thf‖p = ωl(f, δ|A
−1h|)p, |h| = 1;
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and
Ω

R
d(fA, δ)p = |A|−1+ 1

p Ω
R

d(f, δ|A−1h|)p, |h| = 1.

Next, with the change of variable u = t|A−1h|,
∫ ∞

0

|t−αΩ(fA, t)|
q dt

t
= (|A|−1+ 1

p |A−1h|α)q

∫ ∞

0

|u−αΩ(f, u)|q
du

u
, |h| = 1

≤ (|A|−1+ 1
p ‖A−1‖α)q

∫ ∞

0

|u−αΩ(f, u)|q
du

u
.

In view of (3), using the admissible pair (k, ̺) = ([s] + 1, [s]) yields the desired result when
0 < s < 1.

When 1 ≤ s, with the same admissible pair (k, ̺) = ([s] + 1, [s]), and by recurrence, since
dfA(h) = |A−1| df(A−1h) ◦ A−1 one can see in the same way that the modulus of continuity
of the (generalized) derivatives of fA or order k are bounded by those of f .

Note that if A is whitened, in the context of ICA, the norms of f and fA are equal, at least
when s < 1.

4. Risk upper bound

Define the experiment En = (X⊗n, A⊗n, (X1, . . . , Xn), Pn
fA
, fA ∈ Bspq), where X1, . . . , Xn is

an iid sample of X = AS, and Pn
fA

= PfA
. . . ⊗ PfA

is the joint distribution of (X1 . . . , Xn).
Likewise, define Pn

f as the joint distribution of (S1 . . . , Sn).

The coordinates αjk in the wavelet contrast are estimated as usual by,

α̂jk1...,kd =
1

n

n
∑

i=1

ϕjk1 (X1
i ) . . . ϕjkd(Xd

i ) and α̂jkℓ =
1

n

n
∑

i=1

ϕjkℓ (Xℓ
i ), ℓ = 1, . . . d. (7)

The linear wavelet contrast estimator is given by,

Ĉj(x1 . . . , xn) =
∑

k1...,kd

(α̂jk1...,kd − α̂jk1 . . . α̂jkd)2 =
∑

k∈Z
d

δ̂2jk, (8)

where we define δ̂jk as the difference α̂jk1...,kd − α̂jk1 . . . α̂jkd .

The estimator α̂jkis unbiased under En
fA

, but so is not α̂jk1 . . . α̂jkd unless A = I, although
it is asymptotically unbiased.

We also make the assumption that both the density and the wavelet are compactly sup-
ported so that all sums in k are finite. For simplicity we further suppose the density support
to be the hypercube, so that

∑

k 1 ≈ 2jd.

To bound the risk we use a single lemma whose proof relies on a classical U-statistic lemma,
namely the connection between a U-statistic and its associated Von Mises statistic. To fit
our purpose the U-statistic lemma first needed to be adapted to kernels that are (generally
unsymmetric) products of Φjk and ϕjk ◦ πℓ, and thus depend on the resolution parameter
j. This is done in lemmas 7.2 appearing in the Appendix.
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Lemma 4.1 (Moments of wavelet coefficients estimators)

Let ρ, σ ≥ 0 be fixed integers; the following relations hold:

En
fA
α̂ρ

jk(α̂jk1 . . . α̂jkd)σ = αρ
jk(αjk1 . . . αjkd)σ +O(n−1).

And in corollary, En
fA
δ̂ρ
jk = δρ

jk +O(n−1).

proof

To the statistic Vnj = α̂ρ
jk(α̂jk1 . . . α̂jkd)σ corresponds a U-statistic Unj with unsymmetric

kernel

hj(x1, . . . , xρ+dσ) = Φjk(x1) . . .Φjk(xρ)ϕjkℓ1 ◦ πℓ1(xρ+1) . . . ϕjkℓdσ ◦ πℓdσ(xρ+dσ),

with πℓ the canonical projection on component ℓ, (ℓiσ+1, . . . , ℓ(i+1)σ) = (1, . . . , d), i = 0 . . . d−1

and Φ(x) =
∏d

ℓ=1 ϕ ◦ πℓ(x).

By application of lemma 7.2 in Appendix,

|En
fA
α̂ρ

jk(α̂jk1 . . . α̂jkd )σ − αρ(αjk1 . . . αjkd )σ| ≤ En
fA

|Vnj − Unj | = O(n−1)

We now express a risk bound for the wavelet contrast estimator. In particular we show
that the bias of the estimator is of the order of C2jd/n. This is better than the convergence
rate of n

−1

2 for the empirical Hilbert-Schmidt independence criterion (Gretton et al. 2004,
theorem 3), except that in our case the resolution parameter j must still be set to some
value, especially to cope with the antagonist objectives of reducing the estimator bias and
variance.

Proposition 4.4 (Risk upper bound for Ĉj)

The quadratic risk En
fA

(Ĉj − Cj)
2 and the bias En

fA
Ĉj − Cj have convergence rate 2jdO(1/n).

In corollary, the variance En
fA

(

Ĉj − En
fA
Ĉj

)2

has convergence rate 2jdO(1/n) and the quadratic

risk around zero is En
fA
Ĉ2

j = C2
j + 2jdO(1/n).

proof

The risk about Cj is written,

En
fA

(

Ĉj − Cj

)2

= En
fA

∑

k,ℓ

(δ̂2jk − δ2jk)(δ̂2jℓ − δ2jℓ) (9)

For the squared terms where k = ℓ, lemma 4.1 yields directly En
fA

(δ̂2jk − δ2jk)2 = O(n−1), so
that the corresponding risk component is bounded by C2jdn−1.
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For crossed terms where k 6= ℓ, observe that with a compactly supported Daubechies Wavelet
D2N , whose support is [0, 2N − 1], only a thin band of terms around the diagonal is non
zero:

ϕjkϕjℓ = 0, for |ℓ− k| ≥ 2N − 1.

When k is fixed, the cardinal of the set |ℓ − k| ≤ 2N − 1 is lower than (4N)d; hence, by
Cauchy-Schwarz inequality and lemma 4.1,

En
fA

∑

k,ℓ

(δ̂2jk − δ2jk)(δ̂2jℓ − δ2jℓ) ≤
∑

k

En
fA

1
2 (δ̂2jk − δ2jk)2

∑

|ℓ−k|≤2N−1

[En
fA

(δ̂2jℓ − δ2jℓ)
2]

1
2

≤ 2jdCn−1/2 (4N)dCn−1/2 = C2jdn−1.

The bias convergence rate is a direct consequence of lemma 4.1, and the two remaining
assertions follow from the usual relations, En

fA
(Ĉj −Cj)

2 = En
fA

(Ĉj −E
n
fA
Ĉj)

2 +(En
fA
Ĉj −Cj)

2;

and En
fA
Ĉ2

j = (En
fA
Ĉj)

2 + En
fA

(Ĉj − En
fA
Ĉj)

2.

We now give a rule for choosing the resolution j minimizing the (about zero) risk upper
bound. This rule, obtained as usual through bias-variance balancing, depends on s, the
unknown regularity of f , supposed to be a member of some Besov space Bspq. The associated

convergence rate improves upon the minimax n
−2s
2s+d of the underlying density estimations

(see Kerkyacharian & Picard, 1992).

Proposition 4.5 (minimizing resolution in the class Bs2∞)

Assume that f belongs to Bs2∞(Rd), and that Cj is based on a r-regular wavelet ϕ, r > s.

The minimizing resolution j is such that 2j ≈ n
1

4s+d and ensures a quadratic risk converging to zero

at rate n− 4s
4s+d .

proof

By Prop. 3.2 and 3.3 we know that fA and the product of its marginal distributions belong
to the same Besov space than the original f , so that equation (6) becomes

|K⋆(A, f) − Cj(fA)
1
2 | ≤ K2−js; (10)

with K a constant.

Taking power 4 of (10) and using prop. 4.4,

R(Ĉj , fA) +K⋆Q(C
1
2

j ,K
⋆) ≤ K2−4js + 2jdKn−1 ,

with K a placeholder for an unspecified constant, Q(a, b) = −4a3 + 6a2b − 4ab2 + b3, and R
denoting the quadratic risk around zero.

When A is far from I, the constant K⋆ is strictly positive and the risk relative to zero has
no useful upper bound. Although the risk relative to Cj is always in 2jdKn−1.
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With A getting closer to I, K⋆ is brought down to zero and the bound is minimum when,
constants apart, we balance 2−4js with 2jdn−1, or 2j(d+4s) with n.

This yields 2j = O(n
1

4s+d ) and convergence rate n
−4s
4s+d for the risk relative to zero under

independence and also for the risk relative to Cj by substitution in the expression given by
Prop. 4.4.

Corollary 4.1 (minimizing resolution in the class Bspq)

Assume that f belongs to Bspq(R
d), and that Cj is based on a r-regular wavelet ϕ, r > s′.

The minimizing resolution j is such that 2j ≈ n
1

4s′+d , with s′ = s+d/2−d/p if 1 ≤ p ≤ 2 and s′ = s
if p > 2.

This resolution ensures a quadratic risk converging to zero at rate n− 4s′

4s′+d .

proof

If 1 ≤ p ≤ 2, using the Sobolev embedding Bspq ⊂ Bs′p′q for p ≤ p′ and s′ = s+ d/p′− d/p, one
can see that fA belongs to Bs′2q with s′ = s+ d/2− d/p, and so by definition, with {ǫj} ∈ ℓq,

‖fA − PjfA‖2 ≤ ǫj2
−j(s+d/2−d/p).

If p > 2, since we consider compactly supported densities, with {ǫj} ∈ ℓq,

‖fA − PjfA‖2 ≤ ‖fA − PjfA‖p ≤ ǫj2
−js.

Finally with s′ as claimed, equation (6) yields again|K⋆(A, f) − Cj(fA)
1
2 | ≤ K2−js′

.

5. Computation of the estimator Ĉj

The estimator is computable by means of any Daubechies wavelet, including the Haar
wavelet.

For a regular wavelet (D2N,N > 1), it is known how to compute the values ϕjk(x) (and any
derivative) at dyadic rational numbers (Nguyen and Strang, 1996); this is the approach we
have adopted in this paper.

Alternatively, using the customary filtering scheme, one can compute the Haar projection at
high j and use a discrete wavelet transform (DWT) by a D2N to synthetize the coefficients
at a lower, more appropriate resolution before computing the contrast. This avoids the
need to precompute any value at dyadics, because the Haar projection is like a histogram,
but adds the time of the DWT.

While this second approach usually gives full satisfaction in density estimation, in the ICA
context, without special care, it can lead to an inflation of computational resources, or a
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possibly inoperative contrast at minimization stage. Indeed, for the Haar contrast to show
any variation in response to a small perturbation, j must be very high regardless of what
would be required by the signal regularity and the number of observations; whereas for
a D4 and above, we just need to set high the precision of dyadic rational approximation,
which present no inconvenience and can be viewed as a memory friendly refined binning
inside the binning in j.

We have then chosen the approach with dyadics for simplicity at the minimization stage
and possibly more accurate solutions.

Also for simplicity, in all simulations that follow we have adopted the convention that
the whole signal is contained in the hypercube [0, 1]⊗d, after possible rescaling. For the
compactly supported Daubechies wavelets (Daubechies, 1992), D2N,N = 1, 2, . . ., whose
support is [0, 2N − 1], the maximum number of k intersecting with an observation lying in
the cube is (2j + 2N − 2)d.

Note that relocation in the unit hypercube is not a requirement, but otherwise a sparse
array implementation should be used for efficiency.

Sensitivity of the wavelet contrast

In this section, we compare independent and mixed D2 to D8 contrasts on a uniform
whitened signal, in dimension 2 with 100000 observations, and in dimension 4 with 50000
observations. According to proposition 4.5, for s = +∞ the best choice is j = 0, to be
interpreted as the smallest of technically working j, i.e. satisfying 2j > 2N − 1, to ensure
that the wavelet support is mostly contained in the observation support.

For j = 0, there is only one cell in the cube and the contrast is unable to detect any
mixing effect: for Haar it is identically zero, and for the others D2N it is a constant (quasi
for round-off errors) because we use circular shifting if the wavelet passes an end of the
observation support. At small j such that 2 ≤ 2j ≤ 2N − 1, D2N wavelets behave more or
less like the Haar wavelet, except they are more responsive to a small perturbation. We
use the Amari distance as defined in Amari (1996) rescaled from 0 to 100.

In this example, we have deliberately chosen an orthogonal matrix producing a small Amari
error (less than 1 on a scale from 0 to 100), pushing the contrast to the limits.

j D2 indep D2 mixed cpu

0 0.000E+00 0.000E+00 0.12

1 0.184E-06 0.102E-10 0.06

2 0.872E-04 0.199E-04 0.06

3 0.585E-03 0.294E-03 0.06

4 0.245E-02 0.285E-02 0.06

5* 0.926E-02 0.110E-01 0.07

6 0.395E-01 0.387E-01 0.07

7 0.162E+00 0.162E+00 0.07

8 0.651E+00 0.661E+00 0.08

9 0.262E+01 0.262E+01 0.12

10 0.105E+02 0.105E+02 0.23

11 0.419E+02 0.419E+02 0.69

12 0.168E+03 0.168E+03 2.48

j D4 indep D4 mixed cpu

0 0.250E+00 0.250E+00 0.21

1* 0.239E+00 0.522E+00 0.17

2 0.198E-04 0.209E-04 0.17

3 0.127E-03 0.159E-03 0.17

4 0.635E-03 0.714E-03 0.17

5 0.235E-02 0.282E-02 0.17

6 0.988E-02 0.105E-01 0.17

7 0.405E-01 0.419E-01 0.17

8 0.163E+00 0.165E+00 0.21

9 0.653E+00 0.653E+00 0.26

10 0.261E+01 0.262E+01 0.39

11 0.104E+02 0.105E+02 0.87

12 0.419E+02 0.420E+02 2.67

Table 1a. Wavelet contrast values for a D2 and a D4 on a uniform density in dimension 2 under a half degree rotation

Amari error ≈ .8, nobs=100000, L=10,
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j D6 indep D6 mixed cpu

0 0.304E+00 0.304E+00 0.37

1 0.304E+00 0.305E+00 0.37

2* 0.215E+00 0.666E+00 0.37

3 0.132E-03 0.188E-03 0.36

4 0.641E-03 0.717E-03 0.36

5 0.295E-02 0.335E-02 0.35

6 0.123E-01 0.126E-01 0.37

7 0.495E-01 0.518E-01 0.36

8 0.198E+00 0.200E+00 0.41

9 0.796E+00 0.791E+00 0.49

10 0.319E+01 0.319E+01 0.64

11 0.127E+02 0.128E+02 1.13

12 0.509E+02 0.511E+02 2.97

j D8 indep D8 mixed cpu

0 0.966E+00 0.966E+00 0.65

1 0.966E+00 0.197E+01 0.64

2* 0.914E+00 0.333E+01 0.65

3 0.446E-03 0.409E-03 0.64

4 0.220E-02 0.214E-02 0.64

5 0.932E-02 0.104E-01 0.63

6 0.388E-01 0.383E-01 0.63

7 0.157E+00 0.160E+00 0.64

8 0.628E+00 0.630E+00 0.71

9 0.253E+01 0.252E+01 0.84

10 0.101E+02 0.101E+02 1.03

11 0.405E+02 0.406E+02 1.53

12 0.162E+03 0.162E+03 3.37

Table 1b. Wavelet contrast values for a D6 and a D8 on a uniform density in dimension 2 under a half degree rotation

Amari error ≈ .8, nobs=100000, L=10,

First, the Haar contrast is out of touch; at low resolution the mixing passes unnoticed
because the observations stay in their original bins, and at high resolution, as for the other
wavelets, any detection becomes impossible because the ratio 2jd/n gets too big, and clearly
wanders from the optimal rule of Prop. 4.5.

Had we chosen a mixing with bigger Amari error, say 10, the Haar contrast would have
worked at many more resolutions (this can be checked using the program icalette1); still,
the Haar contrast is less likely to reach small Amari errors in a minimization process.

For wavelets D4 and above, the contrast is able to capture the mixing effect especially at
low resolution (resolution with largest relative increase marked) and up to j = 8. Also, the
wavelet support technical constraint is apparent between D4 and D6 or D8.

Finally we observe that the difference in computing time between Haar and a D8 is not
significative in small dimension; it gets important starting from dimension 4 (Table 2).
Note that the relatively longer cpu time for 2j < 2N − 1 is caused by the need to compute
a circular shift for practically all points instead of only at borders.

j D2 indep D2 mixed cpu

0 0.000E+00 0.000E+00 0.08

1 0.100E-03 0.155E-06 0.05

2 0.411E-02 0.221E-02 0.05

3 0.831E-01 0.684E-01 0.05

4 0.132E+01 0.129E+01 0.08

5 0.210E+02 0.210E+02 0.29

6 0.336E+03 0.335E+03 3.62

j D4 indep D4 mixed cpu

0 0.625E-01 0.625E-01 0.85

1 0.624E-01 0.304E+00 0.83

2 0.283E-03 0.331E-03 0.82

3 0.503E-02 0.453E-02 0.83

4 0.818E-01 0.824E-01 0.92

5 0.130E+01 0.133E+01 1.30

6 0.211E+02 0.211E+02 4.68

j D6 indep D6 mixed cpu

0 0.926E-01 0.926E-01 6.03

1 0.927E-01 0.929E-01 6.01

2 0.884E-01 0.825E+00 6.01

3 0.725E-02 0.744E-02 6.07

4 0.122E+00 0.117E+00 6.40

5 0.193E+01 0.195E+01 7.51

6 0.311E+02 0.311E+02 11.0

j D8 indep D8 mixed cpu

0 0.934E+00 0.934E+00 22.8

1 0.934E+00 0.364E+01 22.8

2 0.937E+00 0.111E+02 22.8

3 0.751E-01 0.751E-01 22.9

4 0.124E+01 0.117E+01 24.1

5 0.196E+02 0.196E+02 27.0

6 0.313E+03 0.313E+03 30.8

Table 2. Wavelet contrast values on a uniform density, dim=4 , nobs=50000, L=10, Amari error ≈ .5

Computation uses double precision, but single precision works just as well. There is no
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guard against inaccurate sums that occur about 10% of the time for D4 and above, because
it does not prevent a minimum contrast from detecting independence. Dyadic approxi-
mation parameter L is set at octave 10, about three exact decimals, and shows enough.
Cpu times, in seconds, correspond to the total of the projection time on V d

j and on the
d Vj , added to the wavelet contrast computation time; machine used for simulations is a
G4 1,5Mhz, with 1Go ram; programs are written in fortran and compiled with IBM xlf
(program icalette1 to be found in Appendix).

Contrast complexity

By complexity we mean the length of do-loops.

The projection of n observations on the tensorial space V d
j and the d margins for a Db(2N)

has complexity O(n(2N − 1)d). This is O(n) for a Haar wavelet (2N=2) which boils down
to making a histogram. The projection complexity is almost independent of j except for
memory allocation. Once the projection at level j is known, the contrast is computed in
O(2jd).

On the other hand, the complexity to apply one discrete wavelet transform at level j has
complexity O(2jd(2N − 1)d). So we see that the filtering approach consisting in taking the
Haar projection for a high j1 (typically 2j1d ≈ n

log n) and filter down to a lower j0, as a
shortcut to direct D2N moment approximation at level j0, is definitely a shortcut; except
that the Haar wavelet carries with it a lack of sensitivity to small perturbations, which
is a problem for empirical gradient evaluation or the detection of a small departure from
independence.

For comparison, the Hilbert-Schmidt independence criterion is theoretically computed in
O(n2) (Gretton et al. 2004 section 3), and the Kernel ICA criterion is theoretically com-
puted in O(n3d3). In both cases, using incomplete Choleski decomposition and low-rank
approximation of the Gram matrix, the complexity is brought down in practice to O(nd2)
for HSIC and O(n2 log n) for Kernel ICA(Bach and Jordan 2002 p.19).

6. Contrast minimization

The natural way to minimize the ICA contrast as a function of a demixing matrix W , is
to whiten the signal and then carry out a steepest descent algorithm given the constraint
tWW = Id, corresponding to W lying on the the Stiefel manifold S(d, d) = O(d). In the ICA
context, we can restrict to SO(d) ⊂ O(d) thus ignoring reflections that are not relevant.

Needed material for minimization on the Stiefel manifold can be found in the paper of Arias
et al. (1998). Another very close method uses the Lie group structure of SO(d) and the
corresponding Lie algebra so(d) mapped together by the matrix logarithm and exponential
(Plumbley, 2004). For convenience we reproduce here the algorithm in question, which is
equivalent to a line search in the steepest descent direction in so(d):

start at O ∈ so(d), equivalent to I ∈ SO(d);

move about in so(d) from 0 to −η∇BJ , where η ∈ R
+ corresponds to the minimum in

direction ∇BJ found by a line search algorithm, where ∇BJ = ∇J tW−W t∇J is the gradient
of J in so(d), and where ∇J is the gradient of J in SO(d);

use the matrix exponential to map back into SO(d), giving R = exp(−η∇BJ);
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calculate W ′ = RW ∈ SO(d) and iterate.

We reproduce below some typical runs (program icalette3), with a D4 and L = 10. Note
that on example 2, the contrast cannot be usefully minimized because of a wrong resolution.

d=3, j=3, n=30000 uniform

it contrast amari

0 0.127722 65.842

1 0.029765 15.784

2 0.002600 2.129

3 0.001939 0.288

4 - -

5 - -

d=3, j=5, n=30000 uniform

it contrast amari

0 0.321970 65.842

1 0.321948 65.845

2 0.321722 65.999

3 0.321721 65.999

4 - -

5 - -

d=3, j=3, n=10000 uniform

it contrast amari

0 0.092920 42.108

1 0.035336 14.428

2 0.007458 3.392

3 0.006345 1.684

4 0.006122 1.109

5 0.006008 0.675

d=4, j=2, n=10000 uniform

it contrast amari

0 0.025193 22.170

1 0.010792 9.808

2 0.003557 4.672

3 0.001272 1.167

4 0.001033 0.502

5 0.000999 0.778

d=3, j=4, n=30000 expone.

it contrast amari

0 8.609670 52.973

1 5.101633 48.744

2 0.778619 16.043

3 0.017585 3.691

4 0.008027 2.262

5 0.006306 1.542

d=3, j=3, n=10000 semici.

it contrast amari

0 0.041392 35.080

1 0.029563 22.189

2 0.007775 5.601

3 0.006055 3.058

4 0.005387 2.261

5 0.005355 1.541

Table 3. Minimization examples at various j, d and n with D4 and L=10

In our simulations, ∇J is computed by first differences; in doing so we cannot keep perturbed
W orthogonality, and we actually compute a plain gradient in R

dd.

Again, a Haar contrast empirical gradient is tricky to obtain, since a small perturbation
in W will likely result in an unchanged histogram at small j, whereas with D4 and above
contrasts, response to perturbation is practically automatic and is anyway adjustable by
the dyadic approximation parameter L.

Below is the average of 100 runs in dimension 2 with 10000 observations, D4, j = 3 and
L = 10 for different densities; start columns indicate Amari distance (on the scale 0 to 100)
and wavelet contrast on entry; it column is the average number of iterations. Note that
for some densities after whitening we are already close to the minimum, but the contrast
still detects a departure from independence; the routine exits on entry if the contrast or
the gradient are too small, and this practically always correspond to an Amari distance less
than 1 in our simulations.

density Amari start Amari end cont. start cont. end it.

uniform 53.193 0.612 0.509E-01 0.104E-02 1.7

exponential 32.374 0.583 0.616E-01 0.150E-03 1.4

Student 2.078 1.189 0.534E-04 0.188E-04 0.1

semi-circ 51.401 2.760 0.222E-01 0.165E-02 1.8

Pareto 4.123 0.934 0.716E-03 0.415E-05 0.3

triangular 46.033 7.333 0.412E-02 0.109E-02 1.6

normal 45.610 45.755 0.748E-03 0.408E-03 1.4

Cauchy 1.085 0.120 0.261E-04 0.596E-06 0.1

Table 4. Average results of 100 runs in dimension 2, j=3 with a D4 at L=10

These first results are comparable with the performance of existing ICA algorithms, as
presented for instance in the paper of Jordan and Bach (2002) p.30 (average Amari error
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between 3 and 10 for 2 sources and 1000 observations) or Gretton et al (2004) table 2
(average Amari error between 2 and 6 for 2 sources and 1000 observations).

Finally we give other runs on the example of the uniform density at resolution j = 2 under
different parameters settings, and relatively fewer number of observations.

obs. dim L Amari start Amari end cont. start cont. end it.

250 2 10 47.387 38.919 0.279E-01 0.193E-01 2.4

250 2 13 47.387 32.470 0.279E-01 0.170E-01 2.2

250 2 16 47.387 17.915 0.279E-01 0.603E-02 2.3

250 2 19 47.387 19.049 0.279E-01 0.598E-02 2.6

500 2 10 51.097 20.700 0.246E-01 0.106E-01 2.1

500 2 13 51.097 6.644 0.246E-01 0.398E-02 2.2

500 2 16 51.097 21.063 0.246E-01 0.109E-01 2.1

500 2 19 51.097 14.734 0.246E-01 0.839E-02 2.4

1000 2 10 41.064 3.533 0.167E-01 0.186E-02 2.3

1000 2 13 41.064 3.071 0.167E-01 0.190E-02 2.1

1000 2 16 41.064 3.518 0.167E-01 0.194E-02 1.9

1000 3 16 49.607 15.082 0.405E-01 0.127E-01 4.8

5000 3 10 49.575 5.405 0.390E-01 0.399E-02 4.5

5000 3 16 49.575 1.668 0.390E-01 0.960E-03 4.7

5000 4 10 43.004 17.036 0.561E-01 0.190E-01 4.4

5000 5 10 38.400 29.679 0.800E-01 0.559E-01 4.1

5000 5 16 38.400 4.233 0.798E-01 0.700E-02 5.0

5000 6 16 42.529 10.841 0.114E+00 0.278E-01 4.9

5000 7 16 41.128 15.761 0.188E+00 0.573E-01 5.0

5000 8 16 39.883 14.137 0.286E+00 0.743E-01 5.0

Table 5. Average results of 10 runs, j=2, with a D4, truncated at 5 iterations.

One can see that raising the dyadic approximation parameter L tends to improve the
minimization when the number of observations is ”low” relatively to the number or cells
2jd, but that 500 observations in dimension 2 seems to be a minimum in the current state
of the program. In higher dimensions, a higher number of observations is required, and in
dimension 6 and above, 5000 is not enough at L=16.

A visual example in dimension 2

In dimension 2, we are exempted from any added complication brought by a gradient descent
and Stiefel minimization. After whitening, the inverse of A is an orthogonal matrix, whose
membership can be restricted to SO(2), ignoring reflections. So there is only one parameter
θ to find to achieve reverse mixing. Since permutations of axes are also void operations
in ICA, angles in the range 0 to π/2 are enough to find out the minimum W0 which, right
multiplied by N, will recover the ICA inverse of A. And A can be set to the identity matrix,
because what changes when A is not the identity, but any invertible matrix, is completely
contained in N.

Figures below show the wavelet contrast in W and the amari distance d(A,WN) (where N
is the matrix computed after whitening), functions of the rotation angle of the matrix W
restricted to one period, [0, π/2]. The minimums are not necessarily at a zero angle, for
precisely, mere whitening leaves the signal in a random rotated position (to reproduce the
following results run the program icalette2).

We see that, provided Amari error and wavelet contrast have coinciding minima, any line
search algorithm will find the angle to reverse the mixing effect. We see also in Fig.2 that
the Haar wavelet contrast is perfectly suitable to detect independence, so that minimization
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methods not gradient based might work very well in this case.

On the example of the uniform density (Fig.3) we have an illustration of a non smooth
contrast variation typical of a too high resolution j given regularity and number of obser-
vations.
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Fig.1. Exponential, D4, j=6, n=10000
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Fig.2. Student, D2, j=2, n=10000
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Fig.3. Uniform, D4, j=7, n=10000
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Fig.4. Cauchy, D4, j=5, n=50000

7. Appendix

Lemma 7.2 (Approximation by the j-dependent U-statistic)

Let (X1 . . . , Xn) be an i.i.d. sample of a random variable on R
d and let ρ, σ, m be positive integers

verifying ρ+ σ = m. Let hj be a (possibly unsymmetric) kernel function on R
md defined as

hj(x1, . . . , xm) = Φjk(x1) . . .Φjk(xρ)ϕjkℓ1 ◦ πℓ1(xρ+1) . . . ϕjkℓσ ◦ πℓσ (xρ+σ),

with πℓ the canonical projection on component ℓ and Φ(x) =
∏d

ℓ=1 ϕ ◦ πℓ(x).

Consider the associated U-statistic and Von Mises V statistic,

Unj =
(n−m)!

n!

∑

i1 6=...6=im

hj(Xi1 , . . . , Xim
), Vnj =

1

nm

∑

i1,...,im

hj(Xi1 , . . . , Xim
).
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The following relation holds:

E|Unj − Vnj |
r =

(

2j(dρ+σ)

n

)

r
2
−1

O(n−1− r
2 ). (11)

In corollary, E|Unj − Vnj |
r = O(n−r) for r = 1, 2 and E|Unj − Vnj |

r = O(n−1− r
2 ) for r ≥ 2 and

2j(dρ+σ)/n < 1.

proof

The first lines use the proof of the original lemma (see for example Serfling, 1980), with
special care for unsymmetric kernels.

Let Wnj be the average of all terms hj(Xi1 , . . . , Xim
) with at least one equality ia = ib for

a 6= b and 1 ≤ a, b ≤ m; there are nm −Am
n such terms.

Ω denoting the set of nm unconstrained indexes, one has the relation

(nm −Am
n )(Wnj − Unj) =

∑

Ω−{i1 6=...6=im}

h(Xi1 , . . . , Xim
) − nmUnj +

∑

{i1 6=...6=im}

h(Xi1 , . . . , Xim
)

= nm(Vnj − Unj)

Hence, using Minkowski inequality and the fact that (nm −Am
n ) = O(nm−1) is positive, one

obtains,
En

fA
|Unj − Vnj |

r = n−mr(nm −Am
n )r En

fA
|Unj −Wnj |

r

≤ n−mr(nm −Am
n )r

(

En
fA

|Unj|
r + En

fA
|Wnj |

r
)

≤ O(n−r)
(

En
fA

|Unj |
r + En

fA
|Wnj |

r
)

.

It remains to bound to right parenthesis.

Using Minkowski inequality, one has,

En
fA

1
r |Un|

r ≤ [Am
n ]−1

∑

i1 6=...6=im

En
fA

1
r |Φjk(Xi1) . . .Φjk(Xiρ

)ϕjkℓ1 (Xℓ1
iρ+1

) . . . ϕjkℓiσ
(X

ℓiσ

im
)|r

= En
fA

1
r |ϕjkℓ1 (Xℓ1

1 )|r . . . En
fA

1
r |ϕjkℓσ (X

ℓiσ

1 )|rEn
fA

ρ
r |Φjk(X1)|

r

Next En
fA

|ϕjkℓ (Xℓ
1)|

r = 2jr/2
∫

|ϕ(2jx − kℓ)|rf⋆ℓ
A (x)dx ≤ 2j( r

2
−1)‖f⋆ℓ

A ‖∞‖ϕ‖r
r and by the same

means, En
fA

|Φjk(Xi)|
r ≤ 2jd( r

2
−1)‖fA‖∞‖Φ‖r

r

So that,

En
fA

|Un|
r ≤ 2jσ( r

2
−1)

(

∏

i=1,...,σ

‖f⋆ℓi

A ‖∞

)

‖ϕ‖rσ
r 2jdρ( r

2
−1)‖fA‖

ρ
∞‖Φ‖rρ

r

= C2j(σ+dρ)( r
2
−1)

Likewise for Wn one obtains terms of the type En
fA
ϕjkℓ1 (Xℓ1

1 ) . . . ϕjkℓκ (Xℓκ

1 ) of which En
fA

Φ(X1)
is one particular form, which are bounded exactly in the same way, and produce the same
power of 2j.
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