The Hutlets - a biorthogonal wavelet family and their high
speed implementation with RNS, multiplier-free, perfect
reconstruction QMF

U. Meyer-Base®? and F. Taylor?

“Institut of Digital Technics, TU Darmstadt
64283 Darmstadt, Germany

"High Speed Digital Architecture Laboratory,
University of Florida,Gainesville, Florida 32611 USA

ABSTRACT

The relationship between wavelets, Laplace pyramids and QMF are now well established.!™ In recent years biorthorg-
onal wavelets have become of increased interest because, compared with orthogonal wavelets, they are symmetric
and linear phase. In this paper the Hut T function? is used as a scaling function (father wavelet) to construct a
biorthogonal wavelet family, we call Hutlets. A realization with perfect reconstruction, multiplier- free quadrature
mirror filters using RNS technic is proposed. The approximation-filter 1s a CIC lowpass, the detail-filter is a CHPC
highpass, and the reconstruction filters are IIRs. Exact pole-zero annihilation is guaranteed by implementing poly-
nomial filters, over an integer ring, in the residue arithmetic system (RNS). Since CIC and CHPC designs rely on
the exact annihilation of selected poles-zeros; a new facilitating technology is required which is fast, compact, and
numerically exact. How this can be achieved is the thrust of this paper. An application of the Hutlets to pulse
amplitude modulated signals is explained.

Keywords: Biorthogonal Wavelets, Quadrature Mirror Filter (QMF), Residue Number System (RNS)

1. INTRODUCTION

The Hut function h(t), first defined by W. Hilberg in 1971,* has a total length 7" and is an infinite convolution
product (symbol *) of rectangles with area one and of length 7/2,7/4,T/8,.. .

; -
J—L * * - % 0() = h(t) — H(w)= H sinc (Q_in/Q) , (1)

i=1

where sinc(#) = sin(#)/x. Figure 1 shows the Hut and a triangular function along with their spectra. There is a
second, less complicated algorithm to construct the Hut function using the Morse Thue Sequence (MTS). We use
2V sequence values of the MTS, were we use a —1 instead of zero, and integrate this sequence N times. Figure
2(a) shows this construction for 64 MTS values. The discrete values are for graphical purpose connected by a step
functions. For N — oo we have then the Hut function. Appendix A shows some more functional approximation of

the Hut function. The MTS can be easily constructed. Three rules are common known®©:

1) (Parity) The integers Z are written in binary notation and the odd parity is computed: p(0) = 1,p(1) =
0,p(2)=0,p(3)=1,p(4) =0, ...
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Figure 1. (a) Hut- and triangular function normalized to 7' = 1. (b) Spectra. (Solid: Hut; Dashed: triangle)

2) (Complementary Baby) Starting with a single one in each iteration a one is substituted by 10 and the number
zero is substituted by 01, which yields 1;10;1001;10010110; . ..

3) (Append inverse) Starting with a one in each step the sequence is doubled by append the inverse sequence to

the original, e.g. from 10 we get 10-01=1001

The MTS is a self generating, aperiodic sequence which is in addition self-similar, because the sequence remains
the same if we delete each second sample. In wavelet terminology the function is self-similar on the dyadic grid 2*.

If the time function is self-similar, than because of
f(t) = f*)—F(w) = 27FF(w27F) (2)

the spectrum is also self-similar. Figure 2(b) shows the FFT spectrum of the MTS for 16K data. If we compare
the area 0-2000 and 0-4000, we can see the self-similar character of the spectrum. Of interest may also be a two
dimensional arrangement of the MTS and we get an autostereogram.”
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Figure 2. (a) Construction of the Hut function using the MTS. The function are normalized that the maximum of
each function correspond with the number of integrations. (b) Spectrum of the MTS (FFT of 16K values).



Table 1. Comparison of different window.

3dB first | Maximum | Asymptotic sidelobe decrease
bandwidth | zero | sidelobe decrease each octave
Rectangular 0.89/T /T | —13dB —6 dB
Triangular 1,28/T 2/T | —27dB —12 dB
Hanning 1,44/T 2/T | —32dB —18 dB
Hut 1,25/T 2/T | —22dB —oo dB

There are several interesting applications of the Hut function. For instance Baker®® shows that the asymptotic
behaviour of an frequency modulated signals is given by

S(f) ~ f2et0) (3)

where ¢ is the number of continuos derivations of the base impulse ¢(¢) for which ¢()(0) = ¢(*)(7)=0 holds. As we
can see from equation (1) we have for the Hut function ¢ = oo and therefore an asymptotic infinity fast decrease in
the spectrum.®

Window functions, like the triangular (Bartlett) window, are used in digital signal processing to reduce leakage,
i.e. Gibb phenomenon, which occur by using a finite number of samples. This windows are typically characterised
in the frequency domain. Table 1 shows the four most important parameter for the Hut function and some other
common used windows. Again, like in digital FM, the asymptotic behaviour is unusual and should be verified. We
review the computation of the asymptotic behaviour using the triangular window to clarify the computation. For
the triangular window the quotient of the spectrum at 2w and w 1is

A2 inc(2w) \* in(2w)\° 1 1
lim AC9) oy (sine@e)yT g (sin@e)yT L L (4)
w—oo A(w)  w—oo \ sinc(w) w—oo \ sin(w) 4 4
and in logarithmic measurements we have
A2
20 log % = —12 dB each oktave (5)

For the Hut function we use the same algorithm. We used again the right side of equation (1) of the spectrum
and compute then the limes for w — co.

oo " k=1 o LICEIY!
Jin Thsine () = Jim TS = Jim = (6)
=0 e =0 e
2k k—1
H(2w) . T . -
20 log T = 20log :h:% ;Hk}) = 20log klingo 27F — —ccdB (7)
wk

this means that the Hut spectrum has an asymptotically infinitely fast decrease in amplitude.

2. CONSTRUCTION OF THE HUTLET WAVELET FAMILY

We observe that the spectrum of the Hut function H(w) looks like a the spectrum of a scaling function ®(w),'! used
to construct wavelets. Wavelet construction typically begins with the scaling function ¢(t), which can be expressed



1 < 1
/ \

<t / . <

308 K o 0.8
/

£ 06 , \ £ 06
S04 ) i S04

2 / \ ]
0.2 / \ N 0.2

// \\
o—< 0
0 1 2 3
Time t
©

1 1

<
3os Bos

‘5‘ =}

T T
£ 06 06
S 0.4 go4
©0.2 So.2
0 0

Time t Time t

Figure 3. Tteration step 1,2,3, and 10 for the cascade algorithm construction of Hutlet4. (solid line ¢(¢); points
1/2¢(2t — k); ideal Hut function dashes)

as a sum of self dilations and translations. If the discrete wavelet transform (DWT) is restricted to the usual dyadic
grid (only scaling by a factor of two), and considering wavelets of finite support, the construction rule becomes

B = Y ot — k) Be) = Y eI D )2) (8)

k=0 k

where >, (=1)*¢; = 0 ensures that there is no DC contribution in the multiscale analysis. The actual wavelet 1(t),
also called mother wavelet, can then be calculated using

N-1

Y(t) = > (=DFen_1_5(2t — k) with /¢(t) dt = 0. 9)

k=0

The wavelet family therefore becomes ¢, (¢) = 2-7/2¢(27"t — k) and U k(1) = 272277t — k) with n, k € N.
This construction scheme can be applied to the Hut function given by Equation (1). First the spectrum of the Hut
function, after shifting by 7/2 to become causal, is given by

Hy(w) = H(w)e 7wT/2 = e—f'wTﬁﬁsmc(z—mT/z). (10)

i=1

Applying Equation (8) to the causal Hut function, it is required that

M) = 5 Y ad™ L w)) (11)
k

Hy(w) e=39T 26ine (w %) sinc (w %) sinc (w 1T—6) b

Hy (%) T e—iwT/4gine (w%) mnc (w1T—6) sinc (w ?,T_z) e (12)

s
. T 1 .
= e 9T gine (wz) =3 che_]wk/z.
k
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Figure 4. Mother wavelets ¢(¢) (solid line) and scaling functions ¢(¢) (dashed line) after ten iterations of the
cascade algorithm. The amplitudes are normalized to one.

Substituting for w/2 by w yields
eI 2gine(wT/2) = Z cre IR, (13)
k

and finally the transformation back to the time domain yields

eI 2gine(wT/2) T = Z cr 6(t — k). (14)
0 T

0<k<T

Equation (14) cannot be exactly realized with a finite number of coefficients, ¢;. An approximation of the rectangles
with N Dirac impulses with ¢, = 2/N gives a better approximation with increasing T and increasing number of
coefficients. On the other hand the mother wavelet should be DC free, so only a even number of coefficients are used.
To justify the use of a finite number of coefficients, the cascade algorithm

N-1
¢(z’+1)(t) - Z ck¢>(i)(2t — k) (15)
k=0
will show the smooth * convergence. For two coefficients ¢g = ¢; = 1, one obtains the Haar wavelet. For four

coefficients ¢ = 1/2, the construction of the Hutlet4 is shown in Figure 3. Starting with rectangle in the first
iteration, it is shown that the cascade algorithm converges to a trapezoidal function. The wavelet, Hutlet4, is
obtained from differences which gives two small triangles with opposite sign, as shown in Figure 4. For two to twelve,
and even coefficients, Figure 4 shows all scaling functions and mother wavelets convergence after 10 iterations of the
cascade algorithm. The difference between the scaling and Hut function becomes smaller as the number of coefficients
increases (compare Figure 1 and Figure 4).

4If the cascade algorithm converges to a rough function (e.g. a fractal) than the DWT produces blocking-like artifacts in the synthesis.?
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Figure 5. QMF for the Haar wavelet (Hutlet No. 2).

3. REALIZATION WITH QMF

In this section it will be shown that the Hutlets can efficiently be realized by the FSF explained in Sections II and
II1. An efficient implementation of the DWT uses QMF .32 Obviously, the coefficients of the the scaling function
ho(k) = ci and the coefficients of the the mother wavelet hi(k) = (—1)*ey_1_j build lowpass and highpass filters,
respectively.

Figure 5 exhibits the analysis and synthesis part for the Haar QMF. The analysis part consists of the lowpass
and highpass filter and the decimator. The synthesis part consists of two interpolators, two reconstruction filters and
a superposition of the two reconstructed signals. For the input sequence z(¢) = {®g, 21, 22, ...}, the moving average
and moving difference are computed. The sum signals, shown in the Table of Figure 5 (for instance a; = 2y + 1),
are normally computed and there is only one sequence value a(¢). After the splitting in approximation and detail
signal by the lowpass and highpass, respectively, the sampling rate is reduced by a factor of two without loss of
any information. As can be seen from the superposition of the sequences ra(?) and rd(7) is a perfect reconstruction
without quantization error, even if the filters are realized with RNS integer arithmetic. In typical applications, like
image compression, de-noising, or image enhancement, the QMF spitting is applied several times so that the analyzed
signals are well represented (short and long-term) by the wavelet transforms.

It is well known from the literature that the only perfect reconstruction, linear phase, orthogonal QMF are trivial
single or two tap filters.'%!3 With biorthogonal wavelets, perfect reconstruction and linear phase are possible. At
first glance it would seem impossible to realize a perfect reconstruction for Hutlet of order higher than two. For
instance, a moving average of four values and the moving difference of four values must be reconstructed. It can
be seen from Figure 6, for Hutlet4, that this is nonetheless possible. The approximation filter and detail filter both
have length four. Again decimation and interpolation by two forces each second sample to zero. The purpose of
constructing the reconstruction filter was to realize the same reconstruction sequences ra(¢) and rd(%) as for the Haar
wavelet (see Figure 5). Each reconstruction filter can then be separately designed since the superposition at the
output ensures perfect reconstruction. As shown in Figure 6, the reconstruction filters consist of the same structures



Approximation ‘ a1 ()

b4t .
! t

1/2
rd(7)

+ ¢ : 12 : T2 &

R
Detail

Time step ¢

0 1 2 3 4
z(%) x x Z9 Z3 T4
a(7) g | xo+x | o+ T+ 2o | ot Frotrs | T T2+ 23 424
d(7) Tog | ®T1—Tp | Ta— X1+ T | B3 — T2+ T1—To | T4 — T3+ T2 — T
ia(f) T 0 Tg+ T+ To 0 Tl + Ty + 3+ T4
Zd(l) o 0 o — X1+ X 0 T4 — Lz + T2 — 21
ra(i) x x x4+ xo x4+ T T3+ 24
rd(i) || —xo x T — T To — I T3 — Ty
y(4) 0 T x T Z3

Figure 6. QMF for Hutlet No 4.

as the Haar filters in the first part, and a second recursive part which ensures that the partially reconstructed output
values are subtracted from the internal sequence.

The use of different orthogonal analysis and synthesis filters results in a biorthogonal wavelet transfrom. Unfortu-
nately, the synthesis filter are (nondecreasing amplitude) ITR filters and can not be iteratively constructed using the
cascade algorithm. Nevertheless, by computing the upsampled version of F/(2)F(z?)F(z%)-- ~F(z2L_1) it is possible
to define the envelope of level L synthesis filter path.3

3.1. Generalisation to Any Even Length

Figure 7(a) shows how this principle can be extended to any even length. The approximation is a CIC lowpass
from Hogenauer'? while the detail filter is a CHPC and can be found in the Ph. D. thesis of the first author.?®
A generalisation of this type of efficient frequency sampling filters to higher order can be found in an other recent
paper.'® The complexity can be further reduced by interchanging the sequence of the decimation and comb sections,
as shown in Figure 7(c). The same interchanging can be applied to the reconstruction filters, which is shown in
Figure 7(b).

A graphical argument for perfect reconstruction, based on the Figures 6 and 7, will be proven for any Hutlet of
even length. In general, the approximation filter Hy(z) and detail filter H1(z) are geometric series given by

1— -D

Approximation =Ho(z) = 142714 ... 47P% = ﬁ (16)
1_ ,-D

Detail =H,(z) = 1—z"'4...— ;7P = #, (17)

which are the first order single stage CIC and CHPC filter.}* 1% The reconstruction filter Fy(z) for the approximation
path is
14271 1 14271 1—272

Fo(z) = 9 '1_|_Z—2_|_,,,_|_Z—D+2: 9 " 1_.-D’ (18)
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Figure 7. (a) Reconstruction filter QMF of any length. (b) Optimise reconstruction filter. (c¢) Optimise
approximations- and detail-filter.

and the detail path becomes

—14z1 1 —14+z! 1—272
1(2) 2 14224 4.-D+2 2 1—2-D (19)

The overall transfer function for a two channel QMF bank (p. 1052 or p. 380'?) becomes

Y(z) = 5 (Fo(2)Ho(2) + Fi(2)Hi(2)) X(2) + % (Fo(2)Ho(=2) + F1(2) Hi(=2)) X(=2).

N | —

Aliasing cancellation occurs for Fy(z)Ho(—z) + F1(2)H1(—z) = 0. For even D, it follows that
2F(2)Ho(=2) =1 — 272 2F (2)H (—2) = —(1 — z77). (20)

The condition for no distortion is Fy(2)Ho(z) + F1(2)H1(2) = 227" where [ € Z. It follows for even length Hutlets
that

2Fo(2)Ho(z) = (1 + 2712 2F (2)Hy(2) = —(1 — z71)? (21)
Fo(2)Ho(2) + Fi(2)Hy(z) = 2271 (22)

From the aliasing cancellation and no distortion conditions it follows perfect reconstruction, is given by

4. APPLICATION OF THE HUTLETS: DETECTION OF ENVELOPE
DISCONTINUITY IN AMPLITUDE MODULATION

The detection of discontinuities in signals using wavelets was popularized by S. Mallat.'™ The discontinuity appear as

maxima or minima in the wavelet transforms. We will apply a multi-resolution analysis to an amplitude modulated
signal. Knowledge of the exact time of the discontinuity in the envelope can, for instance, be used in the radio
control watch signals (provided by WWVB in US, DCF77 in central Europe, and JG2AS in Japan) to extract exact
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Figure 8. Analysis and synthesis of an amplitude modulated signal with Hutlet8.

time markers of each second. The detection of the discontinuities in a stepresponse is equivalent to the detection
of the discontinuities in the envelope of an amplitude modulated signal. Compared to the complicated computation
of the Lipschitz regularity by Mallat'” the proposed method only requires the computation of the difference of two
time shifted “moving averages”. This is the function performed by the deta:il signals of the Haar DWT analysis.
Strang and Nguyen® have shown that for high oversampling ratio, a Haar analysis gives sufficient accuracy in the
detections. We will show by example that for medium to small oversampling ratios the Haar analysis gives too poor
time resolution relative to a Hutlet analysis.

Figure 8 shows the original signal (left top), the approximation signals, and the detail signals for Hutlet8. The
right column shows the perfect reconstruction using the signals as, ds, d2, and d;. From the shape of the envelope of
the “Original” signal, we expect at least three extreme (minima or maxima), according to the three discontinuities in
the envelope of the amplitude modulated signal. Obviously, the discontinuity in the envelope can be easily observed
in the signals as or ds with a threshold detector. Here as has three extremes, while each discontinuity in the envelope
causes a biphase impulse within d-.

The same analysis repeated for the Haar wavelet, shown in Figure 9, produced considerably poorer results. Clearly,
there is a perfect reconstruction (right column), but there is only one maximum each in a4 and d4 observable. In
addition, the time accuracy of the Haar analysis of a4 and d4 in Figure 9 is four times poorer than for Hutlet8
comparing a4 and d4 from the fourth level decomposition with the second level of as and ds of the Hutlet8 analysis
from Figure 8.

5. CONCLUSION

The paper describes first the various constructions scheme for the Hut function. We used the Hut function to construct
a biorthogonal wavelet family, which are called Hutlets. A realization with perfect reconstruction, multiplier- free
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quadrature mirror filters using RNS technic was discussed. The approximation-filter was a CIC lowpass, the detail-
filter was a CHPC highpass, and the reconstruction filters were ITRs. An application of the Hutlets has shown superior
properties compared with the Haar wavelet in the detection of envelope discontinuity in amplitude modulation signals.
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APPENDIX A. FUNCTIONAL APPROXIMATION OF THE HUT FUNCTION

The construction of the Hut function using the MTS or the iterative convolution works well for sequence length
2% It may therefore be useful to have additional functional approximation for any length. The Taylor sequence
and Fourier sequence have been known since same time.* Two computer friendly constructions should also be
mentioned.® The Taylor sequence of the Hut function can be constructed using the differentiation rule of the Hut

function f/(x) = f(2z) which yields*:

[} o0 (r=1)m
n 2 2 n
h(z) = E anx :E TR (24)
n=0 n=0 ’

A second approximation uses the Fourier series, where the Hut function has a periodic extension, i.e.

> 2w
kzzoak cos(Tkx) (25)



Table 2. (a) Fourier series coefficients. (b) Coefficients for the Tschebyscheff approximation.

(a) (b)

Coefficients symmetric asymmetric
ag 0.5 - 109 2bp= 0.68197 2bp= 1.00012
aq 0.553770 - 10° by =—0.51495 b1 =—0.59846
as —4.620147 - 1072 by = 0.19594 bs = 0.11848
as —8.656431 - 1073 bs =—0.00236 bs =—0.01983
arz 1.044698 - 1073 bg =—0.02822 b7 =—0.00185
ag —3.561026 - 107* bip= 0.01143 by = 0.00220
aip 2.982849 - 107* b12=—0.00612 b11=—0.00080
a3 9.136547 - 1073 b14= 0.00552 b13= 0.00045
ais —6.557784 - 107° b16=—0.00306 b15=—0.00029

big= 0.00078 bi7= 0.00012
bag= 0.00036
b29=—0.00044
bag= 0.00022
b2s=—0.00012

This approximation gives also a much faster convergence than the Taylor series. Table 2(a) shows Fourier series
coefficients up to ay5. The third approximation to discuss is the Bessel function approximation using

—_

We use 300 iteration in the “Downhill” method of Nelder and Mead'® to optimize the exponent n for 32K Hut field.
If we use the point symmetry regarding 7'/4 than the maximum error norm [ is only 0.2 percent. Figure 10 shows
the approximation, while the following table shows the mean and maximum error £, = y. — f(z,) where f(x,) is the
ideal values and y, is the approximation value:

[0, 7] % 5]
Exponent: n 3.74582 5.96823
A5 11073 [ 2.60- 1072

r=1

MAX|e,| |[ 2151073 | 3.21-10"2

1.4
1_
1/(1+t73.74) ----- 1.2~ asymmetric -----
-, 1/(1+t"5.96) - I N symmetric -
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N 0.2
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Figure 10. (a) Hut function approximation through Bessel functions using exponent n = 3.74582 and n = 5.96823
(t = 2/T). (b) Tschebyscheff approximation for four coefficients by, b1, b3 and bs for the asymmetric approximation
and bg, by, by and bg for the symmetric approximation.



It’s well known from approximation theory that for the ., norm the Tschebyscheff approximation'® gives the
optimum result. To apply the Tschebyschefl approximation we have first to transform the range [a,b] to z € [—1,1]
with @ = (22’ — b —a)/(b — a). Now we can use an iterative algorithm'® to compute the coefficients of

f(1) = Y bTi(0). (27)

with Ty (x) being the Tschebyscheff polynomials

To(z)=1 Ti(z)=x To(z)=22% - 1
Ts(z)=42% — 32 Ty(x)=82z* — 827 + 1 Ts(2)=162> — 2023 + bz

or in general

Tiy1(x) = 20Ty (2) — Ti—1(2) (28)

For a symmetric function to the ordinate axis all odd b; are zero, and for an asymmetric function to (0,1) all even
coefficients are zero. Table 2(b) shows the Tschebyscheff coefficients for symmetric and asymmetric Hut functions
and Figure 10(b) shows approximation with four coefficients. The error for four coefficients become lo, = 0.0053222
for the asymmetric approximation and [, = 0.051877 for the symmetric approximation. If we use all coefficients from
Table 2(b) (where only value greater 10=% are shown) the error bounds become I, = 0.000091 for the asymmetric
approximation and /o, = 0.000412 for the symmetric approximation.
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