
The Hutlets - a biorthogonal wavelet family and their highspeed implementation with RNS, multiplier-free, perfectreconstruction QMFU. Meyer-B�asea,b and F. TaylorbaInstitut of Digital Technics, TU Darmstadt64283 Darmstadt, GermanybHigh Speed Digital Architecture Laboratory,University of Florida,Gainesville, Florida 32611 USAABSTRACTThe relationship between wavelets, Laplace pyramids and QMF are now well established.1{3 In recent years biorthorg-onal wavelets have become of increased interest because, compared with orthogonal wavelets, they are symmetricand linear phase. In this paper the Hut y function4 is used as a scaling function (father wavelet) to construct abiorthogonal wavelet family, we call Hutlets. A realization with perfect reconstruction, multiplier- free quadraturemirror �lters using RNS technic is proposed. The approximation-�lter is a CIC lowpass, the detail-�lter is a CHPChighpass, and the reconstruction �lters are IIRs. Exact pole-zero annihilation is guaranteed by implementing poly-nomial �lters, over an integer ring, in the residue arithmetic system (RNS). Since CIC and CHPC designs rely onthe exact annihilation of selected poles-zeros, a new facilitating technology is required which is fast, compact, andnumerically exact. How this can be achieved is the thrust of this paper. An application of the Hutlets to pulseamplitude modulated signals is explained.Keywords: Biorthogonal Wavelets, Quadrature Mirror Filter (QMF), Residue Number System (RNS)1. INTRODUCTIONThe Hut function h(t), �rst de�ned by W. Hilberg in 1971,4 has a total length T and is an in�nite convolutionproduct (symbol *) of rectangles with area one and of length T=2; T=4; T=8; : : ::2TT2-� � 4TT4- � � � � � � �(t) = h(t)  ! H(!) = +1Yi=1 sinc �2�i!T=2� ; (1)where sinc(x) = sin(x)=x. Figure 1 shows the Hut and a triangular function along with their spectra. There is asecond, less complicated algorithm to construct the Hut function using the Morse Thue Sequence (MTS). We use2N sequence values of the MTS, were we use a �1 instead of zero, and integrate this sequence N times. Figure2(a) shows this construction for 64 MTS values. The discrete values are for graphical purpose connected by a stepfunctions. For N !1 we have then the Hut function. Appendix A shows some more functional approximation ofthe Hut function. The MTS can be easily constructed. Three rules are common known5,6:1) (Parity) The integers Zare written in binary notation and the odd parity is computed: p(0) = 1; p(1) =0; p(2) = 0; p(3) = 1; p(4) = 0; : : :Tel.: 352-392-2692; Fax: 352-392-0044Email: fuwe,fjtg@alpha.ee.u
.eduPaper-location-URL: http://www.dtro.e-technik.th-darmstadt.de/umb/papersSupported by the German DFG under grant ME1419/2-1.y\Hut" is the German equivalent for the English \hat".
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Figure 1. (a) Hut- and triangular function normalized to T = 1. (b) Spectra. (Solid: Hut; Dashed: triangle)2) (Complementary Baby) Starting with a single one in each iteration a one is substituted by 10 and the numberzero is substituted by 01, which yields 1; 10; 1001; 10010110; : : :3) (Append inverse) Starting with a one in each step the sequence is doubled by append the inverse sequence tothe original, e.g. from 10 we get 10-01=1001The MTS is a self generating, aperiodic sequence which is in addition self-similar, because the sequence remainsthe same if we delete each second sample. In wavelet terminology the function is self-similar on the dyadic grid 2k.If the time function is self-similar, than because off(t) = f(2kt) !F (!) = 2�kF (!2�k) (2)the spectrum is also self-similar. Figure 2(b) shows the FFT spectrum of the MTS for 16K data. If we comparethe area 0-2000 and 0-4000, we can see the self-similar character of the spectrum. Of interest may also be a twodimensional arrangement of the MTS and we get an autostereogram.7(a)
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Table 1. Comparison of di�erent window.3 dB �rst Maximum Asymptotic sidelobe decreasebandwidth zero sidelobe decrease each octaveRectangular 0.89=T 1=T �13 dB �6 dBTriangular 1,28=T 2=T �27 dB �12 dBHanning 1,44=T 2=T �32 dB �18 dBHut 1,25=T 2=T �22 dB �1 dBThere are several interesting applications of the Hut function. For instance Baker8,9 shows that the asymptoticbehaviour of an frequency modulated signals is given byS(f) � f�(2c+6) (3)where c is the number of continuos derivations of the base impulse q(t) for which q(c)(0) = q(c)(T )=0 holds. As wecan see from equation (1) we have for the Hut function c =1 and therefore an asymptotic in�nity fast decrease inthe spectrum.6Window functions, like the triangular (Bartlett) window, are used in digital signal processing to reduce leakage,i.e. Gibb phenomenon, which occur by using a �nite number of samples. This windows are typically characterisedin the frequency domain. Table 1 shows the four most important parameter for the Hut function and some othercommon used windows. Again, like in digital FM, the asymptotic behaviour is unusual and should be veri�ed. Wereview the computation of the asymptotic behaviour using the triangular window to clarify the computation. Forthe triangular window the quotient of the spectrum at 2! and ! islim!!1 �(2!)�(!) = lim!!1� sinc(2!)sinc(!) �2 = lim!!1� sin(2!)sin(!) �2 � 14 ! 14 (4)and in logarithmic measurements we have20 log �(2!)�(!) = �12 dB each oktave (5)For the Hut function we use the same algorithm. We used again the right side of equation (1) of the spectrumand compute then the limes for ! !1.lim!!1 1Yi=0 sinc� !2i�! lim!!1k!1 k�1Yi=0 2i! = lim!!1k!1 2 k(k�1)2!k (6)20 log H(2!)H(!) = 20 log lim!!1k!1 2k(k�1)2(2!)k2k(k�1)2!k = 20 log limk!12�k !�1 dB (7)this means that the Hut spectrum has an asymptotically in�nitely fast decrease in amplitude.2. CONSTRUCTION OF THE HUTLET WAVELET FAMILYWe observe that the spectrum of the Hut function H(!) looks like a the spectrum of a scaling function �(!),101 usedto construct wavelets. Wavelet construction typically begins with the scaling function �(t), which can be expressed



0 1 2 3
0

0.2

0.4

0.6

0.8

1

(a)

Time t

1.
 It

er
at

io
n 

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(b)

Time t

2.
 It

er
at

io
n 

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(c)

Time t

3.
 It

er
at

io
n 

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(d)

Time t

10
. I

te
ra

tio
n 

H
ut

le
t4Figure 3. Iteration step 1,2,3, and 10 for the cascade algorithm construction of Hutlet4. (solid line �(t); points1=2�(2t� k); ideal Hut function dashes)as a sum of self dilations and translations. If the discrete wavelet transform (DWT) is restricted to the usual dyadicgrid (only scaling by a factor of two), and considering wavelets of �nite support, the construction rule becomes�(t) = N�1Xk=0 ck�(2t� k)  ! �(!) = 12Xk cke�j!k=2�(!=2); (8)where Pk(�1)kck = 0 ensures that there is no DC contribution in the multiscale analysis. The actual wavelet  (t),also called mother wavelet, can then be calculated using (t) = N�1Xk=0 (�1)kcN�1�k�(2t� k) with Z  (t) dt = 0: (9)The wavelet family therefore becomes �n;k(t) = 2�n=2�(2�nt � k) and  n;k(t) = 2�n=2 (2�nt � k) with n; k 2 N.This construction scheme can be applied to the Hut function given by Equation (1). First the spectrum of the Hutfunction, after shifting by T=2 to become causal, is given byH+(!) = H(!)e�j!T=2 = e�j!T=2 1Yi=1 sinc(2�i!T=2): (10)Applying Equation (8) to the causal Hut function, it is required thatH+(!) = 12Xk ckej!k=2H+(!=2) (11)H+(!)H+ �!2 � = e�j!T=2sinc �! T4 � sinc �!T8 � sinc �! T16� � � �e�j!T=4sinc �! T8 � sinc �! T16� sinc �! T32� � � � (12)= e�j!T=4sinc�!T4� = 12Xk cke�j!k=2:
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d1(i)a1(i)# 2 " 2# 2 " 2Approximation Reconstruction + *Detail ra(i)rd(i)1/2x(i) d(i)
ia(i)a(i) y(i)id(i) i?6-rr --666? -- 666? i6-6r?r -r-r6?--r -r6-r?Time step i0 1 2 3 4x(i) x0 x1 x2 x3 x4a(i) x0 x0 + x1 x1 + x2 x2 + x3 x3 + x4d(i) x0 x1 � x0 x2 � x1 x3 � x2 x4 � x3ia(i) x0 0 x1 + x2 0 x3 + x4id(i) x0 0 x2 � x1 0 x4 � x3ra(i) x0 x0 x1 + x2 x1 + x2 x3 + x4rd(i) �x0 x0 x1 � x2 x2 � x1 x3 � x4y(i) 0 x0 x1 x2 x3Figure 5. QMF for the Haar wavelet (Hutlet No. 2).3. REALIZATION WITH QMFIn this section it will be shown that the Hutlets can e�ciently be realized by the FSF explained in Sections II andIII. An e�cient implementation of the DWT uses QMF.3,11,12 Obviously, the coe�cients of the the scaling functionh0(k) = ck and the coe�cients of the the mother wavelet h1(k) = (�1)kcN�1�k build lowpass and highpass �lters,respectively.Figure 5 exhibits the analysis and synthesis part for the Haar QMF. The analysis part consists of the lowpassand highpass �lter and the decimator. The synthesis part consists of two interpolators, two reconstruction �lters anda superposition of the two reconstructed signals. For the input sequence x(i) = fx0; x1; x2; : : :g, the moving averageand moving di�erence are computed. The sum signals, shown in the Table of Figure 5 (for instance a1 = x0 + x1),are normally computed and there is only one sequence value a(i). After the splitting in approximation and detailsignal by the lowpass and highpass, respectively, the sampling rate is reduced by a factor of two without loss ofany information. As can be seen from the superposition of the sequences ra(i) and rd(i) is a perfect reconstructionwithout quantization error, even if the �lters are realized with RNS integer arithmetic. In typical applications, likeimage compression, de-noising, or image enhancement, the QMF spitting is applied several times so that the analyzedsignals are well represented (short and long-term) by the wavelet transforms.It is well known from the literature that the only perfect reconstruction, linear phase, orthogonal QMF are trivialsingle or two tap �lters.10,13 With biorthogonal wavelets, perfect reconstruction and linear phase are possible. At�rst glance it would seem impossible to realize a perfect reconstruction for Hutlet of order higher than two. Forinstance, a moving average of four values and the moving di�erence of four values must be reconstructed. It canbe seen from Figure 6, for Hutlet4, that this is nonetheless possible. The approximation �lter and detail �lter bothhave length four. Again decimation and interpolation by two forces each second sample to zero. The purpose ofconstructing the reconstruction �lter was to realize the same reconstruction sequences ra(i) and rd(i) as for the Haarwavelet (see Figure 5). Each reconstruction �lter can then be separately designed since the superposition at theoutput ensures perfect reconstruction. As shown in Figure 6, the reconstruction �lters consist of the same structures
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a(i) y(i)i?6-rr666? -- i6-6r?r rr--r 666? +i- +i -6 r6--r +i +i6 r6--- -r6? --r-?r6 Time step i0 1 2 3 4x(i) x0 x1 x2 x3 x4a(i) x0 x0 + x1 x0 + x1 + x2 x0 + x1 + x2 + x3 x1 + x2 + x3 + x4d(i) x0 x1 � x0 x2 � x1 + x0 x3 � x2 + x1 � x0 x4 � x3 + x2 � x1ia(i) x0 0 x0 + x1 + x2 0 x1 + x2 + x3 + x4id(i) x0 0 x2 � x1 + x0 0 x4 � x3 + x2 � x1ra(i) x0 x0 x1 + x2 x1 + x2 x3 + x4rd(i) �x0 x0 x1 � x2 x2 � x1 x3 � x4y(i) 0 x0 x1 x2 x3Figure 6. QMF for Hutlet No 4.as the Haar �lters in the �rst part, and a second recursive part which ensures that the partially reconstructed outputvalues are subtracted from the internal sequence.The use of di�erent orthogonal analysis and synthesis �lters results in a biorthogonal wavelet transfrom. Unfortu-nately, the synthesis �lter are (nondecreasing amplitude) IIR �lters and can not be iteratively constructed using thecascade algorithm. Nevertheless, by computing the upsampled version of F (z)F (z2)F (z4) � � �F (z2L�1) it is possibleto de�ne the envelope of level L synthesis �lter path.33.1. Generalisation to Any Even LengthFigure 7(a) shows how this principle can be extended to any even length. The approximation is a CIC lowpassfrom Hogenauer14 while the detail �lter is a CHPC and can be found in the Ph. D. thesis of the �rst author.15A generalisation of this type of e�cient frequency sampling �lters to higher order can be found in an other recentpaper.16 The complexity can be further reduced by interchanging the sequence of the decimation and comb sections,as shown in Figure 7(c). The same interchanging can be applied to the reconstruction �lters, which is shown inFigure 7(b).A graphical argument for perfect reconstruction, based on the Figures 6 and 7, will be proven for any Hutlet ofeven length. In general, the approximation �lter H0(z) and detail �lter H1(z) are geometric series given byApproximation =H0(z) = 1 + z�1 + � � �+ z�D+1 = 1� z�D1� z�1 (16)Detail =H1(z) = 1� z�1 + � � � � z�D+1 = 1� z�D1 + z�1 ; (17)which are the �rst order single stage CIC and CHPC �lter.14{16 The reconstruction �lter F0(z) for the approximationpath is F0(z) = 1 + z�12 � 11 + z�2 + � � �+ z�D+2 = 1 + z�12 � 1� z�21� z�D ; (18)
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Figure 7. (a) Reconstruction �lter QMF of any length. (b) Optimise reconstruction �lter. (c) Optimiseapproximations- and detail-�lter.and the detail path becomesF1(z) = �1 + z�12 � 11 + z�2 + � � �+ z�D+2 = �1 + z�12 � 1� z�21� z�D : (19)The overall transfer function for a two channel QMF bank (p. 1053 or p. 38012) becomesY (z) = 12 (F0(z)H0(z) + F1(z)H1(z))X(z) + 12 (F0(z)H0(�z) + F1(z)H1(�z))X(�z):Aliasing cancellation occurs for F0(z)H0(�z) + F1(z)H1(�z) = 0. For even D, it follows that2F0(z)H0(�z) = 1� z�2 2F1(z)H1(�z) = �(1� z�2): (20)The condition for no distortion is F0(z)H0(z) + F1(z)H1(z) = 2z�l where l 2Z. It follows for even length Hutletsthat 2F0(z)H0(z) = (1 + z�1)2 2F1(z)H1(z) = �(1 � z�1)2 (21)F0(z)H0(z) + F1(z)H1(z) = 2z�1: (22)From the aliasing cancellation and no distortion conditions it follows perfect reconstruction, is given byY (z) = X(z)z�1: (23)4. APPLICATION OF THE HUTLETS: DETECTION OF ENVELOPEDISCONTINUITY IN AMPLITUDE MODULATIONThe detection of discontinuities in signals using wavelets was popularized by S. Mallat.17 The discontinuity appear asmaxima or minima in the wavelet transforms. We will apply a multi-resolution analysis to an amplitude modulatedsignal. Knowledge of the exact time of the discontinuity in the envelope can, for instance, be used in the radiocontrol watch signals (provided by WWVB in US, DCF77 in central Europe, and JG2AS in Japan) to extract exact
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Table 2. (a) Fourier series coe�cients. (b) Coe�cients for the Tschebysche� approximation.(a)Coe�cientsa0 0.5 � 100a1 0.553770 � 100a3 �4.620147 � 10�2a5 �8.656431 � 10�3a7 1.044698 � 10�3a9 �3.561026 � 10�4a11 2.982849 � 10�4a13 9.136547 � 10�5a15 �6.557784 � 10�6
(b)symmetric asymmetric2b0= 0.68197 2b0= 1.00012b2 =�0.51495 b1 =�0.59846b4 = 0.19594 b3 = 0.11848b6 =�0.00236 b5 =�0.01983b8 =�0.02822 b7 =�0.00185b10= 0.01143 b9 = 0.00220b12=�0.00612 b11=�0.00080b14= 0.00552 b13= 0.00045b16=�0.00306 b15=�0.00029b18= 0.00078 b17= 0.00012b20= 0.00036b22=�0.00044b26= 0.00022b28=�0.00012This approximation gives also a much faster convergence than the Taylor series. Table 2(a) shows Fourier seriescoe�cients up to a15. The third approximation to discuss is the Bessel function approximation usingh(x) = 11 + ( xT=4)n (26)We use 300 iteration in the \Downhill" method of Nelder and Mead18 to optimize the exponent n for 32K Hut �eld.If we use the point symmetry regarding T=4 than the maximum error norm l1 is only 0.2 percent. Figure 10 showsthe approximation, while the following table shows the mean and maximum error "r = yr � f(xr ) where f(xr) is theideal values and yr is the approximation value: [0; T4 ] [T4 ; T2 ]Exponent: n 3.74582 5.968234mPm=4r=1 j"rj 1:11 � 10�3 2:60 � 10�2MAXj"rj 2:15 � 10�3 3:21 � 10�2
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