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Abstract

Radiosity methodshave beenshown to be an effective means
to solve the global illumination problemin Lambertiandiffuse
environments. Thesemethodsapproximatethe radiosity integral
equationby projectingthe unknownradiosity function into a set
of basis functions with limited supportresultingin a set of n

linearequationsvheren is the numberof discreteelementsn the

scene. Classicalradiosity methodsrequiredthe evaluationof n?

interactioncoeficients. Efforts to reducethe numberof required
coeficients without compromisingerror boundshavefocusedon

raising the order of the basisfunctions, meshing,accountingfor

discontinuities and on developinghierarchicalapproachesyhich

havebeenshownto reducethe requiredinteractionsto O(n).

In this paperwe showthatthe hierarchicakadiosityformulation
is an instanceof a more generalsetof methodsbasedon wavelet
theory. This generalframework offers a unified view of both
higher order elementapproacheso radiosity and the hierarchical
radiosity methods. After a discussionof the relevanttheory, we
discussa new set of linear time hierarchicalalgorithmsbasedon
waveletssuchasthe multiwaveletfamily anda flatlet basiswhich
we introduce. Initial resultsof experimentatiorwith thesebasis
setsare demonstrate@nd discussed.

CR Categories and Subject Descriptors: 1.3.7 [Computer Graphics]:
Three-DimensionaGraphicsand Realism— Radiosity G.1.9 [Numerical
Analysis]: Integral Equations— Fredholmequations

Additional Key Words and Phrases: global illumination, wavelets,hi-
erarchicalradiosity.

1 Introduction

In computergraphics,radiosity methodshavebeenusedto solve
the global illumination problemin environmentsconsistingen-
tirely of Lambertian(diffuse)reflectorsandemitters. The solution
is a radiosity function over the domain of the surfacesin the
scene. Classicalradiosity [9, 6] (CR), derived from the radia-
tive heattransferliterature,approximateshe radiosity function as
piecewiseconstant. An enegy balanceagumentgivesrise to a
linear system. This systemhasn? coeficientscalledform factors

Heren is the numberof discreteareas,or elementsover which

the radiosity function hasbeenassumedo be constant.The form

factor describesthe fraction of the enegy leaving one element
andarriving at another. Typically, an iterative algorithm suchas
Gauss-Seiddteration[22] or progressivaadiosity[5, 10] is used
to solvethe systemof linear equationgfor the radiosities.

An integralequationcalledtherenderingequationwasproposed
by Kajiya to model the global illumination problem [14]. He
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Figure 1: The spaceof projectionmethodsfor radiosity.

showedthat CR is a particularapproximationto this equation.By
castingthe problemin this form, techniquesdevelopedfor the
solution of integral equations[8] can be exploited to solve the
radiosity equation.

In particular,Heckbert[12, 13] hasdemonstratedhat the lin-
ear systemin radiosity canbe derivedby projecting the radiosity
integral into a finite dimensionalfunction space. The CR algo-
rithm resultsfrom usingthe spaceof piecewiseconstanfunctions
(i.e., projectingthe functioninto a setof constanior “box”) basis
functions). In general,a function can be projectedinto any finite
dimensionalfunction space.A desirablefinite dimensionalspace
is onethatcanrepresenthe functionaccuratelywith asfew terms
aspossible.In his studies Heckbertconsideredaadiosityfunctions
that are piecewisdinear. Zatz [25] hasusedLegendrepolynomi-
als to arrive at solutionsthat are piecewisepolynomial of higher
order. Otherresearcherfiave exploredthe use of higher order
basesin the meshconstructionand reconstructionphasesof the
algorithm[18] aswell asdiscontinuitymeshing[15, 13]. Theuse
of higherorderbaseswhich we will refer to as galerkin radios-
ity (GR), hasbeenshownto lower the numberof basisfunctions
neededo obtaina particularlevel of accuracy albeit at a higher
costper basis.

A secondavenueof researcthasattemptedo lower the com-
putationalcomplexity of solving the linear systemwhich arisesin
CR.Hanraharetal. [11] presented hierarchicakadiositymethod
(HR) modeledafterrecentadvancesn n-bodyalgorithms.HR ex-
ploits the fact that neighboringpatchesin the environmentoften
have similar form factorsto distant patches. This reasoningis
extendedo form a hierarchyof patches(i.e., a hierarchyof basis
functions)in a straightforwardmanner.

While the methodsusing higher order basestry to exploit co-
herencein the illumination function, HR tries to exploit the co-
herencein the form factor itself, more precisely,in the kernel of
theradiosityintegral. In particular,HR is basedon approximating
the kernel as a constantfunction over intervals of varying sizes.
In placesthat the kernel varies slowly, large intervals are used.
Wherethe kernelvariesquickly, smallerintervalsare needed.



RecentlyBeylkin et al. [3] madethe observationthat integral
operatorssatisfying very generalsmoothnessonditions can be
approximatedo any finite precisionwith only O(n) coeficients
when projectedinto a waveletbasisinsteadof the usual O(n?).
This remarkableresult meansthat, in practice,integral equations
governedby smoothkernelsleadto sparsematricesthat can be
solvedin linear time. Since the radiosity kernel is, in general,
a smoothfunction of the type requiredby this theorem,wavelet
methodscan be usedto obtain O(n) complexity radiosity algo-
rithms. We call this waveletradiosity.

Hierarchicalbasisfunctionshavebeenusedbeforewith finite-
elementmethods[24] and appliedto problemssuch as surface
interpolation[23]. In thoseinstanceshierarchicalbasisfunctions
were usedto improve the condition numberof the matrix. In
our context, the hierarchicalbasisfunctions (wavelets)are used
becausenanyof theresultingmatrix coeficientsaresmallenough
to beignoredwhile still allowing for anaccurateanswer.In some
sensewe areregardingthe matrix as an imageon which we are
able to perform lossy compression. Coeficients are negligible
becauseover many regionsthe kernel can be well approximated
by a low orderpolynomial.

The mathematicatools of waveletanalysisprovide a general
framework offering a unified view of both higher order element
approachedo radiosity, and the hierarchicalradiosity methods.
Figurel placesearlieralgorithmsplusthe new methodswe inves-
tigate hereinto a matrix relating hierarchyversusthe orderof the
underlyingbasis. CR useszeroorderpolynomials,while GR uses
higher order polynomials(indicated by the arrow). The vertical
axis representshe sparsenessbtainedby exploiting smoothness
of someorderin the kernel. HR exploits “constant” smoothness
in the kernel. Within this context, we recognizeHR as a first
order wavelet. Higher order waveletscan be usedthat resultin
an evensparsematrix. Onesuchfamily of higherorderwavelets
is the multiwaveletfamily of [1] (Mz,3 in Figure 1). We will
alsointroducea new family of wavelets,which we have dubbed
flatlets (2,3 in Figure 1) that requireonly low orderquadrature
methodswhile maintainingmostof the benefitsof otherwavelet
sets.

This paper proceedswith a review of projection methods
for solving integral equationsfollowed by a discussionof re-
centadvancesoncerningthe solutionof integral equationsusing
wavelets. Finally we discussour implementationand report ex-
perimentafindings. Someof the moretechnicaldetailsof wavelet
projections,aswell asa detailedanalysisof the underlyingmath-
ematicalframework,are describedn [20].

2 The Radiosity Integral Equation

If all surfacesand emittersare Lambertiandiffuse, the rendering
equationcanbe written as,

B(Sl, 82) =
cosf cos€
E‘(S;L7 82) + p(sl, 82) / / dt1dtn t VstB(tl, tz)

@
where B(s1, s2) gives the radiosity at a point specifiedby the
surfaceparameters, s2, E the emission,and p the reflectivity'.
The kernel of the integral,

cosf; cosf
k(s1, s2,t1,t2) = p(s1, s2) - 2 “Vie
7T7"St

is a function describingthe geometricand visibility relationship
betweentwo pointsin the domain; 8, and 6, arethe anglesbe-
tweenthe surfacenormalsandthe line betweens andt; r; is the

The reflectivity, p, is actuallya function of wavelength.Without loss of gener-
ality, we will consideronly a monochromatiavorld for the remainderof this paper.

distancebetweenthe two points; V; is 1 if point s is visible to
pointt and0 otherwise.

Over many large intervals,wherer is large relative to the size
of the patchesthekernelis well representedy a low orderpoly-
nomial. Notableexceptionsncludethe cornersof theenvironment
wherer? goesto 0 andthe kernelis singular,andshadowdiscon-
tinuities wherethe visibility switchesabruptlyfrom 0 to 1.

3 Projections

After a shortreview of function projectionswe will show how
projectionscan be usedto find approximatesolutionsto integral
equationssuchasthe radiosityequation.The ideaspresentedere
canbe foundin greaterdetail in [12, 25].

We beginby writing the approximationof a function B(s) in a

finite dimensionalfunction spacewhereall functionsB(s) canbe
expressedsa linear combinationof n basisfunctions N;(s)

B(s) ~ B(s) = ) BiNi(s)
=1
wherethe B, are scalarcoeficients with respectto the chosen
bases.For example the spaceof piecewiseconstantfunctionsis
spannedby a basisof translated‘box” functions,and the space
of piecewiselinear functionsis spannedby a basisof translated
“hat” functions.

To completethe approximation,we mustfind a way to derive
the coeficients. For this, we define aninner productof two func-
tions f(s) and g(s) as(f,g) = fds f(s)g(s). Two functionsare
orthogonaliff (f, g) = 0. We thensaythat a function B(s) is the
orthogonalprojectionof B(s) into the finite dimensionafunction
spaceif (B — B, N;) =0 for all basisfunctions N;(s).

If the original basisfunctionsare orthonormalwe canfind the
coeficients of a function B(s) with respectto the basis{V;} by
performinginner products

B(s)=Y BiNi(s) = Y (B, Ni)Ni(s)
In the caseof baseswhich are not orthonormalwe mustusein-
ner productswith the dual basisfunctions(see[20]) to find the
coeficients.
Using projectionmethods jnsteadof solving the integralequa-
tion (1), we solvethe relatedintegral equation

B(s) = E(s) +Z < / dt k(s, ) B(t), Ni(s)> Ni(s) (2)

In words, we operate on (integrateagainstthe kernel) the pro-
jectedfunction B(t). After havingbeenoperatedn, the resulting
function generallyno longerlies in thefinite dimensionafunction
spaceso the function s reprojectecagainstthe N;(s). B can be
obtainedby solving the linear system

E; +ZB]»KU
J

/ ds / dt k(s, )N; () Ni(s) 3)

To computethe integralsK;; someform of numericalquadrature
or closedform solution[21] mustbe employed.If the basisfunc-
tions are piecewiseconstanttheseintegralsarerelatedto the well
known form factors.

B;

?In orderto simplify thepresentationve will write theradiosityfunctionashaving
one variable, and the kernel function as having two variables. In the text we will
explainwhat needsto be donefor a 3D radiosityimplementation.



It is importantto remembetthat the projectedequationis only
an approximationto the original integral equation. Projections
into differentfinite dimensionalspaceswill resultin differentap-
proximationswith differing amountof erroranddifferenttypesof
error. In generakheprojectionerroris O(h**) whereh is theres-
olution of the grid, andp the degreeof the polynomialusedwhich
favors higher order basisfunctions. Higher order basisfunctions
alsoresultin smootherreconstructedadiosity solutionsleading
to fewer visual artifacts. However, higher order basisfunctions
requiremorework to evaluatethe associatednner products pos-
sibly offsetting potentialsavings.

Onesetof choicesfor basisfunctionsis given by the family of
functionscalledwavelets.

4 \Waveets

Wavelettheory is a rapidly developingfield that hasits rootsin
pure mathematicg7] andsignal processind16]. Good introduc-
tionsto thetopic canbefoundin [17, 4]. In this sectionwe review
somewavelettheoryfocusingon the relevantissuesfor radiosity.

Waveletsform hierarchicalbaseswhich can offer alternative
basedor familiar finite dimensionafunction spaces.The simplest
waveletconstructionis the Haar constructionshownin Figure 2.
In the upperleft is a setof basisfunctionswhich spanall piece-
wise constantffunctionsat resolution8 on the interval. Using the
operatorgy (pairwisedifferencing)andh (pairwiseaveragingwe
canconstructanotherbasisfor the samespace(upperright). Four
of thesefunctionsarejust like the original basis,only wider, thus
we can repeatthe construction(middle right). Repeatingonce
more we finally havea basisfor the original spaceof functions
consistingof the overall averagego and the differencefunctions
1, ; from all the lower levels. The last setof functionsis known
asthe Haarwavelet basis. This constructionis very similar to an
image pyramid that one might usefor texture mapping. In such
a pyramid the image (function in our case)is representeat dif-
ferentlevels of resolutionby successiveaveragingsteps. In the
Haar pyramid we only remembetthe overall averageand all the
differences betweensuccessivéevels of the pyramid.

TheHaarbasisis only the simplestexampleof aninfinite family
of suchconstructionshoweverthe basic principlesare the same
for all waveletbases.More formally we startwith two functions
1(s) (sometimegalledthe detail function)and ¢(s) (the smooth
function) definedon the unit interval s € [0, 1]. Scales(or levels)
1 andtranslatesj of ¢(s) and(s) areexpresse@s

is(s) = 2%9(2's - j)

Yisls) = 27%(@2's - j)
with 7 = 0,...,2" — 1. Accordingto this indexing, the function
¢i,; is just like the function ¢;—1,; exceptthat ¢;_1; is twice
aswide, and 1/\/§ timesastall (the wider functionsare shorter
sothat (¢ ;, ¢:,,) remainsconstantndependenof 7). Similarly,
¢i,; I1s just like the function ¢; j+1 exceptit is translated. To
createan n = 2 dimensionalfunction spacewe constructan L
level hierarchyof functionsthat arescalesandtranslate®f ¢ and
¢ (Figure 2 illustrates . = 3). We obtain the waveletbasisfor
the hierarchyby choosingonly the detail shapesn all levelsplus

the smoothshapeon the top level, ¢; j, i =0, ..., L — 1 and ¢o.
Betweenlevelsthereis the so called two-scale relationship

Pi—1,j Z hi—2i®i k
3

Z gk—2j¢i,k
k

In wordsthe ¢ functionsat a givenlevel canbe linearly combined
to yield ¢ and+ functionsat the next coarsedevel. This combi-
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Figure 2: Transformationof a piecewiseconstantbasisinto the
Haarwaveletbasis.

nationcanbe expressedsa convolutionwith somesequence#
and g with the resultsubsampledy 2 (expressedy the factor 2
in theindex“k — 25" of h andg). The sequenceé andg canbe
thoughtof asa low passfilter and high passfilter respectively.

The projection of an arbitrary function B(s) into a wavelet
basiscanbe formally written as

B(s) = (B,go)go(s) + Y (B,ui)vis(s) (&)

23

Insteadof computingall the aboveinner products,we can find
the coeficientsefficiently by exploiting thetwo-scalerelationship.
Giventhe projectionof somearbitraryfunction B(s) with respect
to thelowestlevel basis¢ ., ; thewaveletcoeficientscanbefound
usinga pyramidalgorithm[16]. Eachstageof this algorithmtakes
a vectorof coeficientsand convolvesit with the filters h and g,
returningthe smoothanddetail coeficients onelevel up

3To simplify the discussiorwe areassuminghatwe haveanorthonormalwavelet
basis. We discussthe non orthonormalcasein [20].
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Figure 3: The M, waveletconstructionwhose smooth shapes
arethe first two Legendrepolynomials. Both of the detail shapes
(lower right) havetwo vanishingmoments.

Xformlp( vector By, int i)
for(j=0;j<2/2j++)
BiP[5] = Y2, hi—2; Bolk];
ByPIi1 = D2, gre—2; BslKl;

up up y.
return (Bg", B;");

The entire one dimensionalpyramid transformis then statedas

Pyram dUp( vector By, , )
for(i=L;i>0;i——)
(Bd»’i—l,k’ B1r/’i—1,k) = Xf or mJp( B¢i,k )
return (Bg,, By, ,,1=0,...,L—1)

If the h and g convolutionshave constantwidth (with respectto
i) then eachcall to Xf or mJp hascost linear in the length of
the array passedn. Sinceeachsuccessivecall in Pyr ani dUp
works on only the smoothhalf left by the previouscall the overall
runtimeto build the pyramidis O(n + 3 + 7 +... +1) = O(n).

A similaralgorithmPyr ani dDown reverseshis procesaising
Xf or mDown for successivesalls

Xf or mDown( vect or By, vector By, int i)
for( j=0;5<2%2" j++)
B3 4] =30, hy—ak Bo[k] + 37, gj—ar By[k];
return B3ow™;

Pyram dDown( Bg,, By, ,, 1=0,...,L—1)
for( i=0;i< L;i++)
By, = XformDown( By, ,, By, , . i );
return By, , ; ’

A key property of waveletsessentialto this work is that a suf-
ficiently smoothfunction B(s), whenexpressedn a waveletba-
sis (Equation4) will have many small coeficients. By ignoring
thesenegligiblecoeficientswe areleft with a sparseapproximate
representationThe negligible coeficients occur becausevavelet
functions have vanishing moments. We say that a function (s)

has M vanishingmomentsif

/dsq/;(s)si:O, i=0,...,M—1

The Haarwavelet(Figure 2) hasone vanishingmoment,thusthe
projectionof a nearly constantfunction into the Haar basiswill
have wavelet coeficients near 0. Similarly, if a waveletbasis
function hastwo vanishingmoments,the projection of a linear
functionwill vanish. Figures3 and4 showexampleof wavelets,
1, with two vanishingmoments.

5 Wavdets In Higher Dimensions

Waveletbasedor functionsof two or morevariablesarerequired
for radiosity. Our goal is to projectthe kernel, which is a four
dimensionalfunction, into a basissetin which it hasa sparse
representation.
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Figure 4: The F, waveletconstruction. 7, baseshavetwo dif-
ferentdetail shapes Both of the detail shapesavetwo vanishing
moments.
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Figure 5: The 2D PyramidAlgorithm is appliedto form factors
taken from the flatland radiosity environmentconsistingof two
parallelline segments(Flatland[13] is radiosityin a plane). The
dot sizeindicatesthe magnitudeof a given entryin the matrix.

An arbitrary function k(s, t) of two variableson a finite two
dimensionalintervalcanbeapproximatedy somefunction l%(s, t)
thatliesin atwo variablefinite dimensionafunctionspace.Given
a particularonedimensionalwavelet,a 2D waveletbasié is made
up of the functions

Bo(s)¢o(t)
i, ()i, i (2)
Yi,5(8)di, ()
Bi,5 ()i, i (2)

wherewe only couplefunctionson the samescale:, wherei =
0,...,L—1andj,k=0,...,20 — 1.

The 2D wavelet coeficients may be obtainedfrom the finest
resolutioncoeficients By, . 4, , usinga 2D Pyram dUp algo-
rithm. This algorithmbeginswith the B, ; o, , writtenin a2D
matrix tableau. It thenappliesXf or mJp onceto eachrow, fol-
lowed by an applicationof Xf or mJp to eachresulting column.
This procedureis appliedrecursivelyto the By, _, .6, _,, quar-

4Another2D waveletbasiscould be constructedrom thetensorproductof a 1D
waveletbasis. The differentforms of multidimensionalwaveletbasesare discussed
in [3, 20].



Figure 6: To illustrate the sparsenessf the kernel matrix we
transformthe flatland radiosity matrix from Figure 5 into the 2D
Haarbasis.Many of the coeficientsaresmallin magnitudesmall
dots).

Figure 7: We transformthe samematrix into the 7, basis.Notice
that evenmore of the coeficients are negligible now.

ter (Figure5). The constructionof a 2D Pyr ani dDown follows
analogouslyfrom the one dimensionalPyr ani dDown.

This constructiorcanbe extendedo functionsof four variables
suchasthe kernelin 3D radiosity k(s1, t1, s2, t2). For this case,
thereare sixteencombinationsof ¢ and functionsin four vari-
ables. The basisis madeup of all fifteen combinationson the
samescalei which involve v functions. The correspondingyra-
mid transformatiorfunctionsareconstructedasin the two dimen-
sionalcaseby applying Xf or mp and Xf or mDown respectively
to eachdimensionin turn.

For this type of multidimensionalwavelet basis Beylkin et
al. [3] showthatfor agivenerrortolerancepnly O(n) coeficients
needto be usedto attainthe prescribederror tolerancein the re-
sultsof our computationsFigures6 and?7 visualizethe sparseness
of a flatland radiosity kernel when written in two waveletbases
with oneandtwo vanishingmomentsrespectively.

6 Radiosity with Wavelets
To obtain an efficient radiosity algorithm, we project the kernel

by taking inner productswith the waveletbasisfunctions. The
coeficients of the kernelwith respectto the basisare given by

/dt /ds k(s, t)do(s)po(t)

kgk :kwi,jad)i,k = /dt/dSk(S:t)wi,j(S)qﬂi,k(t)

¢ —
k* = k¢oy¢o

/dt /dsk(s,t)gbi,j(s)lbi,k(t)

B —
kijk - k¢i,j7wl‘,k

/dt /dsk(S,t)?/li,j(S)¢i,k(t)

(o
kijk = kwi,jad)i,k

Becauseof the vanishingmomentpropertiesof the waveletsand
the smoothnesgropertiesof the kernel, many of thesetermsare
nearly zero.

A projectedversionof theintegraloperatorcannow be derived
by projecting the kernel itself. This derivation which we only
sketchhere is describedin greaterdetail in Beylkin et al. [3].
The k%, k® and k” coeficients are usedto representhe kernel
which hasbeenapproximatedwith respectto the waveletbasis.
Given this projection,after performingthe necessarglgebrathe
approximateoperatorcanbe written as

/ dt k(s, t)B(t) =
Bk go(s) + Y (O Bkt (s)
ij k

O BLE )86+ Y O Bkl )tis(s)
ij k ij k

®)
where
% =B} =Bu, = / dt Y11 (O B)
B =By,, = / dt ¢ () B(t)
B? =By, = / dt ¢o() B(t)

6.1 The Basic Algorithm

Equation5 suggestghe following three phasealgorithm to ap-

proximatethe kernel operatingon a radiosity function.

Step 1 Pull: Obtainthen (n = numberof basesf the radiosity
function)coeficients B~ andthen coeficients B® of theradiosity
function. If we are initially given the coeficients By, ., the

2n neededcoeficients can be obtainedby calling a procedure
Pul | which is just like Pyr am dUp exceptit returnsboth the

¢ andv coeficients. This steptransformsn coeficientsinto 2n



coeficients. A 1D Pul | would thenbe

Pull ( vector By, ,)
for(i=L;i>0i——)
(Boi—1r By,_y ) = Xformp( By, . o 1 );
return(By, ., By,,,i=0,...,L—1);

Step 2 Gather: Let the projectedkernel operateon the projected
radiosityfunction. This meanghatwe sumovertheindexk, andis
equivalento a matrixmultiply. Becausef thevanishingmoments
of the wavelet functions most of the n? kernel coeficients will
be nearzero and may be ignoredif the action of the kernel is
desiredto finite precision. The procedureGat her resultsin 2n
coeficients G4, ; andGy, ; thatrepresenthe resultantradiosity
function as a combinationof ¢; ;(s) and;_;(s).

Step 3 Push: Reconstructiorof the radiosity function using the
2n functions¢; ;(s) and; ;(s) is donewith the procedurePush
which is similar to Pyr am dDown but takesas argumentsboth
the ¢ and ) coeficients. A 1D Push would thenbe

Push( By, wr By, i 1=0,...,L—1)
for( i=0i< Lji++)
B¢i+1,k += Xf or mDown( B¢i,kv Bd’i,k’ i),
return By, , ;

Wrapping this projectedoperatorwithin a Jacobiiteration loop
resultsin the following algorithm

(k% E°, k) = ProjectKernel ();
B¢L,k = E¢‘L,k;
whil e( !converged )
G=0;
(B¢>i,k’ B1r/’i,k) = Pull ( B¢L,k );
(Go,;» Gy, ;) = Gather( By, ,, By, k% Kk, k7);
G¢L7k = PUSh( G¢i,]” Gdfi,j );
B¢L,k = G¢L,k +E¢‘L,k;
Di splay();

The pushand pull canbe donein O(n) (linear in the numberof
elements)ksteps.The gatherstep(this is a completegathersweep
which updatesall of the entries)canbe donein O(m) time where
m is the numberof termsin the kernel expansion(matrix) that
are significant. We want m to be as small as possible. Wavelet
baseswill leadto m = O(n) wherethe constantfactor in O(n)
decreasesvith the numberof vanishingmoments.

What remainsis to project the kernel into the waveletbasis,
which may be doneasfollows

Pr oj ect Ker nel ()
kop ;.00,,= Quadrature( k, ¢r;, érk);
(k~, kﬁ: k7) = Pyrami dUp( k¢L,jv¢L,k);
where( (k% k°, k') <e)
k>, k°, k) =0;

6.2 The Top Down Approach

Unfortunately,this bottomup Pr oj ect Ker nel is anexpensive
implementatiorrequiringquadratictime andspace.The costscan
be dramaticallycut by usingan oracle which predictswhich m of
the n? coeficients of the projectedkernel are significant. Then,
thesem valuesare computeddirectly by quadratureor symbolic
integration.

Assumingthat the oracle can estimatethe smoothnes®of the
kernel for a given region (vis-a-vis a given number of van-
ishing moments), an efficient top down recursive version of
Pr oj ect Ker nel canbe written asfollows

Proj ectKernel ( i, patch p, patch q )
smooth = AskOracle( p, q );
if( smooth ) return;
el se

kEmne@r Ko rar K o ka)
= Quadrature( k, p, q);

if(i ==1L-1) return;

el se
ProjectKernel ( i+1, left(p), left(q) );
ProjectKernel ( i+1, left(p), right(q) );
ProjectKernel ( i+1, right(p), left(q) );
Proj ectKernel ( i+1, right(p), right(q) );

If the oracle finds the region under considerationsuficiently
smoothno morerecursivecalls needbe executedsincethe coef-
ficients at lower levelswill be insignificant by assumption.The
function Quadr at ur e() computesthe projectionof the kernel
function onto the basisfunctionsat the given level.

6.3 3D Radiosity

In 3D radiosity B is a function of two variablesso in the main
programwe usea 2D Pul | anda 2D Push respectively.k is a
function of four variablessoin the bottomup Pr oj ect Ker nel
we usea 4D Pyr ani dUp function. In the top down approach
to Pr oj ect Ker nel thereare fifteen not three quadraturesand
sixteenrecursivecalls for all combinationsof four childrenof p
andq.

7 Implementation

Thetop downalgorithmdescribedabovehasbeenimplementedy
extendingthe implementationof hierarchicalradiosity described
in Hanraharet al. [11].

7.1 Choice of Basis

Two families of waveletshave beenexplored, multiwavelets[1]
anda family of waveletsthat we call flatlets. Eachof thesefam-
ilies havememberswith any numberof vanishingmoments.

The constructionof M, (multiwaveletwith M vanishingmo-
ments)beginswith M smoothfunctions which are the first M
LegendrePolynomials,¢™(s) = L. (s), and M detail functions
1™ (s) thatare piecewisepolynomialsof degreeM — 1, andhave
M vanishingmoments. A hierarchyis then constructedfrom
theseshapes.M is the Haarbasis,however,for M greaterthan
1, M is technicallyspeakingnot a true waveletsinceit begins
with a collectionof ¢ and+ functionsinsteadof a single pair.

Multiwaveletsform an orthonormalbasis. Figure 3 showsthe
basisfunctionsfor the M hierarchy. The two-scalerelationship
for M is expressedonciselyas

2 0 2 0 i 25 bi_1
1 —\/§ 1 \/§ 1 ¢22',2j ¢2271,j
VBl 0 —2 0 2 Pt oin Pi1
1 V3 -1 V3| | ¢?pn vy

Using this relationshipthe pushand pull operationscan be com-
putedusingabinarytree,insteadof asa subsampledectorconvo-
lution. A nodestoresthe four coeficientsof thefunctions¢},17j,
@51, ¥i 1, Y21 ;. During a pull, a node computesthe val-
uesof its coeficients as a linear combinationof the ¢},2j, ¢§’2j
coeficientsobtainedfrom its left child, andthe ¢} .1, ¢7 5,41 CO-
efficients obtainedfrom its right child. To representhe radiosity

function over a patchwe needa 2D M basisfor which we use



a quad-treewhere eachnode storessixteencoeficients. During
a pull, a node computesits coeficients as a linear combination
of the sixteen¢¢ coeficients from its children (four from each
child).

Theflatlet basisF s is madeup entirely of piecewiseconstant
functions. The ¢"™ are M adjacentbox functions,andthe ¢ are
M piecewiseconstanfunctionsthathave M vanishingmoments.
Figure 4 showsthe 7, hierarchy.

For F>, the two-scalerelationshipis given by

11 0 0] ¢y S
1 00 1 1 ¢22',2j _ ¢§71,j ©)
V2| -13 -3 1| | dlym 1

11 1 1] | diom vEa,

The top two rows of the matrix in the aboveequationare chosen
to give us box functionstwice aswide. The bottom two rows
are chosento be orthogonalto constantand linear variation, (the
vectors[1, 1, 1,1], [0, 1, 2, 3])°. Foradiscussiorof a similar con-
structionsee[2].

Both flatlets and multiwaveletscan be constructedo haveany
numberof vanishingmomentsto increasethe sparsenessf the
integral operatorrepresentationFor both basesthe caseM =1
reducesto the Haar basis. For M > 1 multiwaveletsoffer the
bendits of projectinginto a higher order space,resultingin in-
creasectonvegenceratesand smootherbasisfunctionsto repre-
sentthe answer. Thesebenefitscome at the expenseof higher
order quadraturesecessaryfor the inner products. Flatlets for
M > 1 alsooffer acceleratedconvegencewhile the quadratures
remainequivalentto form factorcomputationgor which thereex-
its a large body of literatureandcode,andfor which someclosed
form solutionsareknown. The final answeris still representeds
a piecewiseconstantfunction, albeit at the finestresolution¢y, ;.
Sincethe degreeof the basisfunctionsdoesnotgo upin the flatlet
casethe width of supportneedsto beincreasecas M increases.

With multiwaveletsandflatletsthereis alsoa costincurredby
increasinghenumberof vanishingmoments.Larger M will result
in h andg filters with wider support. Thusany non-smoothnesis
k(s, t), suchasa shadowdiscontinuity,will fall underthe support
of morebasisfunctions. This increaseshe numberof significant
termsin the integral operator.

5A technicaldetail concernsthe fact thatflatletsfor A > 1 arenot orthonormal
andthusrequirethe dual basisfunctionsto computePyr ani dup (see[20]).
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Figure 8: Two differentoraclesandthe interactionpatternsthey
generate.

7.2 Pull, Push and Gather

Both multiwvaveletsandflatlets areinstancesof tree wavelets. A

tree wavelet has the property that the convolution sequenceg

andg for two neighboringelementsdo not overlap. This property
allows us to organizeall computationsalong a tree which does
not needto haveuniform depth. Treewaveletsalso allow for an-
othersimplification. Sinceall necessaryoeficientsresidein the
immediatechildren of a nodewe can usethe two-scalerelation-
ship to storeonly the ¢¢ coeficients and neednot representhe
oY, o, andyp coeficients explicitly. With this simplification
Pr oj ect Ker nel is implementedasfollows

Proj ectKernel ( i, patch p, patch q )
Parent Level smoboth = AskOracle( p, q );

i f( ParentlLevel smooth || i ==1L)

ky» = Quadrature( k, p, q );

CreatelLink( ks, P, g );

el se

ProjectKernel ( i+1, left(p), left(q) );

ProjectKernel ( i+1, left(p), right(q) );
ProjectKernel ( i+1, right(p), left(q) );
Proj ectKernel ( i+1, right(p), right(q) );

In our implementatiorof radiosityusingthe M, and F; bases,
the radiosity function over eachpolygon is representedy By

coeficients that are storedin a quad-tree. Eachnode holds M2

B¢ coeficients. Pulling andpushingaredonein the quad-treeas
in [11] exceptthat for differentbaseswe usedifferenttwo-scale
relationships.The kernelis representedy its k¢4 coeficients
that are storedon links createdbetweennodesof different poly-

gons’quad-treesEachsuchlink cariesM* interactionterms. For

the F,, basesthe interactiontermsare still form factors,but for

M the coeficients on the links representhigher order inter-

actionswhich require quadraturecomputationsof the appropriate
order. Gatheringis done by moving B valuesacrossthe links,

weightedby the k valueson thelink. In this context,HR canbe
viewedaswaveletradiosity usingthe Haar basis.

7.3 Oracle

The oraclemustdecidewhetherthe kernelis sufficiently smooth
over two patchesn the environment.e., resembles polynomial
of degreeM — 1 or less. If the kernelis smooth,all ¢ terms
will (sufficiently) vanishandthus any work to evaluatethe lower
interactiontermscanbe avoided.

The mostaccurateapproachto measurehe kernel smoothness

is to directly evaluatethe integralsof the kernel againstthe v
on this and all lower levels and verify that they are below the
requiredthreshold.This is computationallytoo expensiveandwe
approximatethis computationin the following way. The kernel
is sampledat the points requiredby a Gauss-Legendrguadra-
ture rule of the appropriateorderandan interpolatingpolynomial
of degreeM — 1 is constructedusing Neville’s algorithm [22].
Given this interpolatingpolynomial k» we computethe L, error
f |kp — k| with a quadratureule which placessamplepointsin-
betweenthe previouslychoserpoints. If the valueof this integral
is small we concludethat our currentlevel of (smooth)approx-
imation matchesthe kernel function well and the AskOr acl e
function returnsTr ue. Note that the samplepointsfor the inter-
polatingpolynomialarechosersothatthey canbe useddirectly in
thecomputatiorof the interactionlink values.If theAskOr acl e
functionreturnsFal se thesesamplesarediscarded.A lesscostly
approachcould use geometricinformation, such as the size, ori-
entation, and distancebetweentwo patches. In effect this was
donein the original HR implementation. However for the F,
and My, M > 1 basesit is not immediately clear what the
correspondinggeometricreasoningwould be.



It is importantto realize that any such implementationof an
oraclewill introduceerrorsdueto its approximatenature. If the
oracleis not stringentenough.,andnecessaryermsare neglected,
artifacts will appearin the image. Figure 8 showstwo differ-
ent oraclesandthe interactionsthey force. Two successivéevels
of interactionsare shown (top to bottom). On the left is an or-
acle allowing patchescloseto the singularity (where the kernel
variesrapidly) to be linked (meaningno further subdivisionwill
be done). For this oraclethe interactionpatternsseparateon the
lower level. Ontheright is amorestringentoraclewhich doesnot
allow singularinteractionsuntil patcheshavebecomevery small.
As aresultwe do not seethe separation.

As in [11] we usebrightnessrefinementwhich meansthat the
stringencyof the oracleis weightedby the brightnessof the in-
volved patches. Also as in [11] a fast partial visibility testis
performedby using a constantnumberof jittered rays. If two
patchesare partially occludedandthereis sufficient enegy being
transferrecbetweenthe two patcheghe oraclereturnsFal se.

7.4 Quadrature

If the oracle returnsTr ue, numericalintegrationsmust be per-
formedto computethe k4444 termsassociateavith the link to be
created.OurimplementatiorusesGauss-Legendrguadraturg22]
for this purpose. A Gauss-Legendrguadraturerule providesan
accuratentegrationfor polynomialsup to order2p — 1, wherep
is the numberof samplepoints. The order of the quadratureand
the relatednumberof samplepointsrequireddependson the sum
of the order of the waveletbases,and the assumedrder of the
kernelitself.

For the projection of the kernel againsta flatlet basis,a two
point rule is usedfor eachconstantsectionof the basisfunction.
In the caseof multiwaveletsM, M > 1, M pointsare chosen
along eachcoordinateaxis sincewe needto havea high enough
order of integrationto accountfor the polynomial variancein
the kernel and the polynomial basis functions themselves. For
example,for M = 3 we computecoeficients when the kernel
variesapfroximatelwp to 2"¢ by projectingonto basisfunctions
up to 2"¢ order. Thusthe integrandis approximately4” order,
andwe canusea threepoint Gaussrule.

The numberof integralswhich needto be computedfor a link
is M*, howeverfor all theseintegralsonly a total of M* samples
of the kernelfunction are required. Using precomputedveights,
thesesamplesare combinedto give all the desiredintegrals.

We treatvisibility following [11] by castinga constaninumber
of jittered rays betweentwo patchesto estimatethe fraction of
visibility. Thisis thenusedto attenuatethe quantity returnedby
the Gauss-Legendrquadrature.This techniquerelies on the fact
thatwe alwayssubdividein thevicinity of a shadowdiscontinuity
limiting errorsdue to the non-smoothnature of the kernelto a
small region.

Whenthe two patcheghatarelinked up are closeto the singu-
larity in k, quadraturesvill encountenumericaldifficultiesif they
arenot properlyadaptedo the singularity. In particulara Gauss-
Legendrerule will producelarge errorsandan adaptedjuadrature
rule is required. This phenomenoris not uniqueto waveletra-
diosity but appliesto all GR methods.SpecialGaussrulescanbe
designedfor the particularsingularity found in the radiosity ker-
nel. Zatz [25] usessuchcustomrules and notesthe needfor an
automaticdecisionprocedureasto whento switch the type of in-
tegration.In our implementatiorof flatlets, we usea closedform
solutionfor the form factor [21] wheneverthe patcheshorderon
the singularity. While this computatioris expensivejt only needs
to be invokedin a small fraction of interactioncomputationsand
contributedittle to overallruntime. For multiwaveletswe haveno
suchclosedform available.In this casethe oracleforcessubdivi-
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Figure9: RelativeL; errorasafunctionof the numberof interac-

tion links for the haarbasiswith » = £, 2, L L (top to bottom).
The testconfigurationis depictedin the upperright corner.
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Figure 10: Relative L; error as a function of the number of
interactionsfor the waveletbasesM1, M, M3z, and M4 (top
to bottom) usingthe sametest corfigurationasin Figure9. Here

-4
h=3.

sion to small enoughpatchesat the singularity that the resulting
errorscontributevery little to the overall error. Alternative con-
structionsfor singulartransportsare discussedn [19].

8 Experimental Results

In this sectionwe presentfindings that comparehow radiosity
behaveausing different waveletbases.We give resultsfrom the
analysisof a simple 3D configuration,for which we havean an-
alytic solutionagainstwhich to checkour results. We finish with
animageof a full environment.

One test caseusedthe corfiguration depictedin the insetin
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Figure 11: Relative L; error asa function of work.

Figure 12: Computedmageof perpendiculaemitterandreceiver.
for the Haar basis(left), and F, basis(right) using sameamount
of work. Note that we havenot performedany post processing
suchas Gouraudshading.

Figure9. A pureemitterof sidelength1 is placed0.1 unitsabove
apurereceiverof sidelengthtwo. Forthis particularconfiguration
the radiosity on the receiveris given by the differential areato
finite areaform factorat everypoint. Figure9 showsthe behavior
of the relative L1 error for the Haar basisas a function of the
numberof interactionsfor variousgrid sizesh. The far point on
eachof the lines correspondgo a full matrix solution. Note in
particularthat the final accuracyis reachedwvell beforeall matrix
elementsare computed. Plots for higher order basis functions
exhibit the sameoverall shapebut with steepeslopesandoverall
lessererror. Figure 10 showsthe behaviorof the M, basedor
M=1...,4andh = siz The ratio of successiveslopes(as
fitted to the points)is almostpreciselyl: 2: 3 : 4, asonewould
expectfrom the orderof basisfunctionsemployed.For both plots
we have depictederror as a function of numberof interactions.
Howevera userexperience®rror as a function of work which is
more accuratelymeasuredby the numberof kernel evaluations.
Sincethe amountof work increasedor higher order methodsit
is not clear a priori whethera higher order methodwill always
yield betterresultsin a shortertime. Figure 11 showserrorasa
function of kernel evaluationsfor the samedata as that usedin
Figure 10. The plot for M = 1 is translatedwith respectto all
otherssincewe alwaysuseat leasta two point quadraturerule
evenif the basisfunctions are constant. The plot showsthat if
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Figure 13: Heightfield error plots for perpendicularemitter and
receiver.

Figure 14: Architecturalscenecomputedwith the M, basisand
rendereddirectly from the basisfunctions.

sufficient accuracyis requiredhigherorderbasisfunctionsachieve
lower error for the sameamountof work.

We have also examinedthe behaviorof our methodsnearthe
singularity of an environmentconsistingof perpendiculampoly-
gons (Figure 12). The emitter was chosento be half aswide as
thereceiverto createmorevariationin the radiosityfunction. The
grid sizewassetto siz The upperleft plot in Figure 13 showsthe
exactsolution plotted as a heightfield over the receiver. On the
top right is a plot of the differencebetweerexactsolutionandthe
computedsolutionfor the Haar basis. On the bottom are similar
errorsurfacedor the 7, and 3 basegleft andright respectively).
The amountof work was approximatelyconstant(8000 interac-
tions) for all threesolutions. The graphsshow clearly the lesser
and smoothererror for the > and F3; basesdemonstratinghe
effectivenesof baseavith morevanishingmoments.This is also
illustratedby the renderedmagesin Figure12.

The algorithm hasalso beenrun on a more complexenviron-



ment (Figure 14). This picture, as well as Figure 12, doesnot
useany postprocessinguchas Gouraudshading.Insteadthe sur-
face brightnesds computeddirectly from the basisfunctionsand
associateatoeficients.

9 Conclusion and Future Work

In this paperwe havepresentedhe basictheory of projectionsof

integraloperatordnto hierarchicabasesandlaid out the theoreti-
calfoundationof a newsetof techniquesnvolving wavelets.With

this in hand, we introduceda new set of linear time algorithms
we havecalled waveletradiosity, and shownthat the hierarchical
radiosity describedby Hanrahanet al. was an instanceof a first

orderwaveletapproach.

We haveintroduceda new family of wavelets,dubbedflatlets
and also experimentedvith a secondfamily of wavelets, multi-
wavelets.Both leadto efficient algorithms. Futurework includes
examiningvariouswaveletbaseswhich may have betterproper-
ties than the multiwaveletsandflatlets. For examplethe Coiflet
functionsof [7, 3] allow for fast one point quadraturemethods.
The tree waveletsthat we implementeddo not enforceany kind
of continuity at elementboundaries possibly leadingto blocky
artifacts. Spline wavelets[4] might provide a basiswhich would
alleviatethis.

While our initial implementationwas limited to quadrilateral
polygonsthereis nothing in the underlying algorithmsthat pre-
ventsthe useof anysurfacevhoseparametedomainis rectilinear,
suchasfor examplebicubicpatches.Theonly changenvolvesthe
reparameterizatiofchangeof variable)in the couplingintegrals.
It would bevery desirableto designbaseswvhich work with trian-
gular domainssincetrianglesarea commonprimitive in meshing
algorithms.

Thereare still fundamentalquestionsthat haveyet to be ad-
dressed. We would like to gain a better understandingf how
waveletexpansionsnteractwith the visibility termin the kernel.
It is alsoimportantto find methodsthatremainefficient whenthe
environmentconsistsof a large numberof small polygons.
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