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Abstract

Radiosity methodshave been shown to be an effective means
to solve the global illumination problem in Lambertiandiffuse
environments.Thesemethodsapproximatethe radiosity integral
equationby projectingthe unknownradiosity function into a set
of basis functions with limited support resulting in a set of n
linearequationswheren is thenumberof discreteelementsin the
scene.Classicalradiosity methodsrequiredthe evaluationof n2

interactioncoefficients. Efforts to reducethe numberof required
coefficients without compromisingerror boundshavefocusedon
raising the order of the basisfunctions,meshing,accountingfor
discontinuities,andon developinghierarchicalapproaches,which
havebeenshownto reducethe requiredinteractionsto O(n).

In thispaperwe showthatthehierarchicalradiosityformulation
is an instanceof a moregeneralsetof methodsbasedon wavelet
theory. This generalframework offers a unified view of both
higherorderelementapproachesto radiosityand the hierarchical
radiosity methods.After a discussionof the relevanttheory, we
discussa new setof linear time hierarchicalalgorithmsbasedon
waveletssuchasthemultiwaveletfamily anda flatlet basiswhich
we introduce. Initial resultsof experimentationwith thesebasis
setsaredemonstratedanddiscussed.
CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-DimensionalGraphicsand Realism– Radiosity; G.1.9 [Numerical
Analysis]: Integral Equations– Fredholmequations.

Additional Key Words and Phrases: global illumination, wavelets,hi-
erarchicalradiosity.

1 Introduction

In computergraphics,radiositymethodshavebeenusedto solve
the global illumination problem in environmentsconsistingen-
tirely of Lambertian(diffuse)reflectorsandemitters.Thesolution
is a radiosity function over the domain of the surfacesin the
scene. Classicalradiosity [9, 6] (CR), derived from the radia-
tive heattransferliterature,approximatesthe radiosityfunctionas
piecewiseconstant. An energy balanceargumentgives rise to a
linearsystem.This systemhasn2 coefficientscalledform factors.
Heren is the numberof discreteareas,or elements, over which
the radiosity functionhasbeenassumedto be constant.The form
factor describesthe fraction of the energy leaving one element
andarriving at another.Typically, an iterativealgorithm suchas
Gauss-Seideliteration[22] or progressiveradiosity[5, 10] is used
to solvethe systemof linear equationsfor the radiosities.

An integralequationcalledtherenderingequationwasproposed
by Kajiya to model the global illumination problem [14]. He
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Figure 1: The spaceof projectionmethodsfor radiosity.

showedthatCR is a particularapproximationto this equation.By
casting the problem in this form, techniquesdevelopedfor the
solution of integral equations[8] can be exploited to solve the
radiosityequation.

In particular,Heckbert[12, 13] hasdemonstratedthat the lin-
earsystemin radiositycanbe derivedby projecting the radiosity
integral into a finite dimensionalfunction space. The CR algo-
rithm resultsfrom usingthespaceof piecewiseconstantfunctions,
(i.e., projectingthe function into a setof constant(or “box”) basis
functions). In general,a function canbe projectedinto any finite
dimensionalfunction space.A desirablefinite dimensionalspace
is onethatcanrepresentthe functionaccuratelywith asfew terms
aspossible.In his studies,Heckbertconsideredradiosityfunctions
that arepiecewiselinear. Zatz [25] hasusedLegendrepolynomi-
als to arrive at solutionsthat arepiecewisepolynomial of higher
order. Other researchershave exploredthe use of higher order
basesin the meshconstructionand reconstructionphasesof the
algorithm[18] aswell asdiscontinuitymeshing[15, 13]. Theuse
of higherorder bases,which we will refer to as galerkin radios-
ity (GR), hasbeenshownto lower the numberof basisfunctions
neededto obtaina particularlevel of accuracy,albeit at a higher
costper basis.

A secondavenueof researchhasattemptedto lower the com-
putationalcomplexityof solving the linearsystemwhich arisesin
CR.Hanrahanet al. [11] presenteda hierarchicalradiositymethod
(HR) modeledafterrecentadvancesin n-bodyalgorithms.HR ex-
ploits the fact that neighboringpatchesin the environmentoften
have similar form factors to distant patches. This reasoningis
extendedto form a hierarchyof patches,(i.e., a hierarchyof basis
functions)in a straightforwardmanner.

While the methodsusing higherorderbasestry to exploit co-
herence in the illumination function, HR tries to exploit the co-
herencein the form factor itself, moreprecisely,in the kernel of
theradiosityintegral. In particular,HR is basedon approximating
the kernel as a constantfunction over intervalsof varying sizes.
In placesthat the kernel varies slowly, large intervalsare used.
Wherethe kernelvariesquickly, smallerintervalsareneeded.



RecentlyBeylkin et al. [3] madethe observationthat integral
operatorssatisfying very generalsmoothnessconditions can be
approximatedto any finite precisionwith only O(n) coefficients
when projectedinto a waveletbasisinsteadof the usualO(n2).
This remarkableresult meansthat, in practice,integral equations
governedby smoothkernelslead to sparsematricesthat can be
solved in linear time. Since the radiosity kernel is, in general,
a smoothfunction of the type requiredby this theorem,wavelet
methodscan be usedto obtainO(n) complexity radiosity algo-
rithms. We call this waveletradiosity.

Hierarchicalbasisfunctionshavebeenusedbeforewith finite-
elementmethods[24] and applied to problemssuch as surface
interpolation[23]. In thoseinstances,hierarchicalbasisfunctions
were used to improve the condition numberof the matrix. In
our context, the hierarchicalbasisfunctions(wavelets)are used
becausemanyof theresultingmatrix coefficientsaresmallenough
to be ignoredwhile still allowing for anaccurateanswer.In some
sensewe are regardingthe matrix as an imageon which we are
able to perform lossy compression. Coefficients are negligible
becauseover many regionsthe kernel can be well approximated
by a low orderpolynomial.

The mathematicaltools of waveletanalysisprovide a general
frameworkoffering a unified view of both higher order element
approachesto radiosity, and the hierarchicalradiosity methods.
Figure1 placesearlieralgorithmsplusthenewmethodswe inves-
tigatehereinto a matrix relatinghierarchyversustheorderof the
underlyingbasis.CR useszeroorderpolynomials,while GR uses
higher order polynomials(indicatedby the arrow). The vertical
axis representsthe sparsenessobtainedby exploiting smoothness
of someorder in the kernel. HR exploits “constant” smoothness
in the kernel. Within this context, we recognizeHR as a first
order wavelet. Higher order waveletscan be usedthat result in
an evensparsermatrix. Onesuchfamily of higherorderwavelets
is the multiwavelet family of [1] (M2,3 in Figure 1). We will
also introducea new family of wavelets,which we havedubbed
flatlets (F2,3 in Figure 1) that requireonly low orderquadrature
methodswhile maintainingmostof the benefitsof otherwavelet
sets.

This paper proceedswith a review of projection methods
for solving integral equationsfollowed by a discussionof re-
centadvancesconcerningthe solutionof integralequationsusing
wavelets. Finally we discussour implementationand report ex-
perimentalfindings. Someof themoretechnicaldetailsof wavelet
projections,aswell asa detailedanalysisof theunderlyingmath-
ematicalframework,aredescribedin [20].

2 The Radiosity Integral Equation

If all surfacesand emittersareLambertiandiffuse, the rendering
equationcanbe written as,
B(s1, s2) =

E(s1, s2) + ρ(s1, s2)

∫ ∫
dt1dt2

cosθs cosθt
πr2
st

VstB(t1, t2)

(1)
whereB(s1, s2) gives the radiosity at a point specifiedby the
surfaceparameterss1, s2, E the emission,andρ the reflectivity1.
The kernel of the integral,

k(s1, s2, t1, t2) = ρ(s1, s2)
cosθs cosθt

πr2
st

Vst

is a function describingthe geometricand visibility relationship
betweentwo points in the domain;θs and θt are the anglesbe-
tweenthesurfacenormalsandthe line betweens andt; rst is the

1The reflectivity, ρ, is actuallya function of wavelength.Without lossof gener-
ality, we will consideronly a monochromaticworld for the remainderof this paper.

distancebetweenthe two points; Vst is 1 if point s is visible to
point t and0 otherwise.

Over many large intervals,wherer is large relative to the size
of thepatches,thekernelis well representedby a low orderpoly-
nomial. Notableexceptionsincludethecornersof theenvironment
wherer2 goesto 0 andthekernelis singular,andshadowdiscon-
tinuities wherethe visibility switchesabruptly from 0 to 1.

3 Projections

After a short review of function projectionswe will show how
projectionscan be usedto find approximatesolutionsto integral
equationssuchasthe radiosityequation.The ideaspresentedhere
canbe found in greaterdetail in [12, 25].

We beginby writing the approximationof a functionB(s) in a
finite dimensionalfunctionspacewhereall functionsB(ˆ s) canbe
expressedasa linear combinationof n basisfunctionsNi(s)

B(s) ≈ B(ˆ s) =
n∑

i=1

BiNi(s)

where the Bi are scalarcoefficients with respectto the chosen
bases.For example,the spaceof piecewiseconstantfunctionsis
spannedby a basisof translated“box” functions,and the space
of piecewiselinear functionsis spannedby a basisof translated
“hat” functions.

To completethe approximation,we mustfind a way to derive
thecoefficients. For this, we define an innerproductof two func-
tions f (s) and g(s) as 〈f, g〉 =

∫
ds f (s)g(s). Two functionsare

orthogonaliff 〈f, g〉 = 0. We thensaythat a functionB(ˆ s) is the
orthogonalprojectionof B(s) into thefinite dimensionalfunction
spaceif 〈B −B,Ni〉 =ˆ 0 for all basisfunctionsNi(s).

If the original basisfunctionsareorthonormalwe canfind the
coefficientsof a functionB(s) with respectto the basis{Ni} by
performinginner products

B(ˆ s) =
∑

i

BiNi(s) =
∑

i

〈B,Ni〉Ni(s)

In the caseof baseswhich are not orthonormalwe must usein-
ner productswith the dual basisfunctions(see[20]) to find the
coefficients.

Using projectionmethods,insteadof solving the integralequa-
tion (1), we solvethe relatedintegralequation2

B(ˆ s) = E(ˆ s) +
∑

i

〈∫
dt k(s, t)B(ˆ t), Ni(s)

〉
Ni(s) (2)

In words, we operate on (integrateagainstthe kernel) the pro-
jectedfunctionB(ˆ t). After havingbeenoperatedon, theresulting
functiongenerallyno longerlies in thefinite dimensionalfunction
space,so the function is reprojectedagainsttheNi(s). B cˆ an be
obtainedby solving the linear system

Bi = Ei +
∑

j

BjKij

Kij =

∫
ds

∫
dt k(s, t)Nj(t)Ni(s) (3)

To computethe integralsKij someform of numericalquadrature
or closedform solution[21] mustbe employed.If thebasisfunc-
tionsarepiecewiseconstant,theseintegralsarerelatedto thewell
known form factors.

2In orderto simplify thepresentationwewill write theradiosityfunctionashaving
one variable,and the kernel function as having two variables. In the text we will
explainwhat needsto be donefor a 3D radiosity implementation.



It is importantto rememberthat the projectedequationis only
an approximationto the original integral equation. Projections
into differentfinite dimensionalspaceswill result in differentap-
proximationswith differing amountsof erroranddifferenttypesof
error. In generaltheprojectionerrorisO(hp+1) whereh is theres-
olution of thegrid, andp thedegreeof thepolynomialusedwhich
favors higherorderbasisfunctions. Higher orderbasisfunctions
also result in smootherreconstructedradiosity solutionsleading
to fewer visual artifacts. However,higher order basisfunctions
requiremorework to evaluatethe associatedinner products,pos-
sibly offsettingpotentialsavings.

Onesetof choicesfor basisfunctionsis givenby the family of
functionscalledwavelets.

4 Wavelets

Wavelet theory is a rapidly developingfield that hasits roots in
puremathematics[7] andsignalprocessing[16]. Good introduc-
tionsto thetopiccanbefoundin [17, 4]. In thissectionwe review
somewavelettheoryfocusingon the relevantissuesfor radiosity.

Waveletsform hierarchicalbaseswhich can offer alternative
basesfor familiar finite dimensionalfunctionspaces.Thesimplest
waveletconstructionis the Haarconstructionshownin Figure2.
In the upperleft is a setof basisfunctionswhich spanall piece-
wise constantfunctionsat resolution8 on the interval. Using the
operatorsg (pairwisedifferencing)andh (pairwiseaveraging)we
canconstructanotherbasisfor thesamespace(upperright). Four
of thesefunctionsarejust like theoriginal basis,only wider, thus
we can repeatthe construction(middle right). Repeatingonce
more we finally havea basisfor the original spaceof functions
consistingof the overall averageφ0 and the differencefunctions
ψi,j from all the lower levels. The last setof functionsis known
asthe Haarwavelet basis. This constructionis very similar to an
imagepyramid that one might usefor texturemapping. In such
a pyramid the image(function in our case)is representedat dif-
ferent levels of resolutionby successiveaveragingsteps. In the
Haar pyramidwe only rememberthe overall averageand all the
differences betweensuccessivelevelsof the pyramid.

TheHaarbasisis only thesimplestexampleof aninfinite family
of suchconstructions,howeverthe basicprinciplesare the same
for all waveletbases.More formally we startwith two functions
ψ(s) (sometimescalled the detail function) andφ(s) (the smooth
function)definedon theunit intervals ∈ [0,1]. Scales(or levels)
i andtranslatesj of φ(s) andψ(s) areexpressedas

φi,j(s) = 2i/2φ(2is − j)
ψi,j(s) = 2i/2ψ(2is− j)

with j = 0, . . . , 2i − 1. According to this indexing, the function
φi,j is just like the function φi−1,j except that φi−1,j is twice
as wide, and 1/

√
2 timesas tall (the wider functionsareshorter

so that 〈φi,j, φi,k〉 remainsconstantindependentof i). Similarly,
φi,j is just like the function φi,j+1 except it is translated. To
createan n = 2L dimensionalfunction spacewe constructan L
level hierarchyof functionsthat arescalesandtranslatesof φ and
ψ (Figure 2 illustratesL = 3). We obtain the waveletbasisfor
thehierarchyby choosingonly thedetail shapeson all levelsplus
the smoothshapeon the top level,ψi,j, i = 0, . . . , L− 1 andφ0.
Betweenlevels thereis the so called two-scale relationship

φi−1,j =
∑

k

hk−2jφi,k

ψi−1,j =
∑

k

gk−2jφi,k

In wordstheφ functionsat a givenlevel canbe linearly combined
to yield φ andψ functionsat the next coarserlevel. This combi-
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Figure 2: Transformationof a piecewiseconstantbasisinto the
Haarwaveletbasis.

nationcanbe expressedasa convolutionwith somesequencesh
andg with the resultsubsampledby 2 (expressedby the factor 2
in the index“k−2j” of h andg). The sequencesh andg canbe
thoughtof asa low passfilter andhigh passfilter respectively.

The projection of an arbitrary function B(s) into a wavelet3

basiscanbe formally written as

B(ˆ s) = 〈B, φ0〉φ0(s) +
∑

ij

〈B,ψi,j〉ψi,j(s) (4)

Insteadof computingall the aboveinner products,we can find
thecoefficientsefficiently by exploitingthetwo-scalerelationship.
Given theprojectionof somearbitraryfunctionB(s) with respect
to thelowestlevelbasisφL,j thewaveletcoefficientscanbefound
usinga pyramidalgorithm[16]. Eachstageof thisalgorithmtakes
a vectorof coefficientsand convolvesit with the filters h andg,
returningthe smoothanddetail coefficientsonelevel up

3To simplify thediscussionwe areassumingthatwe haveanorthonormalwavelet
basis.We discussthe non orthonormalcasein [20].
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XformUp( vector Bφ, int i )
for( j = 0;j < 2i/2;j + +)
Bupφ [j] =

∑
k
hk−2jBφ[k];

Bupψ [j] =
∑

k
gk−2jBφ[k];

return (Bupφ , Bupψ );

The entireonedimensionalpyramidtransformis thenstatedas

PyramidUp( vector BφL,k )
for( i = L;i > 0;i−− )

(Bφi−1,k, Bψi−1,k ) = XformUp( Bφi,k , i );

return (Bφ0, Bψi,k , i = 0, . . . , L− 1);

If the h andg convolutionshaveconstantwidth (with respectto
i) then eachcall to XformUp has cost linear in the length of
the array passedin. Sinceeachsuccessivecall in PyramidUp
workson only thesmoothhalf left by thepreviouscall theoverall
runtimeto build the pyramid is O(n + n

2 + n
4 + . . . + 1) = O(n).

A similaralgorithmPyramidDown reversesthis processusing
XformDown for successivecalls

XformDown( vector Bφ, vector Bψ, int i )
for( j = 0;j < 2 ∗ 2i; j + + )
Bdownφ [j] =

∑
k
hj−2kBφ[k] +

∑
k
gj−2kBψ[k];

return Bdownφ ;

PyramidDown( Bφ0, Bψi,k , i = 0, . . . , L− 1)
for( i = 0;i < L; i + + )
Bφi+1,k = XformDown( Bφi,k, Bψi,k , i );

return BφL,k ;

A key propertyof waveletsessentialto this work is that a suf-
ficiently smoothfunctionB(s), whenexpressedin a waveletba-
sis (Equation4) will havemany small coefficients. By ignoring
thesenegligiblecoefficientswe areleft with a sparse,approximate
representation.The negligiblecoefficients occurbecausewavelet
functionshavevanishing moments. We say that a function ψ(s)
hasM vanishingmomentsif∫

dsψ(s)si = 0, i = 0, . . . ,M − 1

The Haarwavelet(Figure2) hasonevanishingmoment,thus the
projectionof a nearly constantfunction into the Haar basiswill
have wavelet coefficients near 0. Similarly, if a wavelet basis
function has two vanishingmoments,the projection of a linear
functionwill vanish.Figures3 and4 showexamplesof wavelets,
ψ, with two vanishingmoments.

5 Wavelets In Higher Dimensions

Waveletbasesfor functionsof two or morevariablesarerequired
for radiosity. Our goal is to project the kernel, which is a four
dimensionalfunction, into a basisset in which it has a sparse
representation.
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Figure 5: The 2D PyramidAlgorithm is appliedto form factors
taken from the flatland radiosity environmentconsistingof two
parallelline segments.(Flatland[13] is radiosityin a plane).The
dot size indicatesthe magnitudeof a given entry in the matrix.

An arbitrary function k(s, t) of two variableson a finite two
dimensionalintervalcanbeapproximatedby somefunctionk(ˆ s, t)
that lies in a two variablefinite dimensionalfunctionspace.Given
a particularonedimensionalwavelet,a 2D waveletbasis4 is made
up of the functions

φ0(s)φ0(t)

ψi,j(s)ψi,k(t)

ψi,j(s)φi,k(t)

φi,j (s)ψi,k(t)

wherewe only couple functionson the samescalei, where i =
0, . . . , L− 1 andj, k = 0, . . . , 2i − 1.

The 2D wavelet coefficients may be obtainedfrom the finest
resolutioncoefficientsBφL,j ,φL,k usinga 2D PyramidUp algo-
rithm. This algorithmbeginswith theBφL,j ,φL,k written in a 2D
matrix tableau. It then appliesXformUp onceto eachrow, fol-
lowed by an applicationof XformUp to eachresultingcolumn.
This procedureis appliedrecursivelyto theBφL−1,j ,φL−1,k quar-

4Another2D waveletbasiscouldbe constructedfrom the tensorproductof a 1D
waveletbasis. The different forms of multidimensionalwaveletbasesarediscussed
in [3, 20].



Figure 6: To illustrate the sparsenessof the kernel matrix we
transformthe flatlandradiositymatrix from Figure5 into the 2D
Haarbasis.Manyof thecoefficientsaresmall in magnitude(small
dots).

Figure 7: We transformthesamematrix into theF2 basis.Notice
that evenmoreof the coefficientsarenegligiblenow.

ter (Figure5). The constructionof a 2D PyramidDown follows
analogouslyfrom the onedimensionalPyramidDown.

This constructioncanbeextendedto functionsof four variables
suchas the kernel in 3D radiosityk(s1, t1, s2, t2). For this case,
therearesixteencombinationsof φ andψ functionsin four vari-
ables. The basis is madeup of all fifteen combinationson the
samescalei which involve ψ functions.Thecorrespondingpyra-
mid transformationfunctionsareconstructedasin thetwo dimen-
sionalcaseby applyingXformUp andXformDown respectively
to eachdimensionin turn.

For this type of multidimensionalwavelet basis Beylkin et
al. [3] showthatfor a givenerrortolerance,onlyO(n) coefficients
needto be usedto attain the prescribederror tolerancein the re-
sultsof our computations.Figures6 and7 visualizethesparseness
of a flatland radiosity kernel when written in two waveletbases
with oneandtwo vanishingmomentsrespectively.

6 Radiosity with Wavelets

To obtain an efficient radiosity algorithm, we project the kernel
by taking inner productswith the wavelet basisfunctions. The
coefficientsof the kernelwith respectto the basisaregiven by

kφ = kφ0,φ0 =

∫
dt

∫
ds k(s, t)φ0(s)φ0(t)

kαijk = kψi,j ,ψi,k =

∫
dt

∫
ds k(s, t)ψi,j(s)ψi,k(t)

kβijk = kφi,j ,ψi,k =

∫
dt

∫
ds k(s, t)φi,j(s)ψi,k(t)

kγijk = kψi,j ,φi,k =

∫
dt

∫
ds k(s, t)ψi,j(s)φi,k(t)

Becauseof the vanishingmomentpropertiesof the waveletsand
the smoothnesspropertiesof the kernel,manyof thesetermsare
nearlyzero.

A projectedversionof the integraloperatorcannow bederived
by projecting the kernel itself. This derivation which we only
sketchhere is describedin greaterdetail in Beylkin et al. [3].
The kα, kβ and kγ coefficients are usedto representthe kernel
which hasbeenapproximatedwith respectto the waveletbasis.
Given this projection,after performingthe necessaryalgebra,the
approximateoperatorcanbe written as

∫
dt k(ˆ s, t)B(t) =

Bφkφφ0(s) +
∑

ij

(
∑

k

Bαikk
α
ijk)ψi,j (s)

+
∑

ij

(
∑

k

Bβikk
β
ijk )φi,j(s) +

∑

ij

(
∑

k

Bγikk
γ
ijk)ψi,j(s)

(5)

where

Bαik = Bγik = Bψi,k =

∫
dtψi,k(t)B(t)

Bβik = Bφi,k =

∫
dt φi,k(t)B(t)

Bφ = Bφ0 =

∫
dt φ0(t)B(t)

6.1 The Basic Algorithm

Equation5 suggeststhe following three phasealgorithm to ap-
proximatethe kerneloperatingon a radiosity function.
Step 1 Pull : Obtain the n (n = numberof basesof the radiosity
function)coefficientsBα andthen coefficientsBβ of theradiosity
function. If we are initially given the coefficients BφL,j , the
2n neededcoefficients can be obtainedby calling a procedure
Pull which is just like PyramidUp exceptit returnsboth the
φ andψ coefficients. This steptransformsn coefficients into 2n



coefficients. A 1D Pull would thenbe

Pull( vector BφL,k )
for( i = L;i > 0;i−− )

(Bφi−1,k, Bψi−1,k ) = XformUp( Bφi,k , i );

return (Bφi,k, Bψi,k , i = 0, . . . , L− 1) ;

Step 2 Gather : Let the projectedkerneloperateon the projected
radiosityfunction. Thismeansthatwesumovertheindexk, andis
equivalentto amatrixmultiply. Becauseof thevanishingmoments
of the wavelet functions most of the n2 kernel coefficients will
be near zero and may be ignored if the action of the kernel is
desiredto finite precision. The procedureGather resultsin 2n
coefficientsGφi,j andGψi,j that representthe resultantradiosity
function asa combinationof φi,j(s) andψi,j(s).
Step 3 Push: Reconstructionof the radiosity function using the
2n functionsφi,j(s) andψi,j(s) is donewith theprocedurePush
which is similar to PyramidDown but takesas argumentsboth
theφ andψ coefficients. A 1D Push would thenbe

Push( Bφi,k, Bψi,k , i = 0, . . . , L− 1)
for( i = 0; i < L; i + + )
Bφi+1,k += XformDown( Bφi,k, Bψi,k , i );

return BφL,k ;

Wrapping this projectedoperatorwithin a Jacobi iteration loop
resultsin the following algorithm

(kα,kβ,kγ) = ProjectKernel();
BφL,k = EφL,k;
while( !converged )
G = 0;
(Bφi,k, Bψi,k ) = Pull( BφL,k );

(Gφi,j, Gψi,j) = Gather( Bφi,k, Bψi,k, k
α, kβ, kγ );

GφL,k = Push( Gφi,j, Gψi,j );
BφL,k = GφL,k +EφL,k;

Display();

The pushandpull canbe donein O(n) (linear in the numberof
elements)steps.The gatherstep(this is a completegathersweep
which updatesall of theentries)canbedonein O(m) time where
m is the numberof terms in the kernel expansion(matrix) that
are significant. We wantm to be as small as possible. Wavelet
baseswill lead to m = O(n) wherethe constantfactor in O(n)
decreaseswith the numberof vanishingmoments.

What remainsis to project the kernel into the wavelet basis,
which may be doneas follows

ProjectKernel()
kφL,j ,φL,k= Quadrature( k, φL,j, φL,k );

(kα, kβ, kγ ) = PyramidUp( kφL,j ,φL,k);
where( (kα, kβ, kγ ) < ε )

(kα, kβ, kγ ) = 0 ;

6.2 The Top Down Approach

Unfortunately,this bottomup ProjectKernel is an expensive
implementationrequiringquadratictime andspace.Thecostscan
bedramaticallycut by usinganoracle which predictswhichm of
the n2 coefficients of the projectedkernel are significant. Then,
thesem valuesarecomputeddirectly by quadratureor symbolic
integration.

Assumingthat the oracle can estimatethe smoothnessof the
kernel for a given region (vis-a-vis a given number of van-
ishing moments), an efficient top down recursive version of
ProjectKernel canbe written as follows

ProjectKernel( i, patch p, patch q )
smooth = AskOracle( p, q );
if( smooth ) return;
else

(kαi,j(p),k(q), k
β
i,j(p),k(q), k

γ
i,j(p),k(q))

= Quadrature( k, p, q );
if( i == L-1 ) return;
else
ProjectKernel( i+1, left(p), left(q) );
ProjectKernel( i+1, left(p), right(q) );
ProjectKernel( i+1, right(p), left(q) );
ProjectKernel( i+1, right(p), right(q) );

If the oracle finds the region under considerationsufficiently
smoothno morerecursivecalls needbe executed,sincethe coef-
ficients at lower levels will be insignificant by assumption.The
function Quadrature() computesthe projectionof the kernel
function onto the basisfunctionsat the given level.

6.3 3D Radiosity

In 3D radiosityB is a function of two variablesso in the main
programwe usea 2D Pull anda 2D Push respectively.k is a
functionof four variablesso in thebottomup ProjectKernel
we usea 4D PyramidUp function. In the top down approach
to ProjectKernel thereare fifteen not threequadraturesand
sixteenrecursivecalls for all combinationsof four childrenof p
andq.

7 Implementation

Thetopdownalgorithmdescribedabovehasbeenimplementedby
extendingthe implementationof hierarchicalradiosity described
in Hanrahanet al. [11].

7.1 Choice of Basis

Two families of waveletshavebeenexplored,multiwavelets[1]
anda family of waveletsthat we call flatlets. Eachof thesefam-
ilies havememberswith any numberof vanishingmoments.

TheconstructionofMM (multiwaveletwith M vanishingmo-
ments)beginswith M smoothfunctions which are the first M
LegendrePolynomials,φm(s) = Lm(s), andM detail functions
ψm(s) thatarepiecewisepolynomialsof degreeM −1, andhave
M vanishingmoments. A hierarchy is then constructedfrom
theseshapes.M1 is the Haarbasis,however,for M greaterthan
1,MM is technicallyspeakingnot a true waveletsinceit begins
with a collectionof φ andψ functionsinsteadof a singlepair.

Multiwaveletsform an orthonormalbasis. Figure3 showsthe
basisfunctionsfor theM2 hierarchy.The two-scalerelationship
for M2 is expressedconciselyas
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Using this relationshipthe pushandpull operationscanbe com-
putedusinga binarytree,insteadof asasubsampledvectorconvo-
lution. A nodestoresthefour coefficientsof thefunctionsφ1

i−1,j ,
φ2
i−1,j , ψ

1
i−1,j, ψ

2
i−1,j . During a pull, a nodecomputesthe val-

uesof its coefficients as a linear combinationof the φ1
i,2j, φ

2
i,2j

coefficientsobtainedfrom its left child, andtheφ1
i,2j+1, φ2

i,2j+1 co-
efficientsobtainedfrom its right child. To representthe radiosity
function over a patchwe needa 2DM2 basisfor which we use



a quad-treewhereeachnodestoressixteencoefficients. During
a pull, a node computesits coefficients as a linear combination
of the sixteenφφ coefficients from its children (four from each
child).

The flatlet basisFM is madeup entirely of piecewiseconstant
functions.Theφm areM adjacentbox functions,andtheψm are
M piecewiseconstantfunctionsthat haveM vanishingmoments.
Figure4 showstheF2 hierarchy.

ForF2, the two-scalerelationshipis given by
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(6)

The top two rows of the matrix in the aboveequationarechosen
to give us box functions twice as wide. The bottom two rows
arechosento be orthogonalto constantand linear variation,(the
vectors[1,1, 1,1], [0,1, 2, 3])5. For a discussionof a similar con-
structionsee[2].

Both flatletsandmultiwaveletscanbe constructedto haveany
numberof vanishingmomentsto increasethe sparsenessof the
integral operatorrepresentation.For both bases,the caseM = 1
reducesto the Haar basis. For M > 1 multiwaveletsoffer the
benefits of projecting into a higher order space,resulting in in-
creasedconvergenceratesandsmootherbasisfunctionsto repre-
sent the answer. Thesebenefitscome at the expenseof higher
order quadraturesnecessaryfor the inner products. Flatlets for
M > 1 also offer acceleratedconvergencewhile the quadratures
remainequivalentto form factorcomputationsfor which thereex-
its a largebodyof literatureandcode,andfor which someclosed
form solutionsareknown. Thefinal answeris still representedas
a piecewiseconstantfunction,albeit at the finestresolutionφL,j .
Sincethedegreeof thebasisfunctionsdoesnotgo up in theflatlet
casethe width of supportneedsto be increasedasM increases.

With multiwaveletsandflatlets thereis alsoa cost incurredby
increasingthenumberof vanishingmoments.LargerM will result
in h andg filters with wider support.Thusanynon-smoothnessin
k(s, t), suchasa shadowdiscontinuity,will fall underthesupport
of morebasisfunctions. This increasesthe numberof significant
termsin the integraloperator.

5A technicaldetail concernsthe fact that flatletsfor M > 1 arenot orthonormal
andthusrequirethe dual basisfunctionsto computePyramidUp (see[20]).

Figure 8: Two differentoraclesand the interactionpatternsthey
generate.

7.2 Pull, Push and Gather

Both multiwaveletsandflatletsare instancesof tree wavelets.A
tree wavelet has the property that the convolution sequencesh
andg for two neighboringelementsdo not overlap.This property
allows us to organizeall computationsalong a tree which does
not needto haveuniform depth.Treewaveletsalsoallow for an-
othersimplification. Sinceall necessarycoefficients residein the
immediatechildren of a nodewe can usethe two-scalerelation-
ship to storeonly the φφ coefficients and neednot representthe
φψ, ψφ, andψψ coefficients explicitly. With this simplification
ProjectKernel is implementedasfollows

ProjectKernel( i, patch p, patch q )
ParentLevelsmooth = AskOracle( p, q );
if( ParentLevelsmooth || i == L )
kφ,φ = Quadrature( k, p, q );
CreateLink( kφ,φ, p, q );

else
ProjectKernel( i+1, left(p), left(q) );
ProjectKernel( i+1, left(p), right(q) );
ProjectKernel( i+1, right(p), left(q) );
ProjectKernel( i+1, right(p), right(q) );

In our implementationof radiosityusingtheMM andFM bases,
the radiosity function over eachpolygon is representedby Bφφ
coefficients that are storedin a quad-tree.EachnodeholdsM2

Bφφ coefficients. Pulling andpushingaredonein thequad-treeas
in [11] exceptthat for differentbases,we usedifferent two-scale
relationships.The kernel is representedby its kφφφφ coefficients
that arestoredon links createdbetweennodesof different poly-
gons’quad-trees.Eachsuchlink cariesM4 interactionterms.For
theFM basesthe interactiontermsarestill form factors,but for
MM the coefficients on the links representhigher order inter-
actionswhich requirequadraturecomputationsof the appropriate
order. Gatheringis done by movingB valuesacrossthe links,
weightedby the k valueson the link. In this context,HR canbe
viewedaswaveletradiosityusingthe Haarbasis.

7.3 Oracle

The oraclemustdecidewhetherthe kernel is sufficiently smooth
over two patchesin the environmenti.e., resemblesa polynomial
of degreeM − 1 or less. If the kernel is smooth,all ψ terms
will (sufficiently) vanishandthusany work to evaluatethe lower
interactiontermscanbe avoided.

The mostaccurateapproachto measurethe kernelsmoothness
is to directly evaluatethe integralsof the kernel againstthe ψ
on this and all lower levels and verify that they are below the
requiredthreshold.This is computationallytoo expensiveandwe
approximatethis computationin the following way. The kernel
is sampledat the points requiredby a Gauss-Legendrequadra-
ture rule of the appropriateorderandan interpolatingpolynomial
of degreeM − 1 is constructedusing Neville’s algorithm [22].
Given this interpolatingpolynomialkP we computetheL1 error∫
|kP − k| with a quadraturerule which placessamplepointsin-

betweenthepreviouslychosenpoints. If thevalueof this integral
is small we concludethat our current level of (smooth)approx-
imation matchesthe kernel function well and the AskOracle
function returnsTrue. Note that the samplepoints for the inter-
polatingpolynomialarechosensothattheycanbeuseddirectly in
thecomputationof the interactionlink values.If theAskOracle
functionreturnsFalse thesesamplesarediscarded.A lesscostly
approachcould usegeometricinformation,suchas the size,ori-
entation,and distancebetweentwo patches. In effect this was
done in the original HR implementation. However for the FM
andMM , M > 1 basesit is not immediatelyclear what the
correspondinggeometricreasoningwould be.



It is important to realize that any such implementationof an
oraclewill introduceerrorsdue to its approximatenature. If the
oracleis not stringentenough,andnecessarytermsareneglected,
artifacts will appearin the image. Figure 8 shows two differ-
ent oraclesandthe interactionsthey force. Two successivelevels
of interactionsare shown(top to bottom). On the left is an or-
acle allowing patchesclose to the singularity (where the kernel
variesrapidly) to be linked (meaningno further subdivisionwill
be done). For this oraclethe interactionpatternsseparateon the
lower level. On theright is a morestringentoraclewhich doesnot
allow singularinteractionsuntil patcheshavebecomevery small.
As a resultwe do not seethe separation.

As in [11] we usebrightnessrefinementwhich meansthat the
stringencyof the oracle is weightedby the brightnessof the in-
volved patches. Also as in [11] a fast partial visibility test is
performedby using a constantnumberof jittered rays. If two
patchesarepartially occludedandthereis sufficient energy being
transferredbetweenthe two patchesthe oraclereturnsFalse.

7.4 Quadrature

If the oracle returnsTrue, numericalintegrationsmust be per-
formedto computethekφφφφ termsassociatedwith the link to be
created.OurimplementationusesGauss-Legendrequadrature[22]
for this purpose.A Gauss-Legendrequadraturerule providesan
accurateintegrationfor polynomialsup to order2p − 1, wherep
is the numberof samplepoints. The orderof the quadratureand
the relatednumberof samplepointsrequireddependson the sum
of the order of the waveletbases,and the assumedorder of the
kernel itself.

For the projectionof the kernel againsta flatlet basis,a two
point rule is usedfor eachconstantsectionof the basisfunction.
In the caseof multiwaveletsMM , M > 1,M pointsarechosen
alongeachcoordinateaxis sincewe needto havea high enough
order of integration to accountfor the polynomial variancein
the kernel and the polynomial basis functions themselves. For
example,for M = 3 we computecoefficients when the kernel
variesapproximatelyup to 2nd by projectingonto basisfunctions
up to 2nd order. Thus the integrandis approximately4th order,
andwe canusea threepoint Gaussrule.

The numberof integralswhich needto be computedfor a link
is M 4, howeverfor all theseintegralsonly a total of M4 samples
of the kernel function are required. Using precomputedweights,
thesesamplesarecombinedto give all the desiredintegrals.

We treatvisibility following [11] by castinga constantnumber
of jittered rays betweentwo patchesto estimatethe fraction of
visibility. This is thenusedto attenuatethe quantity returnedby
the Gauss-Legendrequadrature.This techniquerelieson the fact
thatwe alwayssubdividein thevicinity of a shadowdiscontinuity
limiting errors due to the non-smoothnatureof the kernel to a
small region.

Whenthe two patchesthatarelinked up arecloseto thesingu-
larity in k, quadratureswill encounternumericaldifficultiesif they
arenot properlyadaptedto the singularity. In particulara Gauss-
Legendrerule will producelargeerrorsandanadaptedquadrature
rule is required. This phenomenonis not unique to wavelet ra-
diosity but appliesto all GR methods.SpecialGaussrulescanbe
designedfor the particularsingularity found in the radiosityker-
nel. Zatz [25] usessuchcustomrulesand notesthe needfor an
automaticdecisionprocedureasto whento switch the type of in-
tegration.In our implementationof flatlets,we usea closedform
solutionfor the form factor [21] wheneverthe patchesborderon
thesingularity. While this computationis expensive,it only needs
to be invokedin a small fraction of interactioncomputationsand
contributeslittle to overall runtime. For multiwaveletswe haveno
suchclosedform available.In this casetheoracleforcessubdivi-
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Figure 9: RelativeL1 errorasa functionof thenumberof interac-
tion links for the haarbasiswith h = 1
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The testconfigurationis depictedin the upperright corner.
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Figure 10: Relative L1 error as a function of the number of
interactionsfor the wavelet basesM1, M2, M3, andM4 (top
to bottom)usingthe sametestconfigurationas in Figure9. Here
h = 1

32.

sion to small enoughpatchesat the singularity that the resulting
errorscontributevery little to the overall error. Alternative con-
structionsfor singulartransportsarediscussedin [19].

8 Experimental Results

In this sectionwe presentfindings that comparehow radiosity
behavesusing different waveletbases.We give resultsfrom the
analysisof a simple3D configuration,for which we havean an-
alytic solutionagainstwhich to checkour results.We finish with
an imageof a full environment.

One test caseusedthe configuration depictedin the inset in
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Figure 11: RelativeL1 error asa function of work.

Figure 12: Computedimageof perpendicularemitterandreceiver.
for the Haarbasis(left), andF2 basis(right) usingsameamount
of work. Note that we havenot performedany post processing
suchasGouraudshading.

Figure9. A pureemitterof sidelength1 is placed0.1 unitsabove
a purereceiverof sidelengthtwo. For this particularconfiguration
the radiosity on the receiveris given by the differential areato
finite areaform factorat everypoint. Figure9 showsthebehavior
of the relative L1 error for the Haar basisas a function of the
numberof interactionsfor variousgrid sizesh. The far point on
eachof the lines correspondsto a full matrix solution. Note in
particularthat the final accuracyis reachedwell beforeall matrix
elementsare computed. Plots for higher order basis functions
exhibit thesameoverall shapebut with steeperslopesandoverall
lessererror. Figure10 showsthe behaviorof theMM basesfor
M = 1, . . . , 4 and h = 1

32. The ratio of successiveslopes(as
fitted to the points) is almostprecisely1 : 2 : 3 : 4, asonewould
expectfrom theorderof basisfunctionsemployed.For both plots
we havedepictederror as a function of numberof interactions.
Howevera userexperienceserror asa function of work which is
more accuratelymeasuredby the numberof kernel evaluations.
Since the amountof work increasesfor higher order methodsit
is not clear a priori whethera higher order methodwill always
yield betterresultsin a shortertime. Figure11 showserror as a
function of kernel evaluationsfor the samedata as that usedin
Figure 10. The plot for M = 1 is translatedwith respectto all
otherssincewe alwaysuseat leasta two point quadraturerule
even if the basisfunctions are constant. The plot showsthat if
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Figure 13: Heightfield error plots for perpendicularemitter and
receiver.

Figure 14: Architecturalscenecomputedwith theM2 basisand
rendereddirectly from the basisfunctions.

sufficient accuracyis requiredhigherorderbasisfunctionsachieve
lower error for the sameamountof work.

We havealso examinedthe behaviorof our methodsnearthe
singularity of an environmentconsistingof perpendicularpoly-
gons(Figure 12). The emitter was chosento be half as wide as
thereceiverto createmorevariationin theradiosityfunction. The
grid sizewassetto 1

32. Theupperleft plot in Figure13 showsthe
exactsolution plotted as a height field over the receiver. On the
top right is a plot of thedifferencebetweenexactsolutionandthe
computedsolutionfor the Haarbasis. On the bottomaresimilar
errorsurfacesfor theF2 andF3 bases(left andright respectively).
The amountof work was approximatelyconstant(8000 interac-
tions) for all threesolutions. The graphsshow clearly the lesser
and smoothererror for the F2 and F3 basesdemonstratingthe
effectivenessof baseswith morevanishingmoments.This is also
illustratedby the renderedimagesin Figure12.

The algorithm hasalso beenrun on a more complexenviron-



ment (Figure 14). This picture, as well as Figure 12, doesnot
useanypostprocessingsuchasGouraudshading.Insteadthesur-
facebrightnessis computeddirectly from the basisfunctionsand
associatedcoefficients.

9 Conclusion and Future Work

In this paperwe havepresentedthebasictheoryof projectionsof
integraloperatorsinto hierarchicalbases,andlaid out thetheoreti-
cal foundationof a newsetof techniquesinvolving wavelets.With
this in hand,we introduceda new set of linear time algorithms
we havecalledwaveletradiosity, andshownthat the hierarchical
radiosity describedby Hanrahanet al. was an instanceof a first
orderwaveletapproach.

We haveintroduceda new family of wavelets,dubbedflatlets
and also experimentedwith a secondfamily of wavelets,multi-
wavelets.Both leadto efficient algorithms.Futurework includes
examiningvariouswaveletbaseswhich may havebetterproper-
ties than the multiwaveletsand flatlets. For examplethe Coiflet
functionsof [7, 3] allow for fast one point quadraturemethods.
The tree waveletsthat we implementeddo not enforceany kind
of continuity at elementboundaries,possibly leading to blocky
artifacts. Splinewavelets[4] might providea basiswhich would
alleviatethis.

While our initial implementationwas limited to quadrilateral
polygonsthere is nothing in the underlyingalgorithmsthat pre-
ventstheuseof anysurfacewhoseparameterdomainis rectilinear,
suchasfor examplebicubicpatches.Theonly changeinvolvesthe
reparameterization(changeof variable)in the coupling integrals.
It would bevery desirableto designbaseswhich work with trian-
gular domainssincetrianglesarea commonprimitive in meshing
algorithms.

Thereare still fundamentalquestionsthat haveyet to be ad-
dressed. We would like to gain a better understandingof how
waveletexpansionsinteractwith the visibility term in the kernel.
It is alsoimportantto find methodsthat remainefficient whenthe
environmentconsistsof a large numberof small polygons.
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