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Abstract. We present a new method for detecting circles on digital images. This
transform is called the circlet transform and can be seen as an extension of classical
1D wavelets in 2D: each basic element is a circle convolved by a 1D wavelet. In com-
parison with other circle-detector methods, mainly the Hough transform, the circlet
transform takes into account the finite frequency aspect of the data: a circular shape
is not restricted to a circle but has a certain width. The transform operates directly on
image gradient and does not need further binary segmentation. The implementation
is efficient as it consists of a few Fast Fourier Transforms. We apply the method to
detect eddies on remote sensing images of chlorophyll from the Gulf of Lion (North
Western Mediterranean Sea). The results show the effectiveness of the method to
deal with real images with blurry edges.

1 INTRODUCTION – EDDY DETECTION

In coastal oceanography, sub-mesoscale structures, e.g. eddies in the range of 20 to
100 km, appear to be a key element for the good understanding of surface circulation, but
also for the marine ecosystems as eddies may drive phytoplankton blooms. Such small
eddies are not caught by altimetry or in situ measurements. Tracers (e.g. ocean color)
in a turbulent ocean may however reveal the sub-mesoscale circulation. Tracking motion
of non-rigid targets such as eddies is a key step for subsequent data assimilation [6]. An
estimation of the temporal deformation of ocean color image is indeed not simply linked
to the horizontal velocity field and cannot be directly used for data assimilation. For ex-
ample, a static eddy exhibits a permanent circular shape that does not reveal the strong
azimuthal velocity. A combination of eddy detection (size, position and polarization) and
vertical stratification assumptions may be used to estimate the sea level anomaly and to
assimilate data. In the case of oceanographic remote sensing images, eddy detection is a
complex task due to weak and blurry edges, and to large motion displacements and distor-
tions between successive satellite images. In that context, we propose a new method for
eddy tracking based on a 1D wavelet analysis of objects with circular shapes. Classical
1D wavelets are very useful to detect point singularities. Combined with a geometrical
analysis, it potentially offers a powerful tool for the detection of objects with circular
shapes.



We first review the classical techniques developed for eddy tracking. From a global
perspective, eddies correspond to water masses with a rotating component around the
same pivoting center [7]. They more or less have circular structures, possibly with a
closed contour, but there is no unique simple characterization of eddies [4]. In the case of
simulated data, the associated velocity field or sea-surface elevation is certainly the most
relevant dynamical variable for describing eddies. The most popular features are (1) the
Okubo-Weiss criterion [13] that aims at separating the velocity field into regions of high
vorticity and strain, and (2) the Lyapunov exponents that quantify local stirring [5]. For
remote sensing images, the velocity field is however not available and other techniques
have been developed to automatically detect mesoscale eddy structures. They assume a
high correlation between the sea-temperature and the velocity field [9]. The eddies are
generally detected either on spatial or temporal satellite gradient maps [1]. We refer to [3]
for a more complete review. One could distinguish between

1. Texture-based approaches [1]. [11] compute the singularity map by processing the
wavelet projections on the modulus of the gradients. Singularity analysis is then
used to uncover the circulation patterns in global ocean. In [10], eddy detection is
based on curvature.

2. Shape fitting based methods. These geometrical approaches mainly consist of
matching a given shape (circles, ellipses, circle arcs, ...) with pixel binary seg-
mentation data. The Hough transform and several other circle or ellipse fitting
algorithms have been applied to determine the radius and the central position of
eddies on binary edge maps [8].

3. Automatic machine learning based approaches. These methods analyze the neigh-
boring pixels to distinguish between eddies and non eddy structures [3].

Geometrical methods for detecting circles or more complicated shapes are usually applied
on binary images obtained after segmentation. They are thus very sensitive to the selected
threshold values. Automatic techniques are restricted to eddy center detection and are
always followed by a geometrical method to estimate the eddy radius.

We propose in this paper a new transform for eddy detection. It is based on a modifi-
cation of the wavelet analysis to detect objects with circular shapes. We first describe the
transform and then present an initial application on chlorophyll data in the Gulf of Lion
(North Western Mediterranean Sea) for remotely sensed data.

2 THE CIRCLET TRANSFORM

In the proposed approach, there is no need for binary image segmentation. The method
consists of decomposing any image into “circles” with different radii via a series of Fast
Fourier Transforms (FFTs). These circles are called circlets as they can be seen as the
convolution of a circle with a 1D wavelet, in the same way as wavelets relate to waves.



2.1 General frame work

The circlet elements are characterized by a central position (x0, y0), a radius r0 and a
central frequency content f0 (Figure 1). This finite frequency f0 provides a certain width
to the circlet in the spatial domain. This is the main difference with the Hough transform,
beyond the implementation aspects.

Figure 1: Representation of a single circlet (left) and its 2D Fourier transform (right). By
construction, it is well-localized in the Fourier domain.

The decomposition and reconstruction processes are similar in essence to the curvelet
transform [2]. The objective is to decompose any 2D image f(x, y) into a sum of basic
functions cµ called circlets:

f(x, y) =
∑
µ

Aµ · cµ(x, y). (1)

For curvelets, the basic elements have elongated shapes, similar to the representation of
local plane waves. For circlets, the basic functions are circular. We first construct a tight
frame, so that the associated amplitudes Aµ are obtained by a scalar product

Aµ =< f, cµ >=

∫∫
dxdy f(x, y) · cµ(x, y). (2)

From a practical point of view, the circlet transform is constructed in the 2D Fourier
domain. The key step consists of defining appropriate filters to get basic functions cµ with
circular shapes.

2.2 Definition of filters

The construction of the filters is obtained in a two-step process: first we define 1D fil-
ters Fi and then 2D filters Gi. Both filters Fi and Gi are defined in the frequency do-
main and form a partition of it: for all ω and (ω1, ω2), we have

∑
i |Fi(ω)|2 = 1 and∑

i |Gi(ω1, ω2)|2 = 1. This condition is important to ensure a perfect reconstruction
scheme. First define ωi = π(i − 1)/(N − 1) where N is the number of filters. For



|ω±ωi| ≤ π/(N −1), Fi(ω) = cos(ω±ωi), otherwise Fi = 0. Note that the Fi filters are
symmetric. One can easily check that the Fi filters form a partition of the 1D frequency
domain. TheGi filters are defined from the Fi filters by introducing a phase delay in order
to create a circular shape in the space domain,

Gi(ω1, ω2) = ei|ω|r0 · Fi(|ω|), (3)

where ω = (ω1, ω2), |ω| =
√
ω2

1 + ω2
2 and r0 determines the radius of the circlet. It is

also easy to see that the Gi filters also form a partition of the 2D frequency domain. By
using polar coordinates, it is also possible to prove that the 2D inverse Fourier Transform
of Gi is circular, meaning that the basis functions cµ(x, y) have circular shapes.

2.3 Algorithm description

The algorithm is defined as follows:

• As a pre-processing step, apply a spatial gradient (discrete Laplacian operator) to
the original image in order to emphasize the discontinuities in the data. In addi-
tion to this, satellite images classically suffer from missing information due to the
presence of clouds. In that case, we interpolate the data by a geostatistical fil-
tering method (kriging) that provides results spatially consistent with the original
data [12].

• Perform the forward circlet transform consisting of (1) a 2D Fourier transform of
the original image f(x, y) to obtain f̂(ω1, ω2), and (2) for all filters and for all
selected r0 values, the inverse Fourier transform of f̂ · Gi. The result provides all
the circlet coefficients related to scale i and radius r0.

• Select the circlet coefficients with the highest absolute values.

If needed, to reconstruct the image from the coefficients, first apply a 2D Fourier
transform for all scales and selected radii, multiply by the conjugate of Gi and sum all
results. The final image is obtained by applying a 2D inverse Fourier transform. From a
practical point of view, we rather select a single scale (i.e. single Fi filter) and a series of
radii, with expected values from rmin > 0 to rmax to potentially select circular forms with
some specific spatial sizes.

3 APPLICATION

Due to the property of the ocean, mainly the density stratification, the size of the turbulent
structures is not uniformly spread. Therefore for realistic applications, a range of eddies
with physically consistent sizes is selected. The application is carried out on real satellite
chlorophyll maps. A chlorophyll filament is trapped by a small cyclonic eddy (Figure 2)
and describes a spiral. The circlet algorithm applied to the gradient map provides a family
of circles in agreement with the spiral shape of the filament. The larger one provides the
horizontal scale (10 km) and the position of the eddy. For spiral, the main shape is not
strictly circular. However, only few circlet coefficients (around 10) are sufficient for a
good representation of the spiral (Figure 3).



Figure 2: Original chlorophyll image (a) and spatial gradient image (b). The circles
indicate the geometrical positions of the circlets.

Figure 3: Reconstructed image (Figure 2) with the highest circlets coefficients (a), and
central positions of the circlets, connected with decreasing radii (b).

4 DISCUSSION

The applications are not restricted to chlorophyll images but could be used for sea-surface
temperature data whenever images contain objects with circular shape. The 1D wavelet
analysis implicitly contained in the circlet transform is very helpful for the detection of
weak or blurry contrasts. Remote sensing patterns are not only the results of the circula-
tion. The tracer behavior is obviously not conservative and depends for instance on the
sunshine for the sea-surface temperature or on the biological activity for the chlorophyll.
Expected spurious eddies can potentially be removed by applying the transform on a se-
ries of dynamical images. As a circle-detector, the circlet transform can be used in many
other fields such as e.g. in medical imagery to detect and track eyes.

The circlet transform is a redundant transform in the sense that the number of coeffi-
cients is larger that the size of the input data. In the application, the selection of the circlet
coefficients was done by a simple hard-thresholding, but more advanced methods such as
soft-thresholding should be considered to select the most representative circlets.



5 CONCLUSION

We have presented a new method for detecting discontinuities with circular shapes on
2D images. The key property of the transform is certainly the finite frequency aspect of
the basis functions. The transform is efficient due to its implementation in the Fourier
domain. It can be used to evaluate the performance of numerical simulations with respect
to the behavior of eddies (position, size, motion) observed on satellite images. We believe
that the circlet transform could be used for a large number of applications not restricted
to eddy detection in oceanography.
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