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a b s t r a c t

Due to their abilities to succinctly capture features at different scales and directions,

wavelet-based decomposition or representation methods have found wide use in image

analysis, restoration, and compression. While there has been a drive to increase the

representation ability of these methods via directional filters or elongated basis

functions, they still have been focused on essentially piecewise linear representation

of curves in images. We propose to extend the line-based dictionary of the beamlet

framework to one that includes sets of arcs that are quantized in height. The proposed

chordlet dictionary has elements that are constrained at their endpoints and limited in

curvature by system rate or distortion constraints. This provides a more visually natural

representation of curves in images and, furthermore, it is shown that for a class of

images the chordlet representation is more efficient than the beamlet representation

under tight distortion constraints. A data structure, the fat quadtree and an algorithm

for determining an optimal chordlet representation of an image are proposed. Codecs

have been implemented to illustrate applications to both lossy and lossless low bitrate

compressions of binary edge images, and better rate or rate–distortion performance

over the JBIG2 standard and a beamlet-based compression method are demonstrated.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Concise and intuitive representations of data are the
foundations of many image analysis and processing
approaches, including image compression. Need for effi-
cient transforms has led to the development of toolsets
from global frequency-based approaches, such as Fourier
analysis, to multiscale space–frequency approaches, such
as wavelet analysis [1]. In the past few decades sophisti-
cated methods for localized directional analysis of images
have been developed; these include the steerable pyramid
[2], the brushlet [3], the curvelet [4], the contourlet [5] and
the beamlet [6]. These approaches have found successful
ll rights reserved.

-9986821 and was
application in such varied realms as image retrieval, com-
pression, denoising, and inverse problems.

However, we note that for two-dimensional images,
while these approaches may involve directionally filtered
images or employ elongated basis functions, there is still
essentially a piecewise linear representation of curves in
images. A specific example of this class of approach is the
beamlet framework of [6], which employs a line-segment-
based dictionary. Any edge in an image can be represented
to within a desired degree of distortion using a chain of
dictionary elements, since elements down to pixel size can
be employed. However, the efficiency in representation
arises when some distortion is permitted, since the end-
points of the elements are constrained to predetermined
locations so that not all possible line segments in an N�N

image are contained in the dictionary.
In this work we propose to extend the line-segment-

based beamlet dictionary to a chordlet dictionary that
includes elements that are arcs. As with the lines in the
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Fig. 1. Illustration of beamlet elements at two scales with fixed resolu-

tion, g: (a) j¼0 and (b) j¼1.
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beamlet framework, the arcs’ endpoints are constrained
to pre-determined locations on the boundaries of squares
formed by recursive dyadic partitioning of an N�N

image. The arcs’ curvatures are constrained by a quanti-
zation factor that is a function of distortion or rate con-
straints in the image processing application. The beamlet
dictionary is then a subset of the new dictionary, and
there is now the potential for a more visually natural
representation of curves in images.

In the following we first provide an overview of the
beamlet framework, which forms the motivation for the
current work. In Section 3 we then propose extension of
the beamlet dictionary to include arc elements and dis-
cuss construction of these elements. A primary contribu-
tion of this work is an analysis of the representation
efficiency of the chordlet as compared with the beamlet
for a class of images, which is given in Section 4. While
the chordlet framework will never exceed beamlet per-
formance on images composed primarily of straight or
short edge segments, for classes of images consisting of
primarily curved segments it is shown that the chordlet
will outperform the beamlet.

A secondary contribution of this work is a new repre-
sentation method for the chordlet framework that is a
variant of the quadtree structure of the beamlet-based
JBEAM [7] algorithm as discussed in Section 5. The new fat
quadtree representation permits succinct description of
multiple curves in an image at the same scale. To employ
this structure a tree-pruning algorithm is introduced.

In Section 6 we review beamlet element selection
using the JBEAM algorithm and, as a tertiary contribution,
propose a multi-scale selection algorithm for the chordlet
framework. Finally, to illustrate the chordlet performance
over a certain class of images, we present an application
to low-rate compression using the proposed chordlet
framework. Significant rate and/or distortion savings over
both JBEAM [7] and the JBIG2 standard [8] will be shown
for some binary edge images.

2. Overview of the beamlet framework

The beamlet framework, as described in detail in [6],
consists of: the beamlet dictionary, which is a set of line
segments that will be used to approximate structures in
images; a transform, which is the set of integrals of the
image along the elements of the dictionary; the beamlet
pyramid which is an organized collection of transform
coefficients; the beamlet graph, which connects vertices
representing pixel corners by edges representing beamlet
dictionary elements; a collection of beamlet algorithms
for data analysis via the beamlet transform and associated
bookkeeping structures. As in [6] we proceed by giving an
overview of the beamlet elements, transform, and pyr-
amid structure. A discussion of a beamlet algorithm will
be reserved for Section 7 and interested readers are referred
to [6] for an overview of the beamlet graph.

Using the notation of [6] an array of N�N pixels can be
modeled as a continuum square [0,1]2, where each pixel is
then a 1=N � 1=N non-overlapping square of a grid in [0,1]2.
A key to the beamlet framework is that it allows for elegant
multiscale decomposition. To achieve this, the image must
be partitioned via, for instance, recursive dyadic partition-
ing, so that beamlet dictionary elements and the beamlet
transform can be defined at different scales. For an image
of size N�N, assuming N¼2 J with J a positive integer,
a dyadic square at scale 0r jr J, for j an integer, is
the collection of the points fðx1,x2Þ : ½k1=2 j,ðk1þ1Þ=2 j

��

½k2=2 j,ðk2þ1Þ=2j
�g, with 0rk1, k2r2 j. Therefore, j¼0

represents the coarsest scale, while j¼ J represents the finest
scale or partitioning under consideration.

Since the goal of the beamlet transform is to represent
image structures by combinations of elements from the
beamlet dictionary, we then examine how the elements
are defined. Consider a level of resolution g¼ 2�J�L for
integer LZ0. The boundary of each dyadic square S at
level j is divided into equispaced partitions of length g
forming a total of Mj,g permissible vertices for beamlet
elements at scale j [6]. Thus, the points on the boundary of
the dyadic square at scale j 2 f0;1, . . . ,Jg form the set
VS, j,g ¼ fvi,S,g : 0r ioMj,gg, where Mj,g ¼ 2Lþ J�jþ2. The col-
lection of all vertices at scale j for resolution g is then
Vj,g ¼

S
SVS, j,g.

Beamlet elements are then formed by the lines that
connect any pair of vertices in VS, j,g. This implies that the
boundary partitioning constrains locations of beams, thus
reducing the set of lines representable in an image given a
fixed level of resolution. For resolution g and scale j, the
set of lines or beams formed by connecting distinct pairs
of points in VS, j,g for all S is then denoted as Bg,j. The entire
beamlet dictionary BJ

g is then defined as the collection of
all beams from Bg, j; 0r jr J. For simplicity, the elements
in beamlet dictionary BJ

g are referred to as beamlets.
Illustrations of the recursive dyadic partitioning of a unit
square and the partitioning of the squares’ boundaries via
a fixed g, along with selected elements in a beamlet
dictionary at coarser and finer scales, are given in Fig. 1(a)
and (b), respectively.

The beamlet transform is defined as the collection of
line integrals over all beams to scale J taken of a con-
tinuous function defined on the unit square. Considering a
continuous image Ið�Þ formed from a discrete image I[m,n]
through interpolation [6], the beamlet transform of this
image is given as

RiðbiÞ ¼

Z
bi

IðxðlÞÞ dl, bi 2 BJ
g, ð1Þ

which is the integral over the line segment bi over a unit-
speed path, x(l). Thus, the beamlet transform of an image I

of size N�N (N¼2 J), yields a set of beamlet coefficients



Fig. 2. An example of two potential representations of an edge (solid line) by selected beamlet elements (dotted lines) in a beamlet pyramid.

Fig. 3. Illustration of chordlet elements at two scales for selected arc

heights and fixed resolution g: (a) j¼0 and (b) j¼1.
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fRiðbiÞg. For brevity, the coefficient associated with the ith
beamlet, bi, will be referred to as Ri.

Through a beamlet transform, an arbitrary curve in
an N�N pixel image can be represented by a collection of
beamlet elements at different scales in different dyadic
squares. Thus, the beamlet representation effectively approx-
imates curves in an image via a set of line elements con-
strained spatially by pre-determined endpoints. Fig. 2(a)
provides an illustration of the representation of an image
edge using three elements from the beamlet transform of
the curve. Although three elements were used for this
approximation, it is clear that the edge could be approxi-
mated with different degrees of quality using other com-
binations of beamlet elements. For instance, Fig. 2(b)
illustrates the same curve approximated by seven ele-
ments at a combination of finer scales. We further note
that similar quality to the three-element approximation
of Fig. 2(a) could be achieved with a single element at the
coarsest scale. As suggested in Fig. 2(b), perfect repre-
sentation of curves in images is possible, thus allowing
for lossless representation. This is more readily apparent
when considering a discrete representation of the same
image edge. If the elements in the beamlet dictionary are
permitted to be one pixel in size, perfect reconstruction
of image edges is obtainable, although at significant rate cost.

As described in [6], as g-0, a beamlet at one scale ‘‘can
be decomposed into the union of at most three beamlets
at the next finer scale.’’ Thus, beamlets can be organized
in a pyramid form, with a beam at a coarse scale being the
parent of some number of beams at finer scales. Although
this infinitely fine partitioning of the boundary will
certainly not be performed in practice for discritized
images, it is still useful in beamlet algorithms to organize
beamlets in a pyramidal fashion particularly when choos-
ing the best representation of images from different
possible scales.

3. Extension of the beamlet dictionary

The proposed extension to the beamlet dictionary is
illustrated in Fig. 3(a) and (b); the addition of arc
elements results in a dictionary that is a superset of the
beamlet dictionary. Each beamlet element is then a chord
subtending a set of arcs, with the quantized height of each
arc, that is, the quantized distance between the midpoint
of the chord and the midpoint of the arc, denoted by ki 2

f1;1=D, . . . ,Kg; Krr where 2r is the chord length. The
total number of extended-beamlet elements in the new
dictionary is then dictated by 1=D, namely, the curve
approximation that is acceptable. Thus, it is possible to
choose any quality representation, and even a lossless
representation, as with the beamlet. In the continuous
case, for perfect reconstruction, r-0 and D is selected so
that there is E (E-0) difference between the heights of
neighboring arcs. In the discrete case, for perfect recon-
struction, an element can be of size as small as a single
pixel. Naturally, representation or reconstruction quality
comes with the penalty of compression rate. Following
definition of the new dictionary an analysis of dictionary
size and representation performance is given in Section 4.

The ith element in the extended beamlet or chordlet

dictionary is denoted as ci. Analogous to the beamlet
transform of Eq. (1), the continuous chordlet transform
is given as

Rþi ðciÞ ¼

Z
ci

IðxðlÞÞ dl, ci 2 C J,D
g , ð2Þ

where C J,D
g is the set of elements in the extended-beamlet

dictionary up to scale J, resolution g, and pre-selected arc
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height quantization factor, D. For brevity the chordlet
coefficient for element ci will be referred to as Rþi .

To introduce the additional element dimension over the
beamlet we first review characteristics of curves. Note that
the distance adopted for this discussion is the Euclidean
distance, although other metrics could easily be used in
chordlet construction and transform computation.

Definition 1 (Chord length 2r). The chord length 2r of an
arc G with two endpoints r0 and r1 is defined as the
Euclidean distance between r0 and r1.

Definition 2 (Arc height k). For an arc G with two end-
points r0 and r1, the height, k, of the arc is defined as the
distance between the mid-point of the chord connecting
r0 and r1 and the mid-point of arc G.

Definition 3 (SmoothCurve Cv). A curve with chord length
2r and a constant curvature ko 1

r .

Definition 4 (The radius R and angle y of SmoothCurve

Cv). A SmoothCurve with curvature k corresponds to an
arc segment from a circle with radius R¼ 1=k and defin-
ing angle y, the angle formed between the radius to one
end of the arc and radius to the midpoint of the arc.

Definition 5 (SmoothCurveSegment Cs). A SmoothCurve-

Segment, Cs, with chord length 2r is a curve segment with
constant curvature k, whose two endpoints fall on the
boundaries of the same dyadic partition.

For purposes of performance analysis, the set of
chordlet elements used in Eq. (2) can now be described
using these curve characteristics, namely,

C J,D
g ¼ fCs ¼ ve1 ,j,ve2 ,j,k : k¼ 0;1=D, . . . ,bre1 ,e2

c,

0re1,e2rMj,g, e1ae2, 0r jr Jg, ð3Þ

where Cs is a SmoothCurveSegment of arc height, k,
connecting two points, ve1 ,j and ve2 ,j, on the boundary of
a dyadic square at scale j. The quantization step size, 1=D,
can be selected for desired height resolution. The set of
Mj,g element edge points is as for the beamlet framework
and the chord 2re1 ,e2

is restricted to these endpoints.
The continuous chordlet transform of Eq. (2) is trans-

lated for practical use to a discrete transform of image f as

Rþi ½ci� ¼
X
m,n

f ½m,n�fm,nðciÞ, ci 2 C J,D
g , ð4Þ

where g is typically set to unity and i is the chordlet
element index. The curve weight, fm,n, is defined as

fm,nðcÞ ¼

Z
c

Z
xðlÞ
dm,n dp dl, ð5Þ

where for the unit-size pixel

dm,n ¼
1, l 2 ½m�0:5,n�0:5� � ½mþ0:5,nþ0:5�,

0 else:

(

For applications to binary images fm,nð�Þ can be quantized.
In the results in Section 7 the mapping

fq
m,nðcÞ ¼

1, fm,nðcÞZ0:5,

0, fm,nðcÞo0:5

(
ð6Þ

is employed.
Given the discrete transform of Eq. (4), a coefficient Rþi

captures the correlation between the ith element and a
line or curve in the image, I, under consideration. To select
which combination of elements at various scales best
represent an image, we first quantify the contribution of a
single element to the quality of the representation, Î , of
the image. This contribution is termed the relative sig-
nificance and is given as

Sþi ¼ ðR
þ

i �ðli�Rþi ÞÞ ¼ 2Rþi �li, ð7Þ

where li is the arc length of element ci, while the terms Rþi
and ðli�Rþi Þ correspond to the positive and negative
contributions of the associated element, respectively.

However, since an image curve can be represented by
combinations of one or more elements at the same scale
or at different scales, additional characteristics are
required. First, we define the contribution of a represen-
tation, ÎðxÞ, where x is the set of transform elements for
the given representation, to an image I as

CðÎðxÞÞ ¼
X
m,n

ðI�maxðI�ÎðxÞ,0ÞþminðI�ÎðxÞ,0ÞÞ, ð8Þ

where I�maxðI�ÎðxÞ,0Þ captures the positive contribution,
minðI�ÎðxÞ,0Þ captures the negative contribution and 0 is
a null matrix. Then, we define the gain provided by a
single element to an existing representation. Denoting the
representation using both x and an additional element ci

as Îðx [ ciÞ, the contribution gain of ci relative to ÎðxÞ is
given as

Gþc ðÎðxÞ,ciÞ ¼ CðÎðx [ ciÞÞ�CðÎðxÞÞ: ð9Þ

These contributions to image representation are used in
the proposed algorithm of Section 6.2 to determine an
optimal representation of images.

4. Chordlet performance analysis

While a beamlet element bi is completely specified by
its endpoints, a chordlet element, ci, must also be speci-
fied by an additional parameter ki. Considering a square of
size 2 J

� 2 J , a total of 2Jþ3 bits is required for element
specification using the beamlet-based JBEAM binary-
image compression method [7]. On the other hand, binary
representation of the arc height ki for D¼ 1 requires J bits,
so that a total of 3Jþ3 bits is needed to specify a chordlet
element at the same scale for this height resolution. While
it would appear that a chordlet representation is less
efficient than a beamlet representation, it can be shown
that for an arbitrary curve partitioned into segments of
constant curvature with endpoints falling on dyadic
square boundaries that the chordlet is a more efficient
representation than the beamlet. Limiting analysis to this
class of curves is restricting, but as shown below, as long
as the distortion constraint is tight and the partitioning
can be performed into dyadic squares of size N44 the
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chordlet representation is more efficient. Furthermore, as
will be demonstrated in Section 7, binary edge images can
often be more efficiently represented by a chordlet-based
rather than a beamlet-based scheme.

The focus of the evaluation of the efficiencies of
beamlet and chordlet frameworks is to find the average
numbers of elements required for the representation of an
arbitrary curve using each of these transforms. To make
the problem tractable, but yet meaningful, we restrict our
attention to a subset of curves. The introduction of the
SmoothCurve in Definition 3 yields a bridge between
arbitrary curves and the chordlet elements. An arbitrary
curve with varying curvatures can be partitioned into a
chain of SmoothCurves with different curvatures. For
analysis, the SmoothCurves in an image field are assumed
to be uniformly distributed. We then approximate the
image’s SmoothCurves by a series of chordlet elements.

Lemma 1. A SmoothCurve, Cv, with endpoints within the grid

range N � N, N¼ 2J , can be approximated within Hausdorff

distance 1
2 for D¼ 1 by a continuous chain of chordlet elements

ci 2 CþJ , where the number of chordlet elements required for

approximation is bounded by 8 log2ðNÞ ¼ 8J for N42.

The proof of this lemma is given in Appendix A. It
corresponds to Lemma 2.2 in Donoho and Huo [6] with
proof in [9] which can be restated as

Lemma 2. Any line segment with endpoints within the grid

range N�N can be approximated within Hausdorff distance 3
2

by a continuous chain of beamlets bi 2 B, where the number

of beamlets required is bounded by 8 log2ðNÞ for N42.

In the proofs of the above two lemmas, a SmoothCurve

(correspondingly, line segment) is first broken into a
continuous chain of SmoothCurveSegments (line segments)
whose endpoint-pairs fall on the boundaries of common
dyadic square; these Cs (line segments) can be then
approximated by a set of chordlet (beamlet) elements.
Thus, in the proof of Lemma 1, SmoothCurve approxima-
tion has been converted to the approximation of a
SmoothCurveSegment Cs. In Appendix A it is shown that a
Cs can be approximated by a single chordlet when the
quantization of chordlet height is chosen properly to meet
the approximation error requirement. A lower bound to
the average number of beamlet elements required for
approximation of a Cs at a fixed distortion is also given in
Appendix A.

Table 1 gives results for the average number of beam-
let elements, NB, required for representation of a Smooth-

CurveSegment for selected values of N and E0. For Nr16
and when the approximation error E0 is relatively large,
Table 1
Average number of beamlet elements required for approxim

approximation error E0.

Error N¼4 N¼8 N¼16 N¼32

E0 ¼ 0:5 1.4576 2.1656 2.9597 4.0738

E0 ¼ 1:0 1.0847 1.4902 2.2096 3.0325

E0 ¼ 1:5 1.0169 1.4248 1.8869 2.5665

E0 ¼ 2:0 1.0000 1.2549 1.6770 2.2572
only one beamlet is required for a SmoothCurveSegment. For
75% of the cases examined, Table 1 shows that NB41:5.
Recalling the number of bits required to represent each
beamlet or chordlet element, namely 2Jþ3 versus 3Jþ3
where J¼ log2 N, implies that for images with edges that
can be divided into few or large smooth curve segments, the
chordlet representation is significantly more efficient than
the beamlet representation. Conversely, when there is fine
texture in an image, as indicated by short curves or lines, or
when distortion constraints are loose, the beamlet frame-
work would be significantly more efficient than the chord-
let, c.f. N¼ 4, E0 ¼ 1:5. As an example of where the beamlet
would trivially outperform the chordlet, consider the cano-
nical brick wall image. Since at a large scale the image is
composed of straight lines outlining the bricks there is no
need for the added curvature dimension. Indeed, using the
chordlet would result in a significant loss in rate even if the
distortion of reconstructed image were permitted to be
high. Furthermore, the texture of each brick is fine, and at
small grid sizes, e.g., 4�4, a beamlet can approximate a
curve sufficiently well enough that a curvature dimension is
extraneous. A rough rule of thumb for the selection of
chordlet versus beamlet framework can be derived from
the ratio of bits required for element representation,
namely, ð3 log2 Nþ3Þ=ð2 log2 Nþ3Þ41:3, and the experi-
mental result for the N¼ 4, E0 ¼ 0:5 case. For this parameter
selection there are two curves for each line, and the number
of beamlet elements required was found to be � 1:4. This
suggests that, since 1:441:3, if there are twice as many
curves as lines in the image, the chordlet framework is more
efficient than the beamlet framework.
5. Beamlet and chordlet representation structure

Given a selected distortion metric, such as the Hausdorff
distance or the number of mis-matched pixels between
curves, and a fixed dictionary size, the goal of optimal or
near-optimal image representation is to select the best
combination of dictionary elements for an image, subject
to rate, and/or distortion constraints. To do so a calculation
of the distance, that is, distortion between each potential
dictionary element and each edge in an image, is made.
Thus, an efficient bookkeeping measure must be employed
to track the candidate elements and assist with determining
the best beamlet or chordlet representation for the image.
A natural selection, arising from the recursive dyadic image
partitioning strategy, is the quadtree; this was the method
selected for the JBEAM algorithm [7]. To summarize the
approach in [7], each node in the quadtree (QT) structure
represents a single dyadic partition of the image and is
ation of a SmoothCurveSegment in an N�N grid with

N¼64 N¼128 N¼256 N¼512

5.6676 7.8803 10.9933 15.3837

4.1540 5.7224 7.9235 11.0278

3.4825 4.7545 6.5568 9.0906

3.0784 4.1871 5.7436 7.9411
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labeled with information about the beamlet choice for its
associated partition. A sample image with recursive dyadic
partitioning is illustrated in Fig. 4(a). Each partition is labeled
and is associated with a node in the quadtree, as illustrated
in Fig. 4(b) and (c). The children of a particular node
represent the dyadic partitioning of the coarse scale partition
associated with that parent node. Using notation similar to
that of [7] parent partitions are labeled with a ‘‘Q’’, child
partitions that contain no image pixels are labeled with an
‘‘N’’ to denote empty, while the leaf nodes corresponding to
partitions containing beamlets are labeled as ‘‘R’’ and have
associated with them all necessary information for the
associated beamlet element, namely, its vertices.

We also introduce a related bookkeeping structure,
the fat quadtree (FQT), as illustrated in Fig. 5 based on the
original image of Fig. 4(a). In this case, each large-scale
image curve is associated with its own quadtree structure
and labeling is performed as described previously. This
permits the use of multiple elements in the same dyadic
square, but results in a more complex representation than
the QT structure, since more than one curve can be
considered in each dyadic square at the same scale. While
it requires a more sophisticated element selection method
than the lone quadtree, but as will be shown in Section 7
it can often provide for better compression.

For applications such as compression, once a quadtree
structure has been determined and populated for a
N

R

R

R

R

R N

N N

R

Fig. 4. Generation of a three-level labeled quadtree: (a) original image, (b) r

Q N

N

R

Q
R

N

N

N

Q N

R

N

Q

Fig. 5. Generation of a three-level labeled fat quadtree consisting of two sub-q

quadtree and (b) partitioning and labeling of the second curve with associated
particular image, it must be encoded to form a bitstream.
In [7] the authors use a progressive coding algorithm based
on that of [10,11] to map the Q, N and R symbols together
with the binary vertex labels for each of the beamlet-
associated leaf nodes to a symbol stream. At the end of
each stream, an EOF marker denotes the end of the data.
The key to the algorithm is that high-level nodes and
the most significant bits of leaf nodes at high levels are
mapped before lower-level nodes and lower-significance
bits; the algorithm and an example can be found in [7].

Due to the introduction and adoption of the new
fat quadtree structure, this algorithm must be adapted.
Given an example fat quadtree structure with labels as in
Table 2 a symbol-stream, which includes the bits, Bsi(k),
for the ith chordlet-associated leaf node, is as follows:
Q ,Q ,EOB,Q ,R,R,N,N,Q ,N,N,Bs1ð1Þ,Bs1ð2Þ,Bs1ð3Þ,

Bs2ð1Þ,Bs2ð2Þ,Bs2ð3Þ,N,N,N,N,R,R,N,N,N,Bs1ð4Þ,Bs1ð5Þ,Bs1ð6Þ,

Bs2ð4Þ,Bs2ð5Þ,Bs2ð6Þ,Bs3ð1Þ,Bs3ð2Þ,Bs3ð3Þ,Bs4ð1Þ,Bs4ð2Þ,Bs4ð3Þ,

Bs1ð7Þ,Bs1ð8Þ,Bs1ð9Þ, . . . ,Bs4ð3J�5Þ,Bs4ð3J�4Þ,Bs4ð3J�3Þ,EOF.
To be consistent with JBEAM construction, the order
of symbols is based on a raster scan. In this particular
example, as can be seen from Fig. 5 and Table 2, all the
leaf nodes are from the J�1 and J�2 levels; therefore,
a total of 3( J�1)þ3 and 3( J�2)þ3 bits are required for
the corresponding chordlet element. As compared to the
EZW-like JBEAM encoding, three bits are represented in
N

N R

R R R R N N

Q Q

Q

R

ecursive dyadic partitioning and labeling, and (c) generated quadtree.

N

N RQ

Q

N

RN N

N

NR

N

N

N

Q

R Q N

R N N

uadtrees: (a) partitioning and labeling of the first curve with associated

quadtree.



Table 2
Fat quadtree structure with labels corresponding to the chordlet

representation given in Fig. 5.

Level 1 Level 2 Level 3

Q Q N N N – –

N R – –

R N – – – –

– – – –

Q R Q – – R N

– – N N

N N – – – –

– – – –

1 However, it is shown in [7] for a selected example that the

influence of l is negligible.
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each level instead of two bits, due to the fact that the bit
budget for each chordlet element has been increased from
2Jþ3 to 3Jþ3 when compared to a beamlet element.

The remainder of the adaptation is straightforward from
[7] and thus is not discussed in detail here. However, we
note that an additional marker, EOB, must be inserted at the
end of the string of symbols for the coarsest scale in order to
indicate the number of quadtrees forming the fat quadtree.

6. Element selection under rate or distortion constraints

Both the beamlet and chordlet transforms result in over-
complete representations of images. Note that while the
curve in Fig. 2(a) is approximated by three beamlet elements,
it could be approximated by either fewer or more elements
depending on the desired approximation quality. Let ÎðxÞ
denote the beamlet or chordlet approximation to an edge
image, I, using the set, x, of weighted elements bi or ci with
weights given by the transform coefficients Ri or Rþi , respec-
tively. Thus, a significant challenge is to pare down the entire
set of coefficients for a succinct, yet sufficiently accurate
representation of image edges given a distortion metric
DðI, ÎÞ. Although the Hausdorff distance was used in the
comparison of the different frameworks above, the distortion
metric, Dð�,�Þ, used in the algorithm below can be selected
according to specific application. For the low-rate compres-
sion application discussed in Section 7 the distortion is the
number of mis-matched pixels. We first review the JBEAM
[7] algorithm and then present an algorithm for the FQT.

6.1. Overview JBEAM algorithm

For application of the beamlet transform to compres-
sion, the beamlets are first digitized as discussed in [7].
Following this step, it is necessary to determine which
beamlets from the dictionary at selected, or all, scales best
represent the image in a rate–distortion sense. For pur-
poses of this discussion, we limit consideration to only
binary edge images, and consider only a single set of image
pixels, y, in an image partition. This method is readily
extended to multiple curves and non-binary images.

The rate, RðPÞ, for a particular beamlet quadtree or fat
quadtree representation, P, is given as the total number of
bits required for each element-bearing R node in the tree
plus log2 3 times the number of symbols in the stream,
including the EOF and EOB symbols as described in the
previous section.
At a particular scale, which yields a dyadic square S,
the measure of the fit of a beamlet to an edge y that falls
within this square is given by [7]

dðy,b,SÞ ¼ df ðy,b,SÞþldmðy,b,SÞ:

The first term is a measure of the distance from the
beamlet element, b, to the edge, y, while the second term
is a measure of the mismatch between the beamlet
element and the curve. The parameter l is fixed for the
particular application and trades off the influence of the
two measures.1 The best representation of the curve in
square S is then given by

Dðy,SÞ ¼min
b2Bg

S

dðy,b,SÞ

for a set of permissible beamlets, BgS , in square S and,
implicitly, for a selected l and g¼ 1. Note that there are
multiple approaches to selecting the best representation
for a given curve. First, all possible beamlet elements can
comprise BgS and decisions later made about the scale at
which to best represent an image curve. Alternatively, for
efficiency, the number of elements can be restricted prior
to forming the set BgS on the basis of the number of bits
available. We consider the first option for optimality and
assume that computational complexity is not a significant
constraint in performing the analysis, although it would
typically be a severe constraint in applications.

Thus, the challenge then becomes to solve the usual
constrained optimization problem, namely,

min
P

RðPÞ, subject to
X
S2P

Dðy,SÞrD,

where D is an overall distortion constraint. Clearly, the
variables can be exchanged to minimize distortion in the
face of rate constraints. In [7], this is solved via bottom-up
pruning of the quadtree. To summarize the algorithm of [7],
the rate and associated distortion are calculated for each tree
node, assuming it is marked as first, Q, N, and then R, with
the rates and distortions for each Q-node being the sum of
rates and distortions for its children. These candidate rate
and distortion calculations are stored as the tree is traversed.
At each level, for a fixed Lagrange multiplier, the cost is
calculated for each node and for each node labeling, noting
that nodes labeled N have no distortion. A choice is made
between the three labelings and the result is stored. This
procedure is repeated for different values of the Lagrange
multiplier and the appropriate resulting quadtree represen-
tation is chosen given the overall distortion constraint.

6.2. Proposed chordlet element selection algorithm

In this section we present an algorithm for selection of
the best chordlet representation of an image under rate or
distortion constraints using the fat quadtree structure. Since
the FQT permits multiple curves to be represented at each
scale, this algorithm must differ from that of Huo and Chen
[7], but employs, in one of its steps, the bottom-up tree-
pruning algorithm of [7], which was briefly reviewed above.
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We first note that in-scale inhibition, that is, element
selection at a single scale, must be performed. This is an
extension beyond that of [7]. More specifically, since a
number of elements can be used to represent a curve or
curves at a given scale, a set of the best representations
with respect to a selected distortion measure must first be
chosen for each curve and each scale. Consider an image
with multiple curves at a given scale in a single partition.
Since there are multiple curves in the partition, we have
no single reference set of pixels in the partition from
which to measure the distance to each element. Thus, we
first pick the best representative element by selecting
the chordlet element with the greatest coefficient. This
then serves as a reference element. All other candidate
elements at this scale and in this partition are tested in
combination with this element. If the candidate returns a
positive gain, that is, if it represents another curve in the
partition, then it can potentially be added to the set. If the
candidate’s gains are negative with respect to the refer-
ence, then it is simply deemed to be too similar to the
reference. More specifically, it is deemed a neighbor in
chordlet space, for example, an element with identical
endpoints and similar curvature to the reference, and thus
is attempting to represent the same curve in the partition
as the reference element. This process is iterated until all
curves in the partition are represented sufficiently. The
size of the initial set, and therefore the computational
complexity of the resulting pruning algorithm, is con-
trolled by a threshold.

Next, the best multi-scale representation can be selected
out of the permitted single-scale representations. This
results in curves that are represented by combinations of
weighted chordlet dictionary elements potentially selected
from among many scales to meet distortion or rate con-
straints. We first propose an in-scale selection algorithm
and then discuss a multi-scale selection algorithm.

6.2.1. Element selection within a single scale

Assume a scale jo J, and consider a single curve in an
image whose endpoints fall on or near the boundary of one
of the dyadic squares at scale j. After employing the chordlet
transform, a set of significant coefficients, Sþi , can be
extracted from the entire set fRþi ðciÞg; these elements can
be thought of as sensing the curve and forming a cluster in
the space of elements. As noted above, more than one
chordlet element could be used to represent the curve;
however, only the most significant of the elements, that is,
those that alone or in combination with other would provide
the best representation at scale j, should be preserved.

This selection between elements at a single scale is
performed as follows:
1.
 Set j¼0 and n¼2.

2.
 Perform the discrete chordlet transform at scale j.

3.
 The elements with positive significance level, Sþi , are

put into a candidate stack, Scc. If none of the elements
has positive significance level, stop, increment j and
return to Step 2. No cluster is formed at this scale.
Otherwise proceed to Step 4.
4.
 The element with the highest significance level is
determined to be the first cluster ‘‘center’’ y1; this
constitutes the initial representation, Îðx1Þ, where
x1 ¼ y1. Remove y1 from Scc.
5.
 For each iteration n, n42, compute the contribution

gain Gþc ðÎðxn�1 [ cjÞÞ of each element cj 2 Scc . The ele-

ment which yields the largest contribution gain is

declared the nth cluster center, yn. This new cluster
center is combined with the previously-determined

cluster centers to form the new set xn ¼ xn�1 [ yn. The

cluster center, yn, and the elements with non-positive
contribution gain are removed from Scc.
6.
 Increment n and repeat Step 5 until Scc is empty or a
pre-determined number of cluster centers have been
reached.
The distortion DmðI, ÎðxiÞÞ between the image I and the
chordlet representation ÎðxiÞ using the current permissible
number of chordlet cluster centers is determined as

DmðI, ÎðxiÞÞ ¼DðÎðx0Þ,IÞ�
Xi

j ¼ 1

Gþ ðÎðxjÞÞ, ð10Þ

where DðÎðx0Þ,IÞ is the distortion for a null representation

Îðx0Þ. For a given L compare the cost LðÎðxiÞÞ ¼ RðÎðxiÞÞþ

LDmðI, ÎðxiÞÞ with LðÎðxi�1ÞÞ ¼ RðÎðxi�1ÞÞþLDmðI, Îðxi�1ÞÞ

where RðÎðxiÞÞ is the bit count associated with the

representation ÎðxiÞ for a particular coding system.

7.
 If LðÎðxiÞÞZLðÎðxi�1ÞÞ, stop the iteration. The chordlet

elements fCþs ðIÞg that correspond to cluster centers
fykg

i�1
k ¼ 1 have survived and now provide the mono-

scale representation of image I. If LðÎðxi�1ÞÞZLðÎðxiÞÞ,
preserve the cluster centers fykg

i
k ¼ 1 and cost LðÎðxiÞÞ,

and perform the clustering assuming iþ1 cluster
centers in the chordlet space. Repeat from Step 3 until
the iterative process meets the stop criterion.
8.
 Increment j and set n¼2. If jr J return to Step 2.

Using the above algorithm in-scale inhibition is per-
formed through the determination of the cluster centers,
which are the elements with high contribution gains,
thereby restricting the use of multiple similar elements,
that is, neighbors in element space, to represent the same
edge. The rate–distortion problem is trivially solved by
incrementing the number of permissible clusters and com-
paring the total rate–distortion cost assuming fixed L for
the new and previous number of clusters. When either the
rate constraint is exceeded or the cost increases, results are
recorded and iteration is stopped. The algorithm is repeated
for a new L thereby populating rate–distortion space.

6.2.2. Element selection across scales

We next consider the challenge of choosing the best
representation across multiple scales. The proposed multi-
scale fat quadtree-based representation algorithm for an
image, I, of size N�N pixels, solves the constrained rate–
distortion problem described above by generating a full
FQT through associating parent and child representations
of curves. Each set of preserved elements on each level
of a particular quadtree in the FQT structure is then
compared with the representation on a neighboring scale
that corresponds to the same curve; those elements that
yield the lowest rate–distortion costs are retained while



Fig. 6. Sample images used in the compression application, from top left to bottom right: (a) Apple, Bat, Butterfly, Camel, Deer, Device, Dog, and Frog (Shape images)

and (b) Belgium, Brazil, China, Cuba, Germany and Switzerland (Map images).

Table 3
Number of non-zero image pixels and the bit count required for lossless
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the remainder is pruned from the FQT structure. The
proposed cross-scale algorithm is as follows:
coding of Map images using different representations.

Belgium Brazil China Cuba Germany Switzerland
1.
Non-zero

pixels

1233 822 813 658 871 845

JBIG2 7888 5768 5792 4360 5792 6088

JBEAM 6740 4584 4792 3392 5048 4512

QT 6432 4440 4624 3264 4744 4296

FQT 6428 4168 4592 3144 4368 4168

m¼
Starting at the finest scale j¼ log2 N, perform the
transform, and determine the mono-scale representa-
tion for each 1�1 dyadic square, that is, each pixel,
using a given L. The elements preserved as significant,
the cluster ‘‘centers’’ from the single-scale selection
process performed on four neighbors,2 are added to the
child cluster center stack Sc. Create leaf nodes labeled
with either N or R according to the content of the
associated dyadic square.
2.
 Perform mono-scale selection for scale j�1. The ele-
ments surviving this stage are put into a parent stack
Sp. The associated curves corresponding to the pre-
served elements for each set of four neighboring child
dyadic squares are determined and are put into the
test stack St for later comparison of the best represen-
tation among levels.
3.
 Starting from i¼1, for the ith element in the parent
stack, Sp(i), determine the clusters at scale j to which
those child elements in St corresponding to Sp(i)
belong. The associated cluster centers at scale j are
then preserved. The representation Î

i

j�1 for Sp(i) is
defined as the representation corresponding to the
first test subtree Ti

j�1 where the ith node is labeled
with the cost of the ith cluster center. The second test
representation Ǐ

i

j�1 is defined as the representation
corresponding to subtree Ti

j�1 where the node is
labeled with the sum of the costs of the children
elements corresponding to Sp(i). The rate–distortion
cost for representation Î

i

j�1 of the first test tree is
computed as

L̂
i

j�1 ¼ RðÎ
i

j�1ÞþLDmðI, Î
i

j�1Þ, ð11Þ

where DmðI, ÎðxiÞÞ is defined as in Eq. (10). Cost Ľ
i

j�1 is
similarly defined. Thus, representation cost L̂

i

j�1 deter-
mines the cost for including Sp (i) as a terminal node
in the tree, while the cost Ľ

i

j�1 captures the cost for
choosing Sp(i) as an intermediate node in the tree.
2 Here the term neighbors denotes the four dyadic squares

1, y, 4 that are children of a single parent.
4.
 Using a bottom-up tree pruning algorithm as in [7] we
determine the cost associated with each node in the
FQT at scale j�1.
5.
 Repeat Steps 3 and 4 for each element in stack Sp, and
remove the elements from Sc, which have been used in
the process. If the resultant Sc is empty, go to Step 6.
Otherwise, start from the next remaining candidate
element in Sc, determine (as in Step 3) the associated
subtrees at the current node scale and the child node
scale, compute and compare their respective rate–
distortion costs. If the cost for the candidate element
is greater than the cost for the previously–computed
element, prune the subtree of this candidate element,
otherwise, push the corresponding element onto Sp.
6.
 If j41, update Sc with Sp, decrement j, and repeat
Steps 2 through 5, otherwise stop.
7. Applications to low-rate shape compression

In this section we present results of the application of
the chordlet framework and the algorithm of the previous
section to compression of binary shape images. Shape
coding has received wide attention over the decades,
ranging from basic chain coding to the more sophisticated
block-based methods proposed for MPEG-4 such as
reviewed in [12–15]. We note that there are similarities
in between contour-based shape coding mode and our
approach in that vertices and curve segments are selected;
however, our method uses further constraints on endpoints
to simplify the approach.



Table 4
Number of non-zero image pixels and the bit count required for lossless coding of Shape images using different representations.

Apple Bat Butterfly Camel Deer Device Dog Frog Guitar

Non-zero pixels 658 557 968 957 1884 1228 1744 1221 776

JBEAM 3032 2912 4600 4906 9072 5888 8280 6080 3960

QT 2680 2936 4528 4816 8744 5800 7248 4920 4008

FQT 2680 2936 4424 3824 8316 5744 7248 5920 3952

Table 5
Lossy compression of Map images. Distortion is given as D and bit count

is given as R.

Method Belgium Brazil China Cuba Germany Switzerland

JBEAM

D 44 20 256 204 257 289

R 5984 4352 2792 2016 3056 2544

QT

D 36 13 228 167 169 213

R 4632 4296 2208 1680 2824 2056

FQT

D 28 11 213 157 211 179

R 5624 4248 2152 1360 2272 2016
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We compare the performance of the chordlet-based
framework to that of JBEAM [7,16], which is the inspira-
tion for the proposed algorithm, as well as to the JBIG2 [8]
industry standard. The binary shape images employed
in this comparison are 256�256 images from two
image databases: the Map database [7]; the MPEG-7 Core
Experiment CE-Shape-1 part B Shape database [17]. Sam-
ple images from these databases are illustrated in Fig. 6.

The discrete chordlet transform with quantized ele-
ments, as described in Eq. (6) is employed, since the images
under consideration are binary. Performance of the three
algorithms will be compared on the basis of rate, R, and
distortion, D. Here, rate is measured in the total number of
bits required to represent the binary image, while distortion
is defined as the number of mis-matched pixels in a
representation Î of image I.3 For purposes of fair comparison,
no entropy coding of the bit streams is employed.

We first consider lossless compression of the binary
images. The first rows in Tables 3 and 4 give the number
of non-zero pixels in each of the sample images and the
remaining rows give the bitrates for compressing via a
selection of methods, where QT and FQT represent the
chordlet-based methods using the two representations.
We observe that in all cases but three, Bat, Frog and Guitar,
the FQT-based chordlet method has equal or better
compression performance when compared with JBEAM
and the QT-based chordlet method.

Lossy compression results are given in Tables 5 and 6
for sample Map and Shape images, respectively. While
effort was made to hold the distortion constant, it is not
3 Note that a variety of distortion metrics could be utilized in any

particular application; see, e.g., [13] for an alternative. The metrics

should be carefully selected to maximize either objective or subjective

performance for the application, since different metrics could yield

significantly different results.
possible to have equivalent distortion among the three
approaches compared. However, we observe that in all
cases, a chordlet-based method outperforms the beamlet-
based method and, in general, the FQT chordlet represen-
tation outperforms the QT representation.

These results are further emphasized in Figs. 7 and 8.
In Fig. 7(a) a portion of the original Deer image is shown.
The corresponding portions after lossy compression and
reconstruction via the JBEAM, QT-based-chordlet and
FQT-based-chordlet approaches are shown in Fig. 7(b)–(d),
respectively. In these latter figures, the dark pixels indicate
mis-matched or missing pixels between the reconstructed
and original images. Similarly, in Fig. 8 compression results
using the three different schemes are demonstrated.
Fig. 8(a) shows the original binary image Apple, while
Fig. 8(b)–(d) shows the results of compression via the
JBEAM, QT-based-chordlet and FQT-based-chordlet methods.
The rate was deliberately kept very low in this example to
emphasize the perceptually natural characteristics of the
chordlet-based approach.
8. Conclusions

In this work we have proposed an arc-based extension
to the beamlet element dictionary and have suggested
methods of defining elements and performing a chordlet
transform. It has been demonstrated that, for a particular
class of images, the new transform and fat-quadtree
representation is more efficient than the beamlet-based
framework. Results were demonstrated for low-rate lossy
and lossless compression of binary shape images with
significant numbers of curved edges, and it is seen that, in
general the FQT-based chordlet approach is the best
approach, resulting in rate reductions of up to 31% and
22% over JBIG2 and JBEAM, respectively.

We note, however, that as demonstrated in Section 4
the chordlet framework will only be useful in compres-
sion when there is no fine texture. More specifically, if an
image contains edges that are best represented under a
given distortion constraint on small dyadic squares, then
the beamlet-based framework will certainly outperform
the chordlet-based framework. Furthermore, the chordlet
framework’s performance can naturally not meet that of
beamlet’s when images are composed primarily of non-
curved edges. Nevertheless, while significantly more
computationally complex than the beamlet framework,
due to the number of dictionary elements that must be
considered, the chordlet framework is promising for some
compression applications. These applications include not
only shape-compression for images but region-coding or



Table 6
Lossy compression of Shape images. Distortion is given as D and bit count is given as R.

Method Apple Bat Butterfly Camel Deer Device Dog Frog Guitar

JBEAM

D 99 92 125 130 182 206 197 26 106

R 1808 1704 3056 3096 7008 3160 6096 5576 2552

QT

D 88 80 120 130 169 199 185 31 98

R 1000 1608 2696 2752 6424 2904 5480 5288 2392

FQT

D 92 83 103 118 150 167 141 26 104

R 968 1528 2856 2832 6184 2720 5520 5256 2256

Fig. 7. An illustration of compression of a portion of image Deer. Dark pixels indicate distortion contributions, the mismatch between the original and

reconstructed image. (a) Original image, (b) JBEAM representation, D¼182 and R¼7008, (c) quadtree-based chordlet representation, D¼169 and

R¼6424, and (d) fat quadtree-based chordlet representation, D¼150 and R¼6184.

Fig. 8. An illustration of extremely low-rate representation of shape image Apple using different representation schemes, JBEAM and the two proposed

methods. The rate, R, is the number of bits required to represent the image using the associated scheme: (a) original, (b) JBEAM, R¼312, (c) QT, R¼312

and (d) FQT, R¼184.
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contour-encoding applications in video and images, e.g.,
[18–20]. In practice, it would be useful to be able to
switch between the beamlet and chordlet representations
using a context-dependent indicator in the header.

Efforts continue in developing fast chordlet transform
methods and expansion to additional applications such as
image and video retrieval. The chordlet framework has
the potential to meet most of the desired properties of
shape descriptors as listed in [21]: ability to capture
important shape characteristics, while reflecting proper-
ties of the human visual system; robustness to partial
occlusion; robustness to rotation, scaling and zooming.
While additional efforts will have to be dedicated to
making this framework adaptable to non-rigid motion
and non-affine transformations, there is the potential for
use in non-annotated retrieval applications.

Another potential extension of this work is to de-
noising and inverse problems, extending the approaches
of [6] using the curve-based framework. There are two
concerns with using the chordlet framework. The first is
computational complexity and the second is stability.
Both these arise from the addition of the curve dimension,
particularly with a requirement for fine granularity of
curves as would be required for small structures. We
anticipate this proposed framework would only find use
in problems involving large-scale structures for the same
reasons it is only beneficial over the beamlet for coarse
structures or textures.

Appendix A

A.1. Proof of Lemma 1

The proof of Lemma 1 follows similar procedure as the
proof of Lemma 2.2 of [9] which employs proofs of [9].
Assume a SmoothCurve, Cv, with two endpoints r0 and r1, in
an N�N image grid. There are two cases to consider based
on those two endpoints. First, when the two endpoints fall
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Fig. 9. An illustration of the approximation of a curve by line segments.
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on the boundary of a single dyadic square, since the curve
heights of the chordlet elements are quantized with step-
size D¼ 1, the maximum Hausdorff distance between Cv

and its nearest chordlet element is bounded by E0
1
2 and only

one chordlet element is required for the approximation of
Cv. This is proved in Section A.2.

For the second case, the two endpoints fall on the
boundaries of two separate dyadic squares S0 and S1. Using
Lemma 5.1 in [9], the coarsest recursive dyadic partition
containing S0 and S1 that partitions the SmoothCurve into a
chain of SmoothCurveSegments can be constructed. The num-
ber of dyadic squares in this RDP is bounded by 4 log2 Nþ1.
From the definition of a SmoothCurve, the curvature k of the
Cv with chord length 2r is kr 1

r . Thus, for each SmoothCurve-

Segment, Cs, with length 2rs in the partition, the arc height is
krrs. By the definition and construction of chordlet dic-
tionary as in Eq. (3), each Cs is within the chordlet approx-
imation range, therefore it can be approximated within the
Hausdorff distance E0 ¼

1
2 as shown below. Finally, the count

of the number of SmoothCurveSegments for S0 and S1 yields
at most 2ð4 log2 Nþ1Þ and refining this count for N42 as
in [9] yields the bound of 8 log2 N.
A.2. Cs approximation by chordlet elements

Given two endpoints ðr0, r1Þ separated by distance 2r,
circles whose centers are of distance R; RZr from both
endpoints define the curve space for a SmoothCurve-

Segment with the same two endpoints. The set of chordlet
elements fcig with the same two endpoints offers a
quantized/discrete curve space for corresponding Smooth-

CurveSegment. If the Hausdorff distance is adopted as the
approximation error E0ðc1,c2Þ between two curves c1 and
c2, it is given as

E0ðc1,c2Þ ¼max max
a2c1

min
b2c2
fDða,bÞg

� �
,max

b2c2
min
a2c1
fDða,bÞg

� �� �
,

ð12Þ

where D(a, b) can be the Euclidean distance between two
points, a and b. If the height quantization is assumed to
be D¼ 1 then the maximum approximation error is by
definition E0r1

2.
A.3. Cs approximation by beamlet elements

The best piecewise linear approximation of a Smooth-

CurveSegment is a uniform partitioning of the curve into
sub-curves with each sub-curve approximated by a single
line segment as follows: given a curve with chord length
2r and height k, divide the curve into m equally spaced
sub-curves, and find the smallest m such that the height z

of each sub-curve satisfies zrE0, the approximation error.
Notation is illustrated in Fig. 9, where an arc which is a
section of a circle with radius R is uniformly partitioned
into m sub-curves, and 2y and 2b are the angles of the arc
and a sub-curve, respectively. Given

R2
¼ ðR�kÞ2þr2 ) R¼ ðk2

þr2Þ=ð2kÞ
then

y¼ arcsin
r

R
¼ arcsin

2kr

k2
þr2

while b¼
y
m
:

The distortion between the sub-curve and the line ele-
ment is then

z¼ R�R cos b¼
k2
þr2

2k
1�cos

y
m

� �
:

To meet the distortion constraint zrE0 choose

mðr,k,E0Þ ¼
arcsin 2kr

k2
þ r2

arccos 1� 2kE0

k2
þ r2

� �
2
666

3
777:

Thus for a desired approximation error E0, mðr, k, E0Þ is the
minimum number of line segments required for approx-
imation of a SmoothCurveSegment, Cs. We observe that
when mðr, k, E0Þ41, the endpoints of sub-curves might
not fall on the boundary of a dyadic square. Therefore,
additional beamlets are required for curve approximation
and the above mðr, k, E0Þ serves as a lower bound on the
total number of beamlet elements required for approxima-
tion. Then the average number of beamlet elements required
for representing a SmoothCurveSegment is given as

NB ðE0Þ ¼
4
P

G1ðr,kÞmðr,k,E0Þþ3
P

G2ðr,kÞmðr,k,E0Þþ2
P

G3ðr,kÞmðr,k,E0Þ

4
P

G1ðr,kxÞ1þ3
P

G2ðr,kÞ1þ2
P

G3ðr,kÞ1
,

ð13Þ

where G1ðr,kÞ, G2ðr,kÞ, and G3ðr,kÞ denote SmoothCurve-

Segments with co-edge, neighbor-edge, and opposite-edge
endpoints, respectively. These are found through counting
arguments assuming resolution g¼ 1 as

X
G1ðr,kÞ

mðr,k,E0Þ ¼
XN�1

i ¼ 1

XN

j ¼ iþ1

Xbði�jÞ=2c

k ¼ 0

mðði�jÞ=2,k,E0Þ,

X
G1ðr,kÞ

1¼
XN�1

i ¼ 1

XN

j ¼ iþ1

Xbði�jÞ=2c

k ¼ 0

1,

X
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XN�1

i ¼ 1

XN�1

j ¼ 1

Xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�jÞ2þði�NÞ2
p

=2c

k ¼ 0

�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
,



Z. He, M. Bystrom / Signal Processing: Image Communication 27 (2012) 140–152152
X
G2ðr,kÞ

1¼
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Xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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k ¼ 0

1,

X
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mðr,k,E0Þ ¼
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i ¼ 1

XN

j ¼ 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�NÞ2þði�jÞ2
p

=2c

k ¼ 0

�m
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� �
�N

and

X
G3ðr,kÞ

1¼
XN

i ¼ 1

XN

j ¼ 1

Xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�NÞ2þði�jÞ2
p

=2c

k ¼ 0

1�N:
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