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Wavelet decompositions are implemented and inverted by fast algorithms, the so-
called fast wavelet transform (FWT). The FWT is the primary reason for the popularity
of wavelet-based methods in so many different scientific and engineering disciplines. The
second most important reason for the popularity of wavelets is their mathematical theory:
that theory shows that the wavelet coefficients record faithfully the precise smoothness
class of the underlying dataset/function. These characterizations are instrumental for
the mathematical analysis of wavelet-based algorithms in the areas of image and signal
analysis. The third most important reason for the popularity of wavelets (which is closely
related to the first one) is the vehicle of MultiResolution Analysis (MRA) which allows
for the construction of a wide variety of wavelet systems. This approach is epitomized in
the univariate Mallat’s algorithm. The effective construction of wavelet systems is more
cumbersome in higher dimensions. For example, in 4D (and dyadic downsampling) one
employs (at least) 15 different highpass filters in any MRA-based wavelet system. And
the struggle in higher dimensions to balance optimally between time localization (short
filters) and frequency localization is hampered by the need to adhere to the MRA-based
construction principles.

Some relief to the above is offered by inserting redundancy. The resulting theory is
known as framelet theory. While framelets offer more flexibility (for example, one can use
spline filters for both the decomposition and the reconstruction), the redundancy entails
that we use an even larger number of highpass filters. From the theoretical point of
view, framelets suffer from the so-called vanishing moment phenomenon, which in down-
to-earth terms says that the ability to characterize function spaces via framelet coefficients
is limited in some unexpected artificial way (by the number of vanishing moments in the
framelets), and not by the (usually twice larger) “performance grade” of the system (viz.
its approximation order).

For these and other reasons, practitioners sometimes abandon wavelets altogether.
Instead, they use some method for (linear) coarsening of their data, and a complementary
method for (linear) prediction of the original data from the coarsened one. The “wavelet
coefficients” are then trivially defined to be the difference between the predicted coefficients
and the actual ones. The approach is intimately related to the notion of hierarchical bases

and is sometimes referred to as pyramidal representation. It is a simpler approach, and,
indeed, was introduced and used a few years before wavelets made their debut.

Caplets, which are introduced and analysed in the talk, is the melting pot of the
above three ideas. From the algorithmic point of view, they employ the same coarsening-
prediction methodology alluded to above, but add the (optional) intermediate step of
alignment. They are therefore based merely on three filters: the lowpass decomposition
filter, the lowpass prediction filter, and the third (fullpass) alignment filter. They are
implemented by simple, fast, wavelet-like decomposition, and by trivial (not wavelet-like)
reconstruction. They do not require the construction of any wavelet, framelet, zilch. They
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work for any dilation process (e.g., binary, ternary, quincunx), and for any triplet of
C(oasification)-A(lignment)-P(rediction) filters.

As far as redundancy is concerned, the caplet representation is redundant, with the
redundancy rate decreasing with the spatial dimension. For example, in 4D the caplet
representation has a redundancy rate of 1.066. We prove that the caplet representation
coincides with the representation offered by a carefully designed (redundant) framelet sys-
tem. That framelet system does not exhibit the aforementioned performance-degradation.

From the theoretical point of view, we prove that the caplet coefficients provide char-
acterizations of function spaces that are analogous to the characterizations provided by
wavelet coefficients. This is, actually, our main finding.

There are other attractions in caplats, in addition to the simplicity and the universality
of their construction. For example, in image processing, the caplat representation produces
a single image at each scale. Another advantage is improved time-frequency localization.
That latter point is illustrated by the simplest 2D caplat system: the filters involved in
that system employ, on average, four coefficients (same as the 2D Haar system), but the
performance is equivalent to the 3/5 biorthogonal system (whose filters involve, on average,
16 coefficients).

This is a joint project with Youngmi Hur, a graduate student at the University of
Wisconsin.
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