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ABSTRACT 2. HEISENBERG UNCERTAINTY

This paper addresses the question: ‘What makes a good The lower limit on the time-frequency resolution that can
wavelet for image compression?’, by considering objective be obtained with wavelet transforms is theoretically [6]
and subjective measurements of quality. A new metric is AoAt > 1/2 3
proposed for the design of the Finite Impulse Response (FIR) wat = (
filters used in the Discrete Wavelet Transform (DWT). The This states that the time and frequency localization of
metric is the diagonal of the Heisenberg uncertainty information cannot simultaneously be arbitrarily small. It can
rectangle, with time weighted by a factbrrelative to be shown that the continuous, infinite time, Gabor wavelet
frequency. Minimization of the metric balances the time and[6] is the only wavelet which achieves this minimum. The
frequency spreads of the filter response. The metric can béower the Heisenberg uncertainty, the better is the resolving
computed directly from the filter coefficients, so it can be power of the wavelet. The uncertainty is invaraint over the
used to optimize wavelets forimage compression without thescales used in the DWT; as data is filtered and subsampled,
cost of repeatedly compressing and decompressing imageshe time resolution is successively halved and the frequency
A psychovisual evaluation carried out with 24 subjects resolution is doubled, preserving their prodi@tAt.
demonstrates that orthonormal FIR filters designed this way . : . .
give good subjective results with zerotree image W€ can compute the bandwidi» and time dispersion
compression.With suitably chosknboth better subjective At directly for a FIR filter from its coefficients:
quality and lower RMS error are achived than with wavelets
chosen for maximum regularity. 2

Ao = 3t 4
1. BACKGROUND n=0 men+l P (m-n)

The theory of continuous and discrete wavelet
transforms [1, 2] has inspired much basic and applied
research in signal and image processing, as well asvhere P:Z h2 =1 in the orthonormal case.
revitalizing the study of sub-band filtering [3, 4, 5]. The n=0 "

Discrete Wavelet Transform (DWT) is obtained by repeated

filtering and sub-sampling into two bands with low- and L1
high-pass Finite Impulse Response (FIR) filters, —
{h0 h__;} and {g, ..., g _,} respectively. The inverse A = Zo (”‘t)z hﬁ

process gives perfect reconstruction if the wavelet is
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orthonormal. This is easily shown to be the case [4] if the

filter coefficients satisfy Z nh,
n
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with g =(-1"h_ 4 1

3. APROPOSED QUALITY METRIC

Heisenberg uncertainty is not itself a useful figure of
merit for wavelet design. Although the prodaai At is the
area of a rectangle in time/frequency space, it tells us nothing
about its aspect ratio. Figure 1 illustrates how three different

Wavelets exist only if a regularity condition is satisfied,

;m:w @
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Name VG Aw At | AwAt| ems

1 Haar2 0 1.136 | 0.500 | 0.568 | 9.89

w 2 OrthD4 0 1.033 | 0.612 | 0.633 | 8.95
3 B4, KX =0.4 04 |1.035|0.597 | 0.618 | 8.92

/ MinUncert4 na. | 1.103 | 0.506 | 0.559 | 9.56
| OrthD6 =0 | 0.988 | 0.650 | 0.641 | 8.88

kt B6, KX =0.4 04 | 0.995 | 0.686 | 0.682 | 8.75

MinUncert6 na. | 0.963 | 0.635 | 0.611 | 9.47

Figure 1. Uncertainty rectangles of three FIR filters with ) ]
identical Aw At. Filter 2 minimizes the metric M(k) for Table 1. Uncertainty parameters and ems on Gold Hill at
filters with the same product Aw At. 0.2 bpp for some orthonormal FIR wavelets.

filters could have the same uncertainty while having vastly =~ Table 1 Gives the uncertainty metrics for the design
different time and frequency resolution. The metric we examples along with the RMS errors obtained when used in
propose is a balanced uncertainty, which will favour an zerotree compression of the standard test image Gold Hill to
uncertainty rectangle with the shortest diagonal in a weighted).2 bpp (40:1). The version of B§ given atk=0.4 is the

time/frequency space. Consider the function best psychovisual result as determined in the next Section,
M(K) = Ac? + K2 AR G and we show also the corresponding B4.
The parametek specifies the relative importance 5. PSYCHOVISUAL EVALUATION

attached to time and frequency resolution, and may be image o )
dependent. To design a particular type of wavelet filter, we_ We evaluated the wavelets subjectively, using our
choose a value &fand minimizeVi(k) directly from the FIR ~ ImPplementation of Shapiro’s zerotree coder [7]. A total of 24
filter coefficients. nonspecialist volunteers viewed 10 versions of the same
image optimized fok?=0,0.1,0.2, .., 0.9 at the same
4. DESIGN EXAMPLES compression using a particular length of orthonormal filter,
' and were asked to pick the one of best visual quality. Four
Although the principle of balanced uncertainty extends images were displayed simultaneously on the screen of a
to all types of wavelet, we demonstrate it here usingworkstation, initially from both ends of the range, with two

orthonormal wavelets, because the number of freeother images spaced as equally as possibd% isfter each
parameters is more manageable. In the orthonormal casée

there aré/z — 1 free parameters in solving for the coefficients S€/ECtion the image farthest awaydfwas discarded, and a

: ; ; . ew range was defined by the extremes of the three
hy in Equations 1 and 2, whereas in the biorthogonal Casewremaining images. The choice quickly narrowed to a final

would have to consider analysis and synthesis filters ofselection from four images adjacent in the range. The 8bpp
different lengths. Y (luminance) components of Gold Hill, Barbara2 and Boats

The Haar wavelelet is the only orthonormal solution for were used, at 20:1, 40:1 and 60:1. With fourth order wavelets,
L=2, for whichAw At = 0.568. Also, if we minimize\t for the compressions were not of sufficient quality to give
two adjacent nonzero coefficients. clear preferences emerged.

- ; A one way analysis of variance using the F-test was
For L=4, there is one free parameter, and we can ; y=>7 i
P carried out to determine if the results were consistezacit

m'nl'T'ZeM(k) easﬂy.hl_\/llnlmlzatllon W'ﬂ::s 40 prr(])_dﬁce;]d thfe compression ratio, and the Barbara2 image was excluded at
well-known Daubechies wavelet, OrthD4, which therefore o ‘9504 significance level. A similar analysis of the

minimizesAw without regard td\t. We obtained a range of  combined results from Gold Hill and Boats was used to see

other wavelets B&) by minimizing M(K) for  if the results were consistent across all three compression
K2 = 0,0.1,0.2, ..,0.9. For comparison, we also ratios, and all were accepted at the 95% level. The result over
minimizedAw At, to get MinUncert4. these 144 trials was mekin= 0.40, standard deviation 0.24.

The histogram of these combined results is shown in Figure
2. The Barbara2 image gave a similar result at 20:1, but lower

values ofk® at 40:1 and 60:1, both near 0.2.

Similarly, for L = 6 there are two free parameters, and
we can compare the corresponding filters OrthD6(kB6
which minimizesM(k) for K¥=0,0.1,0.2,..,0.9, and
MinUncert6. OrthD6 is similar to, but not identical to B6(0).
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Figure 2. Histogram of 144 subjective preferences, by 24 subjects on 2 images at 3 compression ratios.
6. DISCUSSION AND CONCLUSIONS practical significance tha®l(k) can be computed directly

The psychovisual evaluation found @®p with from the FIR coefficients, so wavelets can be optimized

12 = 0.40 to give good visual results in the examples studied without repeated cycles of compression and decompression.

although for special classes of images, we would expectother  Wavelets with a low or zero weightimé minimize the
values ok to be optimum. For example _the Barbara2 image bandwidthAw of the FIR filters at the expense of a wider
has a large area of smooth skin and subjects preferred slightlynpuise responsat, which is visible as in ghosting and/or

larger time spreading at _h|gher compresspn ratlps. ) blurriness of the image. Those with a higher valué afre

Perhaps the most important comparison is with thegsharper, but the blockiness of the zerotree structure appears.
Paubechles class_of orthonormal wavelets, chosen fofrhe Haar filter is the blocky extreme of the range, while the
maximum regularity’, which is based on placing the qthonormal Daubechies filters are at or near the blurry
maximum number of-plane zeros of the FIR filter at  extreme. Because of the widespread use of the Daubechies
z=-1. This tends to give the filter a flat response and sharg¥ilters, it is a significant finding that these are not in general
cutoff in the frequency domain, at the expense of ringing ofclose to the psychovisual optimum.
the filter. Our results show this to be a visually suboptimum ) )

The wavelet B&) with KK=0.4 gives the best

design principle in selecting wavelets for image _ ) X :
compression. psychovisual quality over a range of compression ratios for

. . ) two standard test images. Figure 3 shows images for visual
The unweighted uncertaingwAt does not predict  comparison of three 6 coefficient filters, in which[Bavith

degradation, either visually or in terms of MSE. However by o _ .
computing the diagonal of thieweighted uncertainty !(2_ 04 clearly_outperforms both OrthD6 and MinUncert6
in the Gold Hill image.

rectangleM(K), we obtain a useful quality metric for wavelet )
compression. Although the wavelets designe#’at 0.4 The coefficients of Bf) with k= 0.4 are:

have the lowest RMS errors of those shown in Table 1, themo =0.51065493 h, =0.81006904 h,=0.24732487
are not in general the smallest RMS errors ovdg, athd we

have also obtained other wavelets giving lower RMS errorsh; = -0.13503181 h, = -0.05087302 h; = 0.03206956
by annealing over the wavelet coefficients. It is also of

Monro, Bassil and Dickson Page 3 ICIP 96



7. REFERENCES

[1.] Daubechies, I., ‘Orthonormal bases of compactly
supported wavelets’, Comm. Pure Appl. Math., Vol 41, pp
909-966, 1988.

[2] Mallat, S., ‘A theory for multiresolution signal
decomposition: The wavelet representation’, IEEE Trans
Pattern Anal. Mach. Intel., Vol. 11, July 1989.

[3] Smith, M. J. T. and Barnwell, T. P., ‘A new filter bank
theory for time-frequency representation’, IEEE Trans.
Acoust., Speech and Signal Proc., Y¥8SP-35, No. 3, pp
314-327, March 1987.

[4] Antonini, M., Mathieu, P., and Daubechies, I., ‘Image
coding using wavelet transform’, IEEE Trans. Image Proc.,
Vol.1, No. 2, pp 205-220, April 1992.

[5] Vetterli, M., and Herley, C., Wavelets and filter banks:
Theory and design’, IEEE Trans. Signal Proc., Vol. 40, No.
9, pp.2207-2232, September 1992.

[6] Gabor, D. ‘Theory of Communication’, J. of the IEE, Vol.
93, pp. 429-457, 1946.

[7] Shapiro, J. M., ‘Embedded image coding using zerotree
of wavelet coefficients’, IEEE Trans. Signal Proc., Vol. 41, (b) B6(0.4), Best Psychovisual
No. 12, pp. 3445-3462, December 1993. minimizes M(0.4), erms= 8.75

(a) OrthD6, maximum regularity, (c) Minimum Uncertainty 6,
€rms =8.97 €rms = 9.42

Figure 2. Detail from the luminance (Y) CCITT test image Gold Hill after compression of the whole image at 40:1 (to 0.2 bpp).
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