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Reminders on analog signals

e Integrable signals
s€ L1(R) +— / (t)|dt < oo
e Finite energy signals
o
5 € Lo(R) > ||3]|2 = / 1s(0)2dt < o
—0o0
e Scalar product

(51, 52) = / T (Dbt

—00

e Remark

Li(R) & Ly(R) and L2(R) & L1 (R)
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Reminders - Counter-example 1

e Signal in Ly(R) but not in L;(R)

1 ff <1
r= ﬁ otherwise.
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Reminders - Counter-example 1

e Signal Li(R) but not in La(R)

1 .
x:{ i if [t] <1

0  otherwise.
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Continuous Fourier transform

Definition

o0
s(t) 25 S(f) = / s(t)e 2 It
—0o0
function of the (dual) variable frequency f € R
Existence 1: if s € L1(R), then
e S(f) is continuous and bounded
° lim‘ﬂﬁoo S(f) =0
Existence 2:

s € LQ(R), iff S € LQ(R)

Inversion:

sty = [ stpentay
for almost every ¢
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Fourier transform - properties 1

e Linearity

then
VL) €€ Asi(t) + psa(t) < ASL(F) + pSa(f)
e Delay/translation

VbeR, s(t—b) 5 e 2™ §(f)

delay/translation invariance in amplitude spectrum

e Modulation:

Y eR, e?m™is(t) LN S(f—-v)
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Fourier transform - properties 2

Scale change

Va € R*,  s(at) L

turns dilatation onto contraction

e Time inverse: a special case

s(—t) <5 S(—f)

Conjugation
* FT o
s*(t) — S(=f)
Hermitian symmetry: if s is real, then:

e Re(S(f)) even, Im(S(f)) odd
o |S(f)| even, arg S(f) odd (mod 27)
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Fourier transform - properties 3

e Convolution
(51 % 52)(1) = /_Oo su(W)salt — u)du = (53 % 51)(1)

e Conditions
® S ELl(R),SQELl(R)jSl*SQ GLl(R)
e S GLQ(R),SQELQ(R):>51*52 ELQ(R)

(51% 2)(t) = S1(f)Sa(f)
e Parseval-Plancherel equalities: if s1,s2 € L1(R):

° <81752> = <51752>
o [IslI* = [IS]1?
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Fourier transform - examples

° s(t) = e_atu(t), %(a) > 0: S(f) = m
o f(t) = e % cos(2m fot)u(t):
S

)
1 1 1
f) — 2 |at2m(f—fo) + a+2m(f+fo)

o s(t) = e S(f) = iy
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Digital signals - sampling

e For a signal s(t), regularly sampled:
slk] = s(kT)

with T": sampling period; F' = 1/T": sampling frequency

e Sampling theorem: if S(f) =0 for |f| > B and F > 2B, the
the signal is sampled without information loss (theoretically),
with Shannon-Nyquist formula:

_ - . 7T(t — k‘T) . B SiI;(t) if t 7& 0
s(t) = kzzoos[k]smc ( T > ,sinc(t) = { ! otherwise.

e Note: Balian-Low theorem for time-frequency analysis
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Digital signals - sampling

Figure 1. Example of aliasing
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Digital signals - sampling

e Comments

sufficient but non-necessary condition

two-part theorem: sampling/reconstruction

jitter, amplitude quantization, noise

slow convergence of the sinc, instability

signals cannot be time-limited and frequency-bounded
(together)

extensions to band-limited signals exist (iterative
Papoulis-Gerchberg)

e alternatives for non-regularly sampled data (Lomb-Scargle)
e alternatives for sparse/finite-rate-of-innovation signals

® compressive sensing, sparse sampling
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Digital signals

e Absolutely convergent sequences

(s[k])rez € 1'( Z [

k=—o00

e Square-summable sequences

(slkkez € P(R) & D |s[k]]?

k=—o00

e Remark

IL(R) c I*(R)

k]| < oo

< 00
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Discrete-Time Fourier transform (DTFT)

e Definition 1: z-transform

o0

(s[k]kez KN S(z) = Z s[k]z*

k=—o0

e Definition 2: Discrete-Time Fourier transform

(s[k])kez PIRT S(f) = Z s[k]z_"f, 5 = o2rf

k=—o00
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Discrete-Time Fourier transform (DTFT)

Normalized frequency

j? = CFfphys

Periodicity
f=1:5(f+1)=5(f)

Existence
(s[kDrez € P(R)

Special case: if (s[k])rez € I'(R), then S(f) is continuous
and bounded
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DTFT - properties 1

Linearity

Asy[k] + psalk] 5 ASY(f) 4 pSa(f)

Integer delay/translation

sk —n] 5T g2l g( f)

Modulation

2™ s[k] T S(f — v)

e Time inversion DTET
s[—k] — S(-f)
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DTFT - properties 2

e Conjugaison
5'[K) ST (-)
e Parseval-Plancherel equalities
oo 1/2

> sl[k]s;[k]:/ S1()S3(f)df

k=—o0 —1/2

0o 1/2
S JslH)? = / O

k=—o0
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DTFT - properties 3

e Convolution

[e.e]

(s1xs2)lk] = > silllsalk — 1) 2250 S1(f)S2(f)
l=—00
e |nversion
1/2
s[k] = S(f)e?I*af
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Fourier series

e If s is periodic (and continuous), s(t + 2m) = s(t) define:

s

a = — / s(t) cos(kt)dt

by, = 1/s(t) sin(kt)dt

s

then the infinite Fourier series is:

S(k) =20 4

5 [an, cos(kt) + by, sin(kt)]

Nk

b
Il

1
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Discrete Fourier transform

e Definition
DTFk .
(s[kDo<w<r—1 — 8[plo<p<i—1
with
K—1 .
Slplosp<—1 =Y s[kle " ®
k=0
e Link to the DTFT : if s[k] =0 pour k < 0 et k > K, then
R p
s
=5 (2
i.e. K-sample sampling of DTFT S(f) on [0, 1]
e Inversion

1 Z 1271'
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All Fourier transforms unite: Pontryagin duality

[ Transform | Original domain [| Transform domain |
Fourier transform R R
Discrete-time Fourier transform (DTFT) Z T
Fourier series T Z
Discrete Fourier transform (DFT) Z/nZ Z/nZ
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All Fourier transforms unite: Pontryagin duality

;4444444444444/\\u/f\\J/»\\,,,;__,AAAA,

\ I NUA \/\/\f\\\/ A

Figure 2: Signals on the different domains
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Fast Fourier transform - FFT

e Fast algorithms exist (since Gauss)

FFTk = complexity of O(K log,(K')) operations

e Cyclic or periodic convolution: Let (s1[k])o<k<x—1 and
(s2[k])o<k<r—1

DTFK A

(s1®s2)[k] —" 51[p] - 52[p]

where (s1(®s2)[k] represents the K-point convolution of the
periodized sequences:

k
(s1®s2)[k Z s1( Z si[l]so| K + k —1]

=0 I=k+1
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Reminders - Key message

e Nature of the data and the transform

e Continuous and discrete natures ARE different

o Generally stuff works

e Intuition may be misleading (ex.: FFT on 8-sample signals,
non proper windows)

e Sometimes special care is needed: re-interpolation,
pre-processing to avoid edge effects, instabilities, outliers
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Windows

e Several uses
e apodization, tapering (edges, jumps)
e "stationarizing”
e spectral estimation, filter design

Figure 3: Origin: Wikipedia

e Many (parametric) designs:

e Hann, Hamming, Kayser, Chebychev

o generalized cosine: A — B cos(2E%) + C cos( 122 )
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Reminders: set averages

e s(n): discrete time random process (stationary stochastic
process)

e expectation:
ps(n) = E{s(n)}
e variance:
a3 (n) = E{ls(n) — ps(n)|*}

e autocovariance:

cs(k, 1) = E{(s(k) — ps(k))(s(l) — ps(1))"}
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Reminders: power spectral density

For an autocorrelation ergodic process:
N

Z s(n + k)s(n) = rgs(k)

n—=—

.
Nvso 2N + 1

e if s(n) is known for every n, power spectrum estimation
e caveat 1: samples are not unlimited [0, ..., N — 1], sometimes

small
e caveat 2: corruption (noise, interfering signals)

Recast the problem: from the biased estimator of the ACF
N-1—-k

Fes(k) = Y s(n+k)s(n)

n=0

estimate power spectrum (periodogram)

N—-1
Poe®) = ) Fas(k)e™
k=—N+1
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Time and frequency resolution

e Energy
£= [IstPar= [I1s(hPar

e Time or frequency location

t=1E [dsoPa F=1/E [ fS(Pds

e Energy dispersion

At = \/1/E/(t B2t [2dt

Af = \/ 1/E / (f — FRIS()Pdf
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Heisenberg-Gabor inequality

e Theorem (Weyl, 1931)
If s(t),ts(t),s'(t) € L? then

Is)1I* < 2llts(@) 115" @)

e Equality:
Iff s(¢) is a modulated Gaussian/Gabor elementary function:

s'(t)/s(t) o< t

s(t) = Cexp[—a(t — ty)? + 1270 (t — t,)]

e Proof
Integration by part + Cauchy-Schwarz
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Uncertainty principle (UP)

e Time-frequency UP
For finite-energy every signal s(t), with At and Af finite:

AtAf > i
47

with equality for the modulated Gaussian only

e Principles
Is' @)1 = 2 Pl £S ()]
e Observations
e Fourier (continuous) fundamental limit: arbitrary " location’
cannot be attained both in time and frequency

e have to choose between time and frequency locations
e Gaussians are "the best”
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Uncertainty principle (UP) for project management

Applies to other domains

1 NEED A DESCRIPTION
OF YOUR PROJECT AND
ITS PROJECTED COST

THAT'S
IMPOSSIBLE.

www.dlibert.com  scottadama@asl.com

THE PROJECT UNCER-
TAINTY PRINCIPLE SAYS
THAT IF YOU UNDER.-
STAND A PROTJECT, YOU
WONT KNOW ITS COST,
AND VICE VERSA.

B i

© 2003 United Feature Syadicats, Inc

#elor

You
JusT
MADE
THAT
UP.

02003 Uniled Fealure Syndicate, Inc.

Figure 4: Dilbert

31/47




Uncertainty principle - time

e One may write
s(t) = /s(u)é(t _ w)du

e 0(t) is neutral w.r.t. convolution

e interpreted as a decomposition of s(t) onto a basis of shifted
d(t—u): At=0 at

e FT of basis functions: e~ 2"t Af = oo

UP: as a limit of 0 x o
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Uncertainty principle - frequency

e One may write
s(t) = [ Stpetay
e interpreted as a decomposition on pure waves e>™ft: At = oo
e FT of basis functions: 6(f —t) : Af =0

UP: as a limit of oo x 0
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Uncertainty principle - illustration

£(t) F(w)
A
perfectly local
in time
t - ©
(1) F(o)
perfectly local
in frequency
i WA ~ t 0]
o [F(w)]

A
trade-off
t ®
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Basis formalism interpretation

e Orthonormality
<ez27rft76127rgt> — 5(f . g)

(6(f),0(9)) =6(f —9)
e Scalar product

S(f) = (s(t), ™)
s(t) = (s(t),5(f))

e Matching of a signal with a vector, a basis function (pure
wave, Dirac)
e Synthesis: continuous sum of orthogonal projection onto basis
functions
o Relative interest of the two bases? Other bases?
(Walsh-Hadamard, DCT, eigenbase)
e How to cope with mixed resolution?
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Sliding window Fourier transform

e Principles
Fourier analysis on time-space slices of the continuous s(t)

with a sliding window A(t — 7)
e Short-term/short-time Fourier transform (STFT)

Su(rufsh) = [ stom(e— et

e Wider domain of applications than FT

e depend on h
e FT as a peculiar instance (valid for other transforms: not a
new tool, only a more versatile "leatherman”-like multi-tool)
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Sliding window Fourier transform

Figure 5: Leatherman wave black
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Sliding window Fourier transform - illustration

I
N
I(l)
T
I
[F (@) L
JEw
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Sliding window Fourier transform - time-freq. completude

Notion of a "complete” descrition (i.e. somehow invertible)

L@

7,

Yy
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Sliding window Fourier transform - windows

e Related to frequency analysis
Depend on the window choice h (shape, length)
e Continuous time windows
e rectangular: poor frequency resolution
e gaussian: best time-frequency trade-off? (Gabor, 1946)
e Discrete time windows

e 7 discretized (jumps vs. redundancy)

o different criteria: side lobes, equiripple, apodizing; Bartlett,
Hamming, Hann, Blackmann-Harris, Blackmann-Nutall,
Kaiser, Chebychev, Bessel, Generalized raised cosine, Lanczos,
Flat-top,...
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Sliding window Fourier transform - paving

W AWAW AN
’\'7\\] \f IVAYA \/ \/‘

frequency
A

tiT;le
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Sliding window Fourier transform - reconstruction

e Simple analogy

e synthesis: what two numbers add to result 3

e a + b= 3: infinite number of solutions, e.g.
2945.75 + (—2942.75) but irrelevant

e assume they are integers?

e assume they are positive? 1+2=30or2+1=3

e aim: increase interpretability, information compaction
(04 3 = 3), reduce overshoot
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Sliding window Fourier transform - reconstruction

e Redundant transformation!

e [nversion
+oo +oo
sw= [ [ st gngt - wem e,

provided that

+oo
/ (R (t)dt = 1.
—0o0
(perfect reconstruction, no information loss)

e special case: admissible normalized window h

but not the only solution (truncated sin)
e a bit more involved for discrete time, less if only approximate
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Sliding window Fourier transform - spectrogram

e Definition

|Ss(T, f5 h)[?

e The spectrogram is a (bilinear) time-frequency distribution

£= [[ 18 fimPardy

for normalized admissible window h

e Parseval formula

(51, 82) = / / Sur (7, £ 10)Ssa (7, £ h)drdf
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Sliding window Fourier transform - monoresolution

e Reason: basis functions
h(t — 7)e?™ !

all possess similar resolution
e Examples:
o s(t) =0(t —to) — [Ss(7, f; 1)[> = |h(to — 7)
o s(t) = et — [Sy(r, fi )P = |H(fo — f)]
o Uses

2
]

for long range oscillatory signals, long windows are necessary
for short range transient, short windows needed
possibility to use several in parallel

[ ]
[ ]
]
e incentive to use several ones simultaneously
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Sliding window Fourier transform - illustration

(a) . 3 # (b)
&

(©) LI I - (d)
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Other time frequency distributions

e Quadratic or bilinear distributions

Wigner-Ville and avatars (smoothed, pseudo-, reweighted)
Cohen class (WV, Rihaczek, Born-Jordan, Choi-Williams)
property based: covariance, unitarity, inst. freq. & group delay,
localization (for specific signals), support preservation,
positivity, stability, interferences

Bertrand class, fractional Fourier transforms, linear canonical
transformation (4 param.: FT, fFT, Laplace,
Gauss-Weierstrass, Segal-Bargmann, Fresnel transforms)
generally not applied in more than 1-D
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