Reminders: sampling and Fourier

Laurent Duval

IFP Energies nouvelles, Rueil-Malmaison, France laurent.duval@ifpen.fr

October 1, 2012

Reminders on analog signals

• Integrable signals

$$s \in L_1(\mathbb{R}) \longleftrightarrow \int_{-\infty}^{\infty} |s(t)| dt < \infty$$

• Finite energy signals

$$s \in L_2(\mathbb{R}) \longleftrightarrow ||s||^2 = \int_{-\infty}^{\infty} |s(t)|^2 dt < \infty$$

Scalar product

$$\langle s_1, s_2 \rangle = \int_{-\infty}^{\infty} s_1(t) s_2^*(t) dt$$

Remark

$$L_1(\mathbb{R})
ot\subset L_2(\mathbb{R})$$
 and $L_2(\mathbb{R})
ot\subset L_1(\mathbb{R})$

Reminders - Counter-example 1

• Signal in $L_2(\mathbb{R})$ but not in $L_1(\mathbb{R})$

$$x = \left\{ \begin{array}{ll} 1 & \text{if } |t| < 1 \\ \frac{1}{|t|} & \text{otherwise.} \end{array} \right.$$

Reminders - Counter-example 1

• Signal $L_1(\mathbb{R})$ but not in $L_2(\mathbb{R})$

$$x = \begin{cases} \frac{1}{\sqrt{t}} & \text{if } |t| < 1\\ 0 & \text{otherwise.} \end{cases}$$

Continuous Fourier transform

Definition

$$s(t) \xrightarrow{\mathrm{FT}} S(f) = \int_{-\infty}^{\infty} s(t)e^{-i2\pi ft}dt$$

function of the (dual) variable frequency $f \in \mathbb{R}$

- Existence 1: if $s \in L_1(\mathbb{R})$, then
 - S(f) is continuous and bounded

•
$$\lim_{|f|\to\infty} S(f) = 0$$

• Existence 2:

$$s \in L_2(\mathbb{R})$$
, iff $S \in L_2(\mathbb{R})$

Inversion:

$$s(t) = \int_{-\infty}^{\infty} S(f)e^{i2\pi ft}df$$

for almost every t

Fourier transform - properties 1

Linearity

$$s_1(t) \xrightarrow{\mathrm{FT}} S_1(f), \quad s_2(t) \xrightarrow{\mathrm{FT}} S_2(f)$$

then

$$\forall (\lambda, \mu) \in \mathbb{C}^2 \quad \lambda s_1(t) + \mu s_2(t) \xrightarrow{\mathrm{FT}} \lambda S_1(f) + \mu S_2(f)$$

Delay/translation

$$\forall b \in \mathbb{R}, \quad s(t-b) \xrightarrow{\mathrm{FT}} e^{-i2\pi bf} S(f)$$

delay/translation invariance in amplitude spectrum

Modulation:

$$\forall \nu \in \mathbb{R}, \quad e^{i2\pi\nu t} s(t) \xrightarrow{\mathrm{FT}} S(f - \nu)$$

Fourier transform - properties 2

Scale change

$$\forall \alpha \in \mathbb{R}^*, \quad s(\alpha t) \xrightarrow{\mathrm{FT}} \frac{1}{|\alpha|} S(\frac{f}{\alpha})$$

turns dilatation onto contraction

• Time inverse: a special case

$$s(-t) \xrightarrow{\mathrm{FT}} S(-f)$$

Conjugation

$$s^*(t) \xrightarrow{\mathrm{FT}} S^*(-f)$$

- Hermitian symmetry: if *s* is real, then:
 - $\operatorname{Re}(S(f))$ even, $\operatorname{Im}(S(f))$ odd
 - |S(f)| even, $\arg S(f)$ odd $\pmod{2\pi}$

Fourier transform - properties 3

Convolution

$$(s_1 * s_2)(t) = \int_{-\infty}^{\infty} s_1(u)s_2(t-u)du = (s_2 * s_1)(t)$$

- Conditions
 - $s_1 \in L_1(\mathbb{R}), s_2 \in L_1(\mathbb{R}) \Rightarrow s_1 * s_2 \in L_1(\mathbb{R})$
 - $s_1 \in L_2(\mathbb{R}), s_2 \in L_2(\mathbb{R}) \Rightarrow s_1 * s_2 \in L_2(\mathbb{R})$

$$(s_1 * s_2)(t) \xrightarrow{\operatorname{FT}} S_1(f)S_2(f)$$

- Parseval-Plancherel equalities: if $s_1, s_2 \in L_1(\mathbb{R})$:
 - $\langle s_1, s_2 \rangle = \langle S_1, S_2 \rangle$
 - $||s||^2 = ||S||^2$

Fourier transform - examples

•
$$s(t) = e^{-at}u(t), \Re(a) > 0$$
: $S(f) = \frac{1}{a+2i\pi f}$

•
$$f(t) = e^{-at} \cos(2\pi f_0 t) u(t)$$
:

$$S(f) = \frac{1}{2} \left[\frac{1}{a + 2\pi i (f - f_0)} + \frac{1}{a + 2\pi i (f + f_0)} \right]$$

•
$$s(t) = e^{-|a|t}$$
: $S(f) = \frac{2|a|}{a^2 + (2\pi f)^2}$

Digital signals - sampling

• For a signal s(t), regularly sampled:

$$s[k] = s(kT)$$

with T: sampling period; F = 1/T: sampling frequency

• Sampling theorem: if S(f)=0 for $|f|\geq B$ and $F\geq 2B$, the the signal is sampled without information loss (theoretically), with Shannon-Nyquist formula:

$$s(t) = \sum_{k=-\infty}^{\infty} s[k] \operatorname{sinc}\left(\frac{\pi(t-kT)}{T}\right), \operatorname{sinc}(t) = \left\{\begin{array}{ll} \frac{\sin(t)}{t} & \text{if } t \neq 0\\ 1 & \text{otherwise.} \end{array}\right.$$

• Note: Balian-Low theorem for time-frequency analysis

Digital signals - sampling

Figure 1: Example of aliasing

Digital signals - sampling

Comments

- sufficient but non-necessary condition
- two-part theorem: sampling/reconstruction
- jitter, amplitude quantization, noise
- \bullet slow convergence of the sinc, instability
- signals cannot be time-limited and frequency-bounded (together)
- extensions to band-limited signals exist (iterative Papoulis-Gerchberg)
- alternatives for non-regularly sampled data (Lomb-Scargle)
- alternatives for sparse/finite-rate-of-innovation signals
 - compressive sensing, sparse sampling

Digital signals

Absolutely convergent sequences

$$(s[k])_{k \in \mathbb{Z}} \in l^1(\mathbb{R}) \Leftrightarrow \sum_{k=-\infty}^{\infty} |s[k]| < \infty$$

Square-summable sequences

$$(s[k])_{k \in \mathbb{Z}} \in l^2(\mathbb{R}) \Leftrightarrow \sum_{k=-\infty}^{\infty} |s[k]|^2 < \infty$$

Remark

$$l^1(\mathbb{R}) \subset l^2(\mathbb{R})$$

Discrete-Time Fourier transform (DTFT)

• Definition 1: z-transform

$$(s[k])_{k \in \mathbb{Z}} \xrightarrow{\mathrm{ZT}} S(z) = \sum_{k=-\infty}^{\infty} s[k]z^{-k}$$

Definition 2: Discrete-Time Fourier transform

$$(s[k])_{k \in \mathbb{Z}} \xrightarrow{\mathrm{DTFT}} S(f) = \sum_{k=-\infty}^{\infty} s[k] z^{-k}, \quad z = e^{i2\pi f}$$

Discrete-Time Fourier transform (DTFT)

Normalized frequency

$$f = T f_{\rm phys}$$

Periodicity

$$f = 1 : S(f+1) = S(f)$$

Existence

$$(s[k])_{k\in\mathbb{Z}}\in l^2(\mathbb{R})$$

• Special case: if $(s[k])_{k\in\mathbb{Z}}\in l^1(\mathbb{R})$, then S(f) is continuous and bounded

DTFT - properties 1

Linearity

$$\lambda s_1[k] + \mu s_2[k] \xrightarrow{\text{DTFT}} \lambda S_1(f) + \mu S_2(f)$$

Integer delay/translation

$$s[k-n] \stackrel{\text{DTFT}}{\longrightarrow} e^{-i2\pi nf} S(f)$$

Modulation

$$e^{i2\pi\nu}s[k] \stackrel{\text{DTFT}}{\longrightarrow} S(f-\nu)$$

Time inversion

$$s[-k] \xrightarrow{\mathrm{DTFT}} S(-f)$$

DTFT - properties 2

Conjugaison

$$s^*[k] \stackrel{\text{DTFT}}{\longrightarrow} S^*(-f)$$

Parseval-Plancherel equalities

$$\sum_{k=-\infty}^{\infty} s_1[k] s_2^*[k] = \int_{-1/2}^{1/2} S_1(f) S_2^*(f) df$$

$$\sum_{k=-\infty}^{\infty} |s[k]|^2 = \int_{-1/2}^{1/2} |S(f)|^2 df$$

DTFT - properties 3

Convolution

$$(s_1 * s_2)[k] = \sum_{l=-\infty}^{\infty} s_1[l] s_2[k-l] \xrightarrow{\text{DTFT}} S_1(f) S_2(f)$$

Inversion

$$s[k] = \int_{-1/2}^{1/2} S(f)e^{i2\pi fk}df$$

Fourier series

• If s is periodic (and continuous), $s(t+2\pi) = s(t)$ define:

$$a_k = \frac{1}{\pi} \int s(t) \cos(kt) dt$$
$$b_k = \frac{1}{\pi} \int s(t) \sin(kt) dt$$

then the infinite Fourier series is:

$$S(k) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(kt) + b_n \sin(kt)]$$

Discrete Fourier transform

Definition

$$(s[k])_{0 \le k \le K-1} \xrightarrow{\mathrm{DTF}_{K}} \hat{s}[p]_{0 \le p \le K-1}$$

with

$$\hat{s}[p]_{0 \le p \le K-1} = \sum_{k=0}^{K-1} s[k] e^{-i2\pi \frac{kp}{K}}$$

• Link to the DTFT : if s[k] = 0 pour k < 0 et $k \ge K$, then

$$\hat{s}[p] = S\left(\frac{p}{K}\right)$$

i.e. K-sample sampling of DTFT S(f) on [0,1]

Inversion

$$s[k] = \frac{1}{K} \sum_{m=0}^{K-1} \hat{s}[p] e^{i2\pi \frac{kp}{K}}$$

All Fourier transforms unite: Pontryagin duality

Transform	Original domain	Transform domain
Fourier transform	\mathbb{R}	\mathbb{R}
Discrete-time Fourier transform (DTFT)	$\mathbb Z$	T
Fourier series	Т	\mathbb{Z}
Discrete Fourier transform (DFT)	$\mathbb{Z}/n\mathbb{Z}$	$\mathbb{Z}/n\mathbb{Z}$

All Fourier transforms unite: Pontryagin duality

Figure 2: Signals on the different domains

Fast Fourier transform - FFT

• Fast algorithms exist (since Gauss)

 $FFT_K \Rightarrow \text{complexity of } O(K \log_2(K)) \text{ operations}$

• Cyclic or periodic convolution: Let $(s_1[k])_{0 \le k \le K-1}$ and $(s_2[k])_{0 \le k \le K-1}$

$$(s_1 \circledast s_2)[k] \xrightarrow{\mathrm{DTF_K}} \hat{s}_1[p] \cdot \hat{s}_2[p]$$

where $(s_1 \circledast s_2)[k]$ represents the K-point convolution of the periodized sequences:

$$(s_1 \circledast s_2)[k] = \sum_{l=0}^k s_1[l] s_2[k-l] + \sum_{l=k+1}^{K-1} s_1[l] s_2[K+k-l]$$

Reminders - Key message

- Nature of the data and the transform
 - Continuous and discrete natures ARE different
 - Generally stuff works
 - Intuition may be misleading (ex.: FFT on 8-sample signals, non proper windows)
 - Sometimes special care is needed: re-interpolation, pre-processing to avoid edge effects, instabilities, outliers

Windows

- Several uses
 - apodization, tapering (edges, jumps)
 - "stationarizing"
 - spectral estimation, filter design

Figure 3: Origin: Wikipedia

- Many (parametric) designs:
 - Hann, Hamming, Kayser, Chebychev
 - generalized cosine: $A B\cos(\frac{2\pi n}{M-1}) + C\cos(\frac{4\pi n}{M-1})$

Reminders: set averages

- s(n): discrete time random process (stationary stochastic process)
- expectation:

$$\mu_s(n) = E\{s(n)\}\$$

variance:

$$\sigma_s^2(n) = E\{|s(n) - \mu_s(n)|^2\}$$

autocovariance:

$$c_s(k, l) = E\{(s(k) - \mu_s(k))(s(l) - \mu_s(l))^*\}$$

Reminders: power spectral density

For an autocorrelation ergodic process:

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} s(n+k)s(n) = r_{ss}(k)$$

- if s(n) is known for every n, power spectrum estimation
- caveat 1: samples are not unlimited $[0,\ldots,N-1]$, sometimes small
- caveat 2: corruption (noise, interfering signals)

Recast the problem: from the biased estimator of the ACF

$$\hat{r}_{ss}(k) = \sum_{n=0}^{N-1-k} s(n+k)s(n)$$

estimate power spectrum (periodogram)

$$\hat{P}_x(e^{i\omega}) = \sum_{k=-N+1}^{N-1} \hat{r}_{ss}(k)e^{ik\omega}$$
27/47

Time and frequency resolution

Energy

$$E = \int |s(t)|^2 dt = \int |S(f)|^2 df$$

• Time or frequency location

$$\overline{t} = 1/E \int t|s(t)|^2 dt$$
 $\overline{f} = 1/E \int f|S(f)|^2 df$

Energy dispersion

$$\Delta t = \sqrt{1/E \int (t - \overline{t})^2 |s(t)|^2 dt}$$

$$\Delta f = \sqrt{1/E \int (f - \overline{f})^2 |S(f)|^2 df}$$

Heisenberg-Gabor inequality

• Theorem (Weyl, 1931) If $s(t), ts(t), s'(t) \in L^2$ then

$$||s(t)||^2 \le 2||ts(t)|| ||s'(t)||$$

$$s'(t)/s(t) \propto t$$

$$s(t) = C \exp[-\alpha (t - t_m)^2 + i2\pi \nu_m (t - t_m)]$$

Proof
 Integration by part + Cauchy-Schwarz

Uncertainty principle (UP)

• Time-frequency UP For finite-energy every signal s(t), with Δt and Δf finite:

$$\Delta t \Delta f \ge \frac{1}{4\pi}$$

with equality for the modulated Gaussian only

Principles

$$||s'(t)||^2 = |i2\pi|^2 ||fS(f)||^2$$

- Observations
 - Fourier (continuous) fundamental limit: arbitrary "location" cannot be attained both in time and frequency
 - have to choose between time and frequency locations
 - Gaussians are "the best"

Uncertainty principle (UP) for project management

Applies to other domains

Figure 4: Dilbert

Uncertainty principle - time

One may write

$$s(t) = \int s(u)\delta(t - u)du$$

- $\delta(t)$ is neutral w.r.t. convolution
- interpreted as a decomposition of s(t) onto a basis of shifted $\delta(t-u)$: $\Delta t=0$ at
- FT of basis functions: $e^{-i2\pi ft}$: $\Delta f = \infty$

UP: as a limit of $0 \times \infty$

Uncertainty principle - frequency

One may write

$$s(t) = \int S(f)e^{i2\pi ft}df$$

- interpreted as a decomposition on pure waves $e^{i2\pi ft}$: $\Delta t = \infty$
- FT of basis functions: $\delta(f-t)$: $\Delta f=0$

UP: as a limit of $\infty \times 0$

Uncertainty principle - illustration

Basis formalism interpretation

Orthonormality

$$\langle e^{i2\pi ft}, e^{i2\pi gt} \rangle = \delta(f - g)$$

 $\langle \delta(f), \delta(g) \rangle = \delta(f - g)$

Scalar product

$$S(f) = \langle s(t), e^{i2\pi ft} \rangle$$
$$s(t) = \langle s(t), \delta(f) \rangle$$

- Matching of a signal with a vector, a basis function (pure wave, Dirac)
 - Synthesis: continuous sum of orthogonal projection onto basis functions
 - Relative interest of the two bases? Other bases? (Walsh-Hadamard, DCT, eigenbase)
 - How to cope with mixed resolution?

Sliding window Fourier transform

- Principles Fourier analysis on time-space slices of the continuous s(t) with a sliding window $h(t-\tau)$
- Short-term/short-time Fourier transform (STFT)

$$S_s(\tau, f; h) = \int s(t)h^*(t - \tau)e^{-i2\pi ft}$$

- Wider domain of applications than FT
 - ullet depend on h
 - FT as a peculiar instance (valid for other transforms: not a new tool, only a more versatile "leatherman"-like multi-tool)

Sliding window Fourier transform

Figure 5: Leatherman wave black

Sliding window Fourier transform - illustration

Sliding window Fourier transform - time-freq. completude

Notion of a "complete" descrition (i.e. somehow invertible)

Sliding window Fourier transform - windows

- Related to frequency analysis
 Depend on the window choice h (shape, length)
- Continuous time windows
 - rectangular: poor frequency resolution
 - gaussian: best time-frequency trade-off? (Gabor, 1946)
- Discrete time windows
 - τ discretized (jumps vs. redundancy)
 - different criteria: side lobes, equiripple, apodizing; Bartlett, Hamming, Hann, Blackmann-Harris, Blackmann-Nutall, Kaiser, Chebychev, Bessel, Generalized raised cosine, Lánczos, Flat-top,...

Sliding window Fourier transform - paving

Sliding window Fourier transform - reconstruction

Simple analogy

- synthesis: what two numbers add to result 3
- a+b=3: infinite number of solutions, e.g. 2945.75 + (-2942.75) but irrelevant
- assume they are integers?
- assume they are positive? 1+2=3 or 2+1=3
- aim: increase interpretability, information compaction (0+3=3), reduce overshoot

Sliding window Fourier transform - reconstruction

- Redundant transformation!
- Inversion

$$s(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S_s(u,\xi;h) g(t-u) e^{i2\pi t u} du d\xi,$$

provided that

$$\int_{-\infty}^{+\infty} g(t)h^*(t)dt = 1.$$

(perfect reconstruction, no information loss)

ullet special case: admissible normalized window h

$$g(t) = h(t)$$

but not the only solution (truncated \sin)

• a bit more involved for discrete time, less if only approximate

Sliding window Fourier transform - spectrogram

Definition

$$|S_s(\tau, f; h)|^2$$

• The spectrogram is a (bilinear) time-frequency distribution

$$E = \iint |S_s(\tau, f; h)|^2 d\tau df$$

for normalized admissible window h

Parseval formula

$$\langle s_1, s_2 \rangle = \iint S_{s_1}(\tau, f; h) S_{s_2}(\tau, f; h) d\tau df$$

Sliding window Fourier transform - monoresolution

Reason: basis functions

$$h(t-\tau)e^{i2\pi ft}$$

all possess similar resolution

- Examples:
 - $s(t) = \delta(t t_0) \longrightarrow |S_s(\tau, f; h)|^2 = |h(t_0 \tau)|^2$
 - $s(t) = e^{i2\pi f_0 t} \longrightarrow |S_s(\tau, f; h)|^2 = |H(f_0 f)|^2$
- Uses
 - for long range oscillatory signals, long windows are necessary
 - for short range transient, short windows needed
 - possibility to use several in parallel
 - incentive to use several ones simultaneously

Sliding window Fourier transform - illustration

Other time frequency distributions

- Quadratic or bilinear distributions
 - Wigner-Ville and avatars (smoothed, pseudo-, reweighted)
 - Cohen class (WV, Rihaczek, Born-Jordan, Choi-Williams)
 - property based: covariance, unitarity, inst. freq. & group delay, localization (for specific signals), support preservation, positivity, stability, interferences
 - Bertrand class, fractional Fourier transforms, linear canonical transformation (4 param.: FT, fFT, Laplace, Gauss-Weierstrass, Segal-Bargmann, Fresnel transforms)
 - generally not applied in more than 1-D