Spectrum estimation using
Periodogram, Bartlett and Welch

Guido Schuster

Slides follow closely chapter 8 in the book ,Statistical
Digital Signal Processing and Modeling” by Monson H.

Hayes and most of the figures and formulas are taken
from there



Introduction

We want to estimate the power
spectral density of a wide-
sense stationary random

process

Recall that the power spectrum P = 30 rge-tte

IS the Fourier transform of the o
autocorrelation sequence

For an ergodic process the ‘ , W *
following holds S a1 2 X R = n)

n=—N



Introduction

« The main problem of power spectrum estimation is

— The data x(n) is always finite!

« Two basic approaches

— Nonparametric (Periodogram, Bartlett and Welch)

» These are the most common ones and will be presented in the next pages

— Parametric approaches

» not discussed here since they are less common



Nonparametric methods

These are the most commonly
used ones

X(n) is only measured between

| Nl
Folk) = — x(n + k)x*(n)
n=0,..,N-1 N Zﬂ

Ensures that the values of x(n)
that fall outside the interval

[0,N-1] are excluded, where for
negative values of k we use | N-izk
conjugate symmetry Fk) =5

n=(}

xin+k)x*n) ; k=0,1,..



Periodogram

Taking the Fourier transform of
this autocorrelation estimate
results in an estimate of the
power spectrum, known as the
Periodogram

This can also be directly
expressed in terms of the data
X(n) using the rectangular
windowed function x,(n)
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Periodogram of white noise
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Performance of the Periodogram

If N goes to infinity, does the
Periodogram converge
towards the power spectrum in o L
the mean squared sense? b, E “P per (€)= Pi(e’®) | ] =0

Necessary conditions

— asymptotically unbiased: Jim E {Pper(ef“*)} = Pr(e’)
— variance goes to zero: uu_?lo"“{-"per(ﬂ“’}] =0

In other words, it must be a
consistent estimate of the
power spectrum



Recall: sample mean as estimator

« Assume that we measure an iid process x[n] with mean p and
variance c?

 The sample mean is m=(x[0]+x[1]+x[2]+..+X[N-1])/N

 The sample mean is unbiased
E[m] =E[(X[O]+Xx[1]+X[2]+..+X[N-1])/N]
=(E[X[O]][*+E[X[1]]+E[X[2]]+..+E[X[N-1]])/N
=Nw/N
—H
« The variance of the sample mean is inversely proportional to the
number of samples
VAR[mM] =VAR[(X[O]+x[1]+Xx[2]+..X[N-1])/N]=
=(VAR[X[O]]+VAR[X[1]]+VARI[X[2]]+..+VAR[X[N-1]])/N?
= No?2/N?
=c2/N



Periodogram bias

To compute the bias we first
find the expected value of the
autocorrelation estimate

Hence the estimate of the
autocorrelation is biased with a
triangular window (Bartlett)

1 N-1-k

Eff) == 3. Elx(n+k)x*(n)]

Nn:ﬂ-

N-1—k
=< 3 nk) = N};kr,{k)

Nn=l]

E{F (k) = wg(k)rs (k)

N — k|
wg(k) = N
0 y |kl> N

, lkl<N



Periodogram bias

The expected value of the
Periodogram can now be
calculated:

Thus the expected value of the
Periodogram is the convolution
of the power spectrum with the
Fourier transform of a Bartlett
window

N1
E|ppute)] = E{ Y Fx{k}e'f*‘”l

k=—N+1

N—1

= Y Effy}e it

k=—N+1

=

= ) rkwgkye

k==00

A : ]_ .
E|Pper(el®)} = 5= Puel®) 5 Wa(el®)

Wa(e/®) =

[s'm{wwfz} ]2

1
N | sin(w/2)
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Periodogram bias

« Since the sinc-squared
pulse converges towards
a Dirac impulse as N
goes to infinity, the
Periodogram is
asymptotically unbiased

lim E{Pp ()] = Pu(e™)
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Effect of lag window

Consider a a random process
consisting of a sinusoidal in
white noise, where the phase
of the sinusoidal is uniformly
[-rt, ] distributed

The power spectrum of such a
signal is

Therefore the expected value
of the Periodogram is

x(n) = Asin(nw + ¢) + v(n)

P(e!”) =0l + 1::A2[u¢tw — wp) + uolw + &m}]

E | Prerte™)]

2

1 : ,
= — P.(e/”) * Wg(e’”)
27

1 .
—_ 03 + 1‘4‘2 [WB {e}[m—ﬂm)} + wﬂl:ej{a}'l'ﬂh]]]
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Effect of lag window

(a)
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Example: Periodogram of a
Sinusoidal in Noise

Consider a a random process
consisting of a sinusoidal in
white noise, where the phase
of the sinusoidal is uniformly
[-rt, =] distributed and

A=5, ©,=0.47

N=64 on top
and N=256 on the bottom

Overlay of 50 Periodogram on
the left and average on the
right

x(n) = Asin(nwg + ¢) + v(n)
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Figure 8.6 The periodogram of a sinusoid in white noise. (a) Overlay plot of 50 periodograms using
N = 64 data vaiues and (b) the periodogram average. (c} Overlay plor aof 30 periodograms using
N = 256 data values and (d) the periodogram average.



Periodogram resolution

In addition to biasing the
Periodogram, the spectral
smoothing that is introduced by
the Bartlett window also limits
the ability of the Periodogram
to resolve closely-spaced
narrowband components

Consider this random process
consisting of two sinusoidal in
white noise where the phases
are again uniformly distributed
and uncorrelated with each
other

x(n) = Ay sin(nwy + ¢) + A sin(nan + ¢;) + vin)
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Periodogram resolution

The power spectrum of _the Pueiy = 62 + %,, 222 — 1) + uo(w + w1
above random process Is

1
+ E:rA%[uu(w —an) + uglw + wl}]

And the expected value of the

Periodogram is . |
E P = 5= Pelel®) £ Wa(e)

1 . .
= oy + AT [Wa( ™) + Wp(e/ )]

783 [Wa (&) + Wy (el @)
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Periodogram resolution

Since the width of the main
lobe increases as N
decreases, for a given N there
IS a limit on how closely two
sinusoidal may be located
before they can no longer be
resolved

This is usually defined as the
bandwidth of the window at its
half power points (-6dB), which
Is for the Bartlett window at
0.89*27/N

This is just a rule of thumb!

P el
i

rAZ

(a)

E| Py (i)

Res [[ﬁpﬂ {e-"‘”}] = 0.39%
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Example: Periodogram of two
Sinusoidal in Noise

« Consider a a random process
consisting of two sinusoidal in
white noise, where the phases
of the sinusoidal are uniformly
[-rt, =] distributed and
A=5, ®,=0.4n, ®,=0.45~n

« N=40 on top
and N=64 on the bottom

« Overlay of 50 Periodogram on
the left and average on the
right

x(n) = Asin(nw, + @) + A sin(news + d2) + vin)
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Figure B.B The periodogram of twe sinusolds in white noise with ay = 04m and s = 0,457, (a)
Cverlay plot of 50 periodograms using N = 40 data values and (b) the ensemble average. (c} Overlay
plot af 50 periodograms using N = 64 data values and (d) the ensemble average.



Variance of the Periodogram

The Periodogram is an
asymptotically unbiased
estimate of the power
spectrum

To be a consistent estimate, it
IS necessary that the variance
goes to zero as N goes to
Infinity

This is however hard to show
In general and hence we focus
on a white Gaussian noise,
which is still hard, but can be
done

Jim E {f’ per {E*"‘*’)} = P.(e’”)

lim Var | B, (e }l =0
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Variance of the Periodogram

2

. 1 N-1 . 1 N1 N—-1 )
Pper(e) = 1D _x(kye™| = N zx(k}e-f*”] {E:*u;eﬂml
k=0 k=0 i=0
N--1 N1
= % Y x(xtyemithe (8.29)
k=0 1=0

Therefore, the second-order moment of the periodogram is

E|Pper () P (i)

1 N=IN=IN-1N-=-I

= F Z E E Z E{x(k]x*(ﬂx(m)x*[ﬂ)le-.l’{k—nml o= (m=n)an

k=0 I=0 m=0 n=0
(8.30)

which depends on the fourth-order moments of x(n). Since x(n) is Gaussian, we may use
the moment factoring theorem to simplify these moments [17,44). For complex Gaussian
random variables, the moment factoring theorem is®

E{x(0)x*(Dx(m)x*(m)} = E{x(k)x* ()} E{x(m)x*(n)) .
(8.31)
+ E{x(k)x* ()} E{x(m)x*()}
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Variance of the Periodogram

Substituting Eq. (8.31) into Eq. (8.30), the second-order moment of the periodogram
becomes a sum of two terms. The first term contains products of E{x(k}x*(l}l with
E{x(m)x*(n)}. For white noise, these terms are equal to 0 when k = { and m = n,
and they are equal to zero otherwise. Thus, the first term simplifies to

N=IN-1

2 Yot =o! (8.32)

k=0 m=0

The second term, on the other hand, contains products of Efx(k)x*(n)} with
E[x(m)x*(1)}. Again, for white noise, these terms are equal to ol whenk = n and I = m,
and they are equal to zero otherwise. Therefore, the second term becomes

1 N-lI N-1 . - U" N—-1 ]N—l .
_Z:E: 4, —ilk— 1 gfk=Den _ “x z: = ji{wy =on E: Jiey o)
ao_e = = e e
2 x 2
N N k=0 =0

k=0 =0
cr: 1] — e~ /Nen—w) T — gf Nlen—an)
N2 | 1 = e—Flor—wn 1 — ei(@wi—an)

o [sin N(wy —an)/2
~ L Nsin(e; — @3)/2

L]

(8.33)
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Variance of the Periodogram

Combining Eq. (8.32) and Eq. (8.33) it follows that

(8.34)

i 2
E [ﬁperiﬂj"")ﬁpn(ej“"]} =0} [I + [SI“N{MI —wzlﬂ] }

N sin(w; — ap)/2
Since
Cov [ﬁ,,e,,{ef'm}ﬁ,,,,(ﬂ“)} =E [ﬁpﬂ{e"“’wﬁm(ef“)]
—E {ﬁpﬂ,.(efm'}] E Iﬁpy(e“")]

and E [I; w{f-"”)] = o2, then the covariance of the periodogram is

i 2
sin N (w; —mg)ﬂ] (8.35)

o~ j[ﬂl . .I'_'[,Iz — 4
Cov {PM () P per (& }} o [N P
Finally, setting &; = w; we have, for the variance,
Var | B e | = o (8.36)

Thus, the variance does not go to zero as N — 00, and the periodogram is not a con-
sistent estimate of the power spectrum. In fact, since P, (e/”) = crf then the variance of
the periodogram of white Gaussian noise is proportional to the square of the power spec-
trum,

var{ ﬁp,,(eiﬂ)] = P2(el®) (8.37)
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Example: Periodogram of
white Gaussian noise

For a white Gaussian noise
with variance 1, the following
holds Prlef®) =1

The expected value of the - L ;
. . ] i _—— Jar (]
Periodogram is E | Prar(e) | = 5 Prtel®) « Wy (el

Which results in E{Pper(el®)} =1

I I Vi ﬁer jo :Pf' jo
And the variance is ar { Prer(e’) | = P2)

Which results in Var [ Bper (/)] = 1
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Periodogram of
white Gaussian

Example:

MIM¥%M»\_M%—W
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TN AP

On the left the overlay of 50
Periodograms are shown and
on the right the average
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From top to bottom the data
record length N increases from
64 to 128 to 256
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Note that the variance of the B

power spectrum estimate does ... . . .Sl |
not decrease, when N e e
increases! Fodoprans with N = 64 dois s v (5 e oo v o oo e o

periodograms with N = 128 data values and (d) the periodogram average. (e) verlay plor of 50
periodograms with N = 256 data valuer and (f) the perlodogram average.



So what If the process Is not white

and/or not Gaussian?

Interpret the process as filtered

white noise v(n) with unit |H(e)[* = Py(e®)
variance

. . 1 .
The white noise process and Pla(el®) = = V(e

the colored noise process
have the following
Periodograms Pro(e’”) = = waff’“')l

Although xy(n) iIs NOT equal to

the convolution of vy (n) and

h(n), if N is large compared to

the length of h(n) then the xy(n) 2 h(n) * vy (n)
transient effects are small

25



So what If the process Is not white
and/or not Gaussian?

* With this interpretation, the xn(n) = h(n) * vy(n) |H(e!”)|2 = P,(e')
result is, that the variance of | - rA
the spectrum estimate is Xn(" & [H ) [Vale™)[ = Pate) [V (™)
approximately the square of \ /
the true power spectrum ]

Al = L lne P = Zlvaef

 Note that this is a function of

P (e’®) m Pu(e®) P (e!)

per

* Note that this is not good
— Not a consistent estimate 1

/

Var { P (e) | & P2(e/”)
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Periodogram summary

Table 8.1 Properties of the Periodogram

2

. . 1 (¥ .
Pprr [E‘rm) = ﬁ ;x{n)e_””
Biax
. . 1 .
E{Ppur(e®)) = 5-Pu(e!®) x Wa(el)
Resolution
' 2
Aw = 0.89°2
* N
Variance
Var { P, (e/*)} = P2(e/¥)
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The modified Periodogram

What happens when another 1
window (instead of the Pper(el®) = < |Xn(e)) =
rectangular window) is used?

2

Z x(n)wg(n)e="

R=—00

1
N

The window shows itself in the g [Brerter®)] =
Bias, but not directly but as a
convolution with itself

= +]

= %EILZ Ifﬂ}u—'n(n}f“""w} LZ x{m}wg{MJe_'fm] ]

=i LR, s

1
= E Z Z x{"]x*(m)I.UR(m:]wR(n}E_‘.”ﬂ—m]m}

M=—00 =—00

1

== Z ra(n — mywgr(m)wg(n)e=d "=

M=—00 f=—00
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The modified Periodogram

With the change of variables
k=n-m this becomes

Where wg(K) is a Bartlett
window

Hence in the frequency
domain, this becomes

E [ﬁ,,,,{ef“}] =

] & = ‘
rﬁ Z Z rI{k)wR{ﬂ}wR{n_&k)e‘JEm

l o f's ]
=< .k=z—-m re (k) [;@ wrn)wg(n — k}] g~ it
= % > rekywp (ke

k

=00

o

Y wrlmwg(n — k)

R=—x0

wg(k) = wg(k) * wg(—k) =

-l—Px (€)% |Wr(e’™)]?

E [ﬁ*’"("’jw}l ~ 2N

wg.-;(w—nwz

Wre™) = Gnwr2)
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The modified Periodogram

Smoothing is determined by the window that is applied to the data

While the rectangular window as the smallest main lobe of all
windows, its sidelobes fall off rather slowly

x(n) = 0.1 sin{nay + @) + sin(nws + ¢2) + v(n)

Rectangular data window

Hamming data window

i 1 I i I L 1 i I 45 | S i L L i 1 I
4 :h 1 oz 03 04 05 il a.F aa Lis: ] 1 1] i 0.z 03 0.4 9.3 0.E o7 oE na 1
Fraqumry [urls of pl) Frequency [usits of pi)
(a)

(b)

Figure 8.10 Spectrai analysis of two sinuscids in white noise with sinusoidal frequencies of ) =

2w and w; = 3w and a data record length of N = 128 points. (a) The expected value of the
periodogram. (b) The expected value of the modified periodogram using a Hamming data window.

30



The modified Periodogram

* Nothing is free. As you notice,
the Hamming window has a
wider main lobe

 The Periodogram of a process

that is windowed with a
general window is called Boylel®) = L
modified Periodogram N

o0 2

E x(n)w(n)e i

A==

* N is the length of the window
and U is a constant that is
needed so that the modified U=
Periodogram is asymptotically
unbiased

&=
L

lw(n)[?

|~
i



The modified Periodogram

« For evaluating the Bias we o 1
take the expected value of the E{Pu(e™] = s Pu(el®) ¢ W (&)

modified Periodogram, where
W(el®) is the Fourier transform
of the data window

1 & 1 " :
- Using the Parseval theorem, it =W ; wl = mf_ W) de
follows that U is the energy of
the window divided by N

1 hi
2nNU J_

W(e’®)Pde = 1
|

« With an appropriate window,
| W(el®) |2/NU will converge to
an impulse of unit area and
hence the modified
Periodogram will be
asymptotically unbiased



Variance of the modified
Periodogram

Since the modified
Periodogram is simply the
Periodogram of a windowed
data sequence, not much
changes

Hence the estimate is still not
consistent

Main advantage is that the
window allows a tradeoff
between spectral resolution
(main lobe width) and spectral
masking (sidelobe amplitude)

Var [f‘m{e”’]} ~ Pl(el)
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Resolution versus masking of the

modified Periodogram

The resolution of the modified
Periodogram defined to be the
3dB bandwidth of the data
window

Note that when we used the
Bartlett lag window before, the
resolution was defined as the
6dB bandwidth. This is
consistent with the above
definition, since the 3dB points
of the data window transform
Into 6dB points in the
Periodogram

Res [ﬁM (efﬂ’}] = (Aw),

Table 8.2 Properties of a Few Commonly

Used Windows. Each Window

is Assumed to be of Length N.

Sidelobe 3dB BW

Window Level (dB) (Aw)aap
Rectangular -13 0.89(2x/N)
Bartlett —-27 1.28(27/N)
Hanning —32 1.44(2n /N)
Hamming —43 1.3027/N)
Blackman -58 1.68(2n /N)
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Modified periodogram summary

Table 8.3 Properties of the Modified Periodogram

- 2

ﬁ’M(e-'”) = ﬁ' Z win)x(n)e i

f==—00
1 N=1

_— 2
U= ;} w(n)|

Bias

1 . .
Jjio oy |2
3 NUP’{E ) = |W(e™™)|

Resolution Window dependent

E [ﬁu(ﬁjm)} =

Variance
Var { By (/)] ~ P2(ef®)
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Bartlett’'s method

Still have not a consistent
estimate of the power
spectrum!

Nevertheless, the periodogram
IS asymptotically unbiased

Hence if we can find a
consistent estimate of the
mean, then this estimate would
also be a consistent estimate
of the power spectrum

h}i—?‘mg{ﬁf?ﬂ'@jm” = Px{ﬂjm}
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Bartlett’'s method

Averaging (sampe mean) a set of uncorrelated measurements of a
random variable results in a consistent estimate of its mean

In other words: Variance of the sample mean is inversely
proportional to the number of measurements

Hence this should also work here, by averaging Periodograms

This suggests that we consider estimating the power spectrum of a random
process by periodogram averaging. Thus, let x;(n) fori = 1,2, ..., K be X uncorrelated

realizations of a random process x(n) over the interval 0 < n < L. With ﬁ‘gjr (e/*) the
periodogram of x; (n),

2
Ppa(e™) =

L—1 _
Zx;{n]e"”“" ;o i=12,...,K
n=ll

1
L
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Bartlett’'s method

Averaging these Periodograms

This results in an asymptotically
unbiased estimate of the power
spectrum

Since we assume that the
realizations are uncorrelated, it
follows, that the variance is
iInversely proportional to the number
of measurements K

Hence this is a consistent estimate
of the power spectrum, if L and K go
to infinity

£ g ) [ S .
Po(el) = = 3 " PLL(e%)

i=]

E Iﬁx{e"‘”}] =E [ﬁgj,.[ej”]] = il;Px(Bj“’J * Wp(e/®)

Var [ﬁ,_.{ej“')] = %Vﬂl’ [ p {EJN)} == %PE(EM}

per
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Bartlett’'s method

b xin)
* There s still a problem: we usually |
do not have uncorrelated data m ] I ﬂ mI e
oo all it i
L points L points
« Typically there is only one data 1 \
record of length N available .
xy(n) Xo(n) xg(n}
« Hence Bartlett proposes to
partition the data record into K TTmTﬂ Tﬂ ﬂ 'T I
nonoverlapping sequences of the E o . "
Iength L, where N=K*L Figure 8.12 Partitioning x(n) into nonoverlapping subsequences.
xin)=x(n+iL) n=01,...,L—1
i=01,...,K—1

Thus, the Bartlett estimate is

E-1 2

Py(e!) = % Z

i=0

L-1

E.x[n +iL)e "

n=0
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Bartlett’'s method

Each expected value of the
periodogram of the subsequences
are identical hence the process of
averaging subsequences
Periodograms results in the same
average value => asymptotically
unbiased

Note that the data length used for
the Periodograms are now L and
not N anymore, the spectral
resolution becomes worse (this is
the price we are paying)

Pe(e’”) x Wg(e'®)

. 2
Res [Pg(ef‘”}] = 0.391’5 = 0.895«%;-
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Bartlett’'s method

Now we reap the reward: the
variance is going to zero as the
number of subsequences goes to
Infinity

If both, K and L go to infinity, this
will be a consistent estimate of the
power spectrum

In addition, for a given N=K*L, we
can trade off between good spectral
resolution (large L) and reduction in
variance (Large K)

Vﬂl’[ﬁa(ej”,‘l] A2 %Var{ﬁm (ej"“’}l As -%Pf(e"“)

per

Table 8.4 Properties of Bartett’s Method

E-1 2

Pater ==Y

i=0

L=1

Z.\:{n + iLye "

=0}

DBias
- 1 )
E [Pn{f"“)] = E;PI(EM) * Wp(e!)

Resolution

Aw = H.Egﬁ’gﬂj?—
N

Variance
A 1
Var { Py(e/*)} ~ P—(Pf(ej”]

ki —
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White noise

a) Periodogram with N=512
b) Ensemble average

c) Overlay of 50 Bartlett
estimates with K=4 and L=128

d) Ensemble average

e) Overlay of 50 Bartlett
estimates with K=8 and L=64

f) Ensemble average
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Bartlett's method: Two smusmdal in
white noise

e a) Periodogram with N=512
* b) Ensemble average

« ¢) Overlay of 50 Bartlett
estimates with K=4 and L=128

« d) Ensemble average
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« ¢) Overlay of 50 Bartlett ) |
estimates with K=8 and L=64 .. o] i

F?:mulsrlll-::ﬂ' Fropstrucy fstd o ()

« f) Ensemble average © @

Note how larger K results in
shorter L and hence in less
spectral resolution
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Welch's method

Two modifications to Bartlett’s
method

— 1) the subsequences are allowed to
overlap

— 2) instead of Periodograms,
modified Periodograms are
averaged

Assuming that successive
sequences are offset by D points
and that each sequence is L points
long, then the it" sequence is

Thus the overlap is L-D points and if
K sequences cover the entire N
data points then

xiin)=xmn+iD) ; n=0,1,...,L—1

N=L+ DK —1).
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Welch's method

For example, with no overlap (D=L)
there are K=N/L subsequences of
length L

For a 50% overlap (D=L/2) there is
a tradeoff between increasing L or
iIncreasing K
— If L stays the same then there are
more subsequences to average,

hence the variance of the estimate
Is reduced

— If subsequences are doubled in
length and hence the spectral
resolution is then doubled
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Welch’s method can be written in
terms of the data record as follows

Or in terms of modified
Periodograms

Hence the expected value of
Welch's estimate is

Where W(el®) is the Fourier
transform of the L-point data
window w(n)

Performance of Welch’s method

2

K—-1|L-1

E w(n)x(n -+ i D)e i

n=

“ . 1 -
Pu(e®) = ———
KLU

s |-
Py(ely= = ) Pii(e)
=0

E[ﬁw(ﬂlw:}; = E[ﬁy(ﬂ'jm]}

1 . .
_— jo Joy 2
2;;LUP’{E ) * |[W(e/™)|
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Performance of Welch’s method

Welch’s method is asymptotically
unbiased estimate of the power
spectrum

The variance is much harder to
compute, since the overlap results
In a correlation

Nevertheless for an overlap of 50%
and a Bartlett window it has been Var| Py(e/)] ~ — P2(ei®)
shown that sk

! I D ji 1 % jou 1 fics
Recall Bartlett's Method results in Var [ Py (/)] ~ var | PD (@) ~ = P2e®)
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For a fixed number of data N, with
50% overlap, twice as many
subsequences can be averaged,
hence expressing the variance in
terms of L and N we have

Since N/L is the number of
subsequences K used in Bartlett’s
method it follows

In other words, and not surprising,
with 50% overlap (and Bartlett
window), the variance of Welch's
method is about half that of
Bartlett’'s method

Performance of Welch’s method

. oL _,
Var By (e)) ~ === Pi(e™)

. -
Var{ Py (e/®)} ~ T¢ Var(Ps(e™)}
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Welch's method summary

Table 8.5 Properties of Welch’s Method

. E-1|L-1 _ 2
Pw(e’”}—xLU u Ew(n)x(ﬂ-ﬁ-fﬂ)ﬂ j
j= me=ll
1 L-1 )
U= I le[n}I
=0
Bias

a . 1
E{PW{E-””}} = mf’z (e/®) % |W(e/)|?

Resolution  Window dependent

Van’am:e"f

Var {ﬁw{e*’“)} == 2L

_PI Jaw
T AL

t Assuming 50% overlap and a Bartlett window.
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An example of Welch’s method

Consider the process defined in Example 8.2.5 consisting of two sinusoids in unit variance
white noise, Using Welch's method with N = 512, a section length L = 128, a 50%
overlap (7 sections), and a Hamming window, an overlay plot of the spectrum estimates for
50 different realizations of the process are shown in Fig. 8.17a and the ensemble average
is shown in Fig. 8.17b. Comparing these estimates with those shown in Fig. 8.15¢ and f of
Example 8.2.5, we see that, since the number of sections used in both examples are about
the same (7 versus 8), then the variance of the two estimates are approximately the same.
In addition, although the width of the main lobe of the Hamming window used in Welch’s
method is 1.46 times the width of the rectangular window used in Bartlett's method, the
resolution is about the same. The reason for this is due to the fact that the 50% overlap that
is used in Welch’s method allows for the section length to be twice the length of that used
in Bartlett’s method. So what do we gain with Welch's method? We gain a reduction in the
amount of spectral leakage that takes place through the sidelobes of the data window.

b I TR

e T Diullun;ﬁ:-:‘&'l'#al!l1
{b}
Figure 8.17 (a) An overlay plot of 50 estimates of the spectrum of two sinusoids in noise using

Welch's method with N = 512, a section length of L = 128, 50% overlap (7 sections), and a
Hamming window, (b) The average of the estimates in (a).
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Exercises
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Exercise

8.1 Given N = 10,000 samples of a process z(n), you are asked to compute the periodogram.
However, with only a finite amount of memory resources, you are unable to compute a DFT
any longer than 1024. Using these 10,000 samples, describe how you would be able to compute

a periodogram that has a resolution of

2T

ﬂ - .I{
w = 089750060

Hint: Consider how the decimation-in-time FFT algorithm works.
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Solution

To get the maximum resolution from ¥V = 10000 data values, we want to compute the periodogram of
z(n) (segmenting x(n) into subsequences reduces the resolution). The question, therefore, is how to
compute the periodogram of z(n} using 1024-point DFT's. Recalling how the FFT works, note that

_ 9999 ‘ gooff o | g _ agof/ 1
X(@) =3 alme ™ =5 3 a(10n+ e310mHs = § g5t S (100 4 1)
= n=>0 =0 =0 r=()

Therefore, the procedure is to pad z(n) to form a sequence of length N = 10240, and then decimate
z(n) into 10 sequences x;(n) of length M = 1024,

ri(n) = z(10n+1) n=0,1,...,1023

Next, the 1024-point DFT's of these sequences, X;(k), are computed, and combined using the “twiddle

factors” exp(—jl53k) as follows

9
X(k) =Y e iR X (k) ; k=0,1,...,10239
=0

Finally, squaring the magnitude of X (k) and dividing by N = 10240, we have the periodogram with
a resolution Aw = 0.89(2x/10000].

53



Solution
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Exercise

8.2 A continuous-time signal z,(t) is bandlimited to 5 kHz, i.e., z,(t) has a spectrum X,(f) that
is zero for |[f| > 5 kHz. Only 10 seconds of the signal has been recorded and is available for
processing. We would like to estimate the power spectrum of z,(¢) using the available data
in a radix-2 FFT algorithm, and it is required that the estimate have a resolution of at least
10 Hz. Suppose that we use Bartlett’s method of periodogram averaging.

(a) If the data is sampled at the Nyquist rate, what is the minimum section length that vou
may use to get the desired resolution?

(b} Using the minimum section length determined in part (a), with 10 seconds of data, how
many sections are available for averaging?

(c) How does your choice of the sampling rate affect the resolution and variance of your
estimate? Are there any benefits to sampling above the Nyvquist rate?
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Solution

(a) If we sample at the Nyquist rate, f, = 10kHz, then a resolution of Af = 10Hz (in analog

frequency) implies that we want a resolution (in radians) of

A )
Aw =27 f:ihr}cl[]"!‘

5

Since the resolution of the periodogram using an L-point data record is
= 27
Res[Pppgr(w)] = Aw = n.sgf'
then for Bartlett’s method we want to use a section length of

2
L= {].EQJ&—T = 890 samples

L

Sampling at 10 kHz, 10 seconds of data corresponds to N = (10)(10 x 10%) = x10” samples.
Therefore, with a 1024-point DFT the number of sections we may have in Bartlett’s method is

K = [N/1024] = 98

If the sampling rate is increased then Aw decreases which, in turn, requires a longer section

length for a given resolution. However, an increase in the sampling rate produces a corresponding

increase in the total number of samples within a 7' second interval. Therefore, since the variance
(normalized) is

V=L/N
increasing the sampling rate has no effect. Thus, provided that the sampling rate is not less than
the Nyquist frequency, the resolution and the variance do not depend on the sampling rate.
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Exercise

8.3 Bartlett’s method is used to estimate the power spectrum of a process from a sequence of
N = 2000 samples.

(a) What is the minimum length L that may be used for each sequence if we are to have a
resolution of Af = 0.0057
(b) Explain why it would not be advantageous to increase L beyond the value found in (a).

(c) The gquality factor of a spectrum estimate is defined to be the inverse of the variability,

Q=1/V

Using Bartlett’s method, what is the minimum number of data samples, N, that are
necessary to achieve a resolution of Af = 0.005, and a quality factor that is five times
larger than that of the periodogram?
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Solution

(a) Since Af = 0.9/L then
089 09
OAf 0005

(b) Increasing L will increase the resolution. but it will also result in a decrease in the number
of segments that may be averaged. This, in turn, will increase the variance of the spectrum
estimate.

L = 180

(c) For the periodogram, the quality factor is Qper = 1/Vper = 1. The quality factor for Bartlett's
method is @ = 1/Vp = K. Therefore, if we want Q,../Qp > 5, then we must have K > 5.
With M = 180 (for Af = 0.005), then we must have

N=KM>35x 180 =900
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Exercise

8.5 Many commercial Fourier analyzers continuously update the estimate of the power spectrum

of a process z(n) by exponential averaging periodograms as follows,

— — 1 — a2
Bi(e) = aPoy(e7) + == 3 mi(n)e

where zi(n) = x(n + Ni) is the ith sequence of N data values. This update equation is
initialized with P_;(e’¥) = 0.
(a) Qualitatively describe the philosophy behind this method, and discuss how the value for

the weighting factor a should be selected.

(b) Assuming that successive periodograms are uncorrelated and that 0 < o < 1, find the
mean and variance of F;(e’) for a Gaussian random process.

(c) Repeat the analysis in part (b) if the periodograms are replaced with modified peri-
odograms.
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Solution

(a) As data is being read by a spectrum analyzer, the goal is to continuously update the estimate.
As each data record of length N is collected, the periodogram is computed, and averaged with
the previous spectrum estimate. Although a running average could be formed, this would assume
that the process is stationary. Selecting a value of 0 < e < 1 allows the estimate to forget P;(e™)
as more data is collected. In the extreme case in which o = 0, _ﬁ;(e-j“’) is the periodogram of
the most recent N data values. As we will see in part (b), P;(e/) is an exponentially weighted
average of the previous periodograms.
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q={1—n{]3ﬁu

T ((==) 3y

i
SOlUtion | = L+ (1~4)25

- VQT‘EI* a{['l“tj-z},'* (1=L)2y

L=

(b) If we define = A\~ L~ DY, + (V=) X
, 8=t |2 a - °< {‘ w) o+ A ( W+ ( 3
Qi(e™) = | ) _ miln)e ™™ R L
Nngﬂ | .i M= ?I{P*J'ﬂ*-x\_
then the expression for the ith spectrum estimate, Pi(e/*) is I' k= ¢~k

P(ef) = aP_y(¢i) -%@1 £ &Qi(efw}--- ‘

which is a difference equation for P(e?), Since the initial conditions are zero, ﬁ_l{ej”} =0, II

then the solution for P;{ef*) is |
|

Pi(e/*) = Z{l - &]akQ*(ej“’} _qw___d,,f—-——*""_‘frﬂﬂ

k=0 {:..&

Taking the expected value we have
E{Fi(e™)} = 31 ~ a)a* B{Qgle’)}

k=0 ik

Since Qu(e™) is the periodogram of z4(n), then
Pk f_-"-ﬁ 1 . .
B{Qae™)} = 5= Pul(e) s Wi () e apuen iid oA ()

-k
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Solution

and
E{F(*)} = zl%" 571 = a)aF [P () « Wa(e™)] 91<0
k=0
_ . -
= %{P:(EJ“} * Wg{e“"‘]ffl - {x}}; a® Z 6{ W ;5:_1“

= }—[P (™) % WB{FW]]{I —a)
1 . )
(1 E[F’,,[e?”:l * Wp(e)]

:'+1]

For the variance, we proceed in the same way, using the fact that the variance of the periodogram
is
var{ Pptriejw}'} = Pgtejm}
Therefore, we have
A ; sw _ =Y _ : 2 2k'p2s dwy 2% i 2#5
e {’PE (£ )j = E{B] = §{1 - a)?a® P2 (&) = (1 - a)?Pa(¢’ ’eL_Z;‘
L

2(i-+1)]

— I:l _ ﬂ‘}‘jL!PI{EJM} — _ﬂr{ aﬂi-ﬁ-lﬂpﬁ(e}u}
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Solution

(¢) For modified periodograms, the only change that is necessary is to use

E{Qi(e")} = — Pa(e7) x Wp(e?)|*

NU
where
1 ¥
r—_ 2
U= N Z |'1U|['?'1-J|
n=0
Substituting this into the expression in part (b), we have for the expected value,
B{B(e)} = (1 - a*) s Pa(e®) 4 [Wis(e) 2

and the variance is the same.
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