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Spectrum estimation using 

Periodogram, Bartlett and Welch

Guido Schuster

Slides follow closely chapter 8 in the book „Statistical 
Digital Signal Processing and Modeling“ by Monson H. 
Hayes and most of the figures and formulas are taken 
from there
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Introduction

• We want to estimate the power 
spectral density of a wide-
sense stationary random 
process

• Recall that the power spectrum 
is the Fourier transform of the 
autocorrelation sequence

• For an ergodic process the 
following holds
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Introduction

• The main problem of power spectrum estimation is

– The data x(n) is always finite!

• Two basic approaches

– Nonparametric (Periodogram, Bartlett and Welch)

• These are the most common ones and will be presented in the next pages

– Parametric approaches 

• not discussed here since they are less common
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Nonparametric methods

• These are the most commonly 
used ones

• x(n) is only measured between 
n=0,..,N-1

• Ensures that the values of x(n) 
that fall outside the interval 
[0,N-1] are excluded, where for 
negative values of k we use 
conjugate symmetry
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Periodogram

• Taking the Fourier transform of 
this autocorrelation estimate 
results in an estimate of the 
power spectrum, known as the 
Periodogram

• This can also be directly 
expressed in terms of the data 
x(n) using the rectangular 
windowed function xN(n)
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Periodogram of white noise

32 samples
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Performance of the Periodogram 

• If N goes to infinity, does the 

Periodogram converge 

towards the power spectrum in 

the mean squared sense?

• Necessary conditions

– asymptotically unbiased:

– variance goes to zero:

• In other words, it must be a 

consistent estimate of the 

power spectrum
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Recall: sample mean as estimator

• Assume that we measure an iid process x[n] with mean and 

variance 2

• The sample mean is m=(x[0]+x[1]+x[2]+..+x[N-1])/N

• The sample mean is unbiased 

E[m] =E[(x[0]+x[1]+x[2]+..+x[N-1])/N]

=(E[x[0]]+E[x[1]]+E[x[2]]+..+E[x[N-1]])/N 

=N

=

• The variance of the sample mean is inversely proportional to the 

number of samples 

VAR[m] =VAR[(x[0]+x[1]+x[2]+..x[N-1])/N]=

=(VAR[x[0]]+VAR[x[1]]+VAR[x[2]]+..+VAR[x[N-1]])/N2

= N 2/N2

= 2/N
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Periodogram bias

• To compute the bias we first 

find the expected value of the 

autocorrelation estimate

• Hence the estimate of the 

autocorrelation is biased with a 

triangular window (Bartlett)
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Periodogram bias

• The expected value of the 
Periodogram can now be 
calculated:

• Thus the expected value of the 
Periodogram is the convolution 
of the power spectrum with the 
Fourier transform of a Bartlett 
window



11

Periodogram bias

• Since the sinc-squared 

pulse converges towards 

a Dirac impulse as N 

goes to infinity, the 

Periodogram is 

asymptotically unbiased
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Effect of lag window

• Consider a a random process 

consisting of a sinusoidal in 

white noise, where the phase 

of the sinusoidal is uniformly 

[- , ] distributed

• The power spectrum of such a 

signal is

• Therefore the expected value 

of the Periodogram is
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Effect of lag window



14

Example: Periodogram of a 

Sinusoidal in Noise

• Consider a a random process 

consisting of a sinusoidal in 

white noise, where the phase 

of the sinusoidal is uniformly 

[- , ] distributed and 

A=5, 0=0.4

• N=64 on top 

and N=256 on the bottom

• Overlay of 50 Periodogram on 

the left and average on the 

right
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Periodogram resolution

• In addition to biasing the 

Periodogram, the spectral 

smoothing that is introduced by 

the Bartlett window also limits 

the ability of the Periodogram 

to resolve closely-spaced 

narrowband components

• Consider this random process 

consisting of two sinusoidal in 

white noise where the phases 

are again uniformly distributed 

and uncorrelated with each 

other
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Periodogram resolution

• The power spectrum of the 

above random process is

• And the expected value of the 

Periodogram is
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Periodogram resolution

• Since the width of the main 
lobe increases as N 
decreases, for a given N there 
is a limit on how closely two 
sinusoidal may be located 
before they can no longer be 
resolved

• This is usually defined as the 
bandwidth of the window at its 
half power points (-6dB), which 
is for the Bartlett window at 
0.89*2 /N

• This is just a rule of thumb!
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Example: Periodogram of two 

Sinusoidal in Noise

• Consider a a random process 

consisting of two sinusoidal in 

white noise, where the phases 

of the sinusoidal are uniformly 

[- , ] distributed and 

A=5, 1=0.4 , 2=0.45

• N=40 on top 

and N=64 on the bottom

• Overlay of 50 Periodogram on 

the left and average on the 

right
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Variance of the Periodogram

• The Periodogram is an 
asymptotically unbiased 
estimate of the power 
spectrum

• To be a consistent estimate, it 
is necessary that the variance 
goes to zero as N goes to 
infinity

• This is however hard to show 
in general and hence we focus 
on a white Gaussian noise, 
which is still hard, but can be 
done
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Variance of the Periodogram



21

Variance of the Periodogram
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Variance of the Periodogram
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Example: Periodogram of 

white Gaussian noise
• For a white Gaussian noise 

with variance 1, the following 

holds

• The expected value of the 

Periodogram is 

• Which results in

• And the variance is

• Which results in
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Example:

Periodogram of 

white Gaussian 

noise

• On the left the overlay of 50 
Periodograms are shown and 
on the right the average

• From top to bottom the data 
record length N increases from 
64 to 128 to 256

• Note that the variance of the 
power spectrum estimate does 
not decrease, when N 
increases!
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So what if the process is not white 

and/or not Gaussian?
• Interpret the process as filtered 

white noise v(n) with unit 
variance

• The white noise process and 
the colored noise process 
have the following 
Periodograms

• Although xN(n) is NOT equal to 
the convolution of vN(n) and 
h(n), if N is large compared to 
the length of h(n) then the 
transient effects are small
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So what if the process is not white 

and/or not Gaussian?
• With this interpretation, the 

result is, that the variance of 

the spectrum estimate is 

approximately the square of 

the true power spectrum

• Note that this is a function of 

• Note that this is not good

– Not a consistent estimate 1



27

Periodogram summary
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The modified Periodogram

• What happens when another 

window (instead of the 

rectangular window) is used?

• The window shows itself in the 

Bias, but not directly but as a 

convolution with itself
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The modified Periodogram

• With the change of variables 

k=n-m this becomes

• Where wB(k) is a Bartlett 

window

• Hence in the frequency 

domain, this becomes
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The modified Periodogram

• Smoothing is determined by the window that is applied to the data

• While the rectangular window as the smallest main lobe of all 

windows, its sidelobes fall off rather slowly

Hamming data windowRectangular data window
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The modified Periodogram

• Nothing is free. As you notice, 
the Hamming window has a 
wider main lobe

• The Periodogram of a process 
that is windowed with a 
general window is called 
modified Periodogram 

• N is the length of the window 
and U is a constant that is 
needed so that the modified 
Periodogram is asymptotically 
unbiased
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The modified Periodogram

• For evaluating the Bias we 

take the expected value of the 

modified Periodogram, where 

W(ej ) is the Fourier transform 

of the data window 

• Using the Parseval theorem, it 

follows that U is the energy of 

the window divided by N

• With an appropriate window, 

| W(ej ) |2/NU will converge to 

an impulse of unit area and 

hence the modified 

Periodogram will be 

asymptotically unbiased
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Variance of the modified 

Periodogram
• Since the modified 

Periodogram is simply the 

Periodogram of a windowed 

data sequence, not much 

changes  

• Hence the estimate is still not 

consistent

• Main advantage is that the 

window allows a tradeoff 

between spectral resolution 

(main lobe width) and spectral 

masking (sidelobe amplitude)
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Resolution versus masking of the 

modified Periodogram
• The resolution of the modified 

Periodogram defined to be the 

3dB bandwidth of the data 

window 

• Note that when we used the 

Bartlett lag window before, the 

resolution was defined as the 

6dB bandwidth. This is 

consistent with the above 

definition, since the 3dB points 

of the data window transform 

into 6dB points in the 

Periodogram
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Modified periodogram summary 
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Bartlett’s method

• Still have not a consistent 

estimate of the power 

spectrum!

• Nevertheless, the periodogram 

is asymptotically unbiased

• Hence if we can find a 

consistent estimate of the 

mean, then this estimate would 

also be a consistent estimate 

of the power spectrum
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Bartlett’s method

• Averaging (sampe mean) a set of uncorrelated measurements of a 

random variable results in a consistent estimate of its mean 

• In other words: Variance of the sample mean is inversely 

proportional to the number of measurements 

• Hence this should also work here, by averaging Periodograms
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Bartlett’s method

• Averaging these Periodograms 

• This results in an asymptotically 

unbiased estimate of the power 

spectrum

• Since we assume that the 

realizations are uncorrelated, it 

follows, that the variance is 

inversely proportional to the number  

of measurements K

• Hence this is a consistent estimate 

of the power spectrum, if L and K go 

to infinity
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Bartlett’s method

• There is still a problem: we usually 

do not have uncorrelated data 

records!

• Typically there is only one data 

record of length N available

• Hence Bartlett proposes to 

partition the data record into K 

nonoverlapping sequences of the 

length L, where N=K*L
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Bartlett’s method

• Each expected value of the 

periodogram of the subsequences 

are identical hence the process of 

averaging subsequences 

Periodograms  results in the same 

average value => asymptotically 

unbiased

• Note that the data length used for 

the Periodograms are now L and 

not N anymore, the spectral 

resolution becomes worse (this is 

the price we are paying)
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Bartlett’s method

• Now we reap the reward: the 

variance is going to zero as the 

number of subsequences goes to 

infinity 

• If both, K and L go to infinity, this 

will be a consistent estimate of the 

power spectrum

• In addition, for a given N=K*L, we 

can trade off between good spectral 

resolution (large L) and reduction in 

variance (Large K)
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Bartlett’s method: 

White noise
• a) Periodogram with N=512

• b) Ensemble average

• c) Overlay of 50 Bartlett 

estimates with K=4 and L=128

• d) Ensemble average

• e) Overlay of 50 Bartlett 

estimates with K=8 and L=64

• f) Ensemble average

Ensemble AverageOverlay of 50 estimates
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Bartlett’s method: Two sinusoidal in 

white noise
• a) Periodogram with N=512

• b) Ensemble average

• c) Overlay of 50 Bartlett 
estimates with K=4 and L=128

• d) Ensemble average

• e) Overlay of 50 Bartlett 
estimates with K=8 and L=64

• f) Ensemble average

Note how larger K results in 
shorter L and hence in less 
spectral resolution
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Welch’s method

• Two modifications to Bartlett’s 

method

– 1) the subsequences are allowed to 

overlap

– 2) instead of Periodograms, 

modified Periodograms are 

averaged

• Assuming that successive 

sequences are offset by D points 

and that each sequence is L points 

long, then the ith sequence is

• Thus the overlap is L-D points and if 

K sequences cover the entire N 

data points then
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Welch’s method

• For example, with no overlap (D=L) 

there are K=N/L subsequences of 

length L

• For a 50% overlap (D=L/2) there is 

a tradeoff between increasing L or 

increasing K

– If L stays the same then there are 

more subsequences to average, 

hence the variance of the estimate 

is reduced

– If subsequences are doubled in 

length and hence the spectral 

resolution is then doubled  
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Performance of Welch’s method

• Welch’s method can be written in 

terms of the data record as follows

• Or in terms of modified 

Periodograms

• Hence the expected value of 

Welch’s estimate is

• Where W(ej ) is the Fourier 

transform of the L-point data 

window w(n)
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Performance of Welch’s method

• Welch’s method is asymptotically 

unbiased estimate of the power 

spectrum

• The variance is much harder to 

compute, since the overlap results 

in a correlation

• Nevertheless for an overlap of 50% 

and a Bartlett window it has been 

shown that

• Recall Bartlett’s Method results in
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Performance of Welch’s method

• For a fixed number of data N, with 

50% overlap, twice as many 

subsequences can be averaged, 

hence expressing the variance in 

terms of L and N we have 

• Since N/L is the number of 

subsequences K used in Bartlett’s 

method it follows

• In other words, and not surprising, 

with 50% overlap (and Bartlett 

window), the variance of Welch’s 

method is about half that of 

Bartlett’s method
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Welch’s method summary
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An example of Welch’s method
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Exercises
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Exercise
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Solution



54

Solution
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Exercise
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Solution
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Exercise
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Solution
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Exercise
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Solution
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Solution
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Solution
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Solution


