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Abstract—Denoising, detrending, deconvolution: usual restora-
tion tasks, traditionally decoupled. Coupled formulations entail
complex ill-posed inverse problems. We propose PENDANTSS
for joint trend removal and blind deconvolution of sparse peak-
like signals. It blends a parsimonious prior with the hypothesis
that smooth trend and noise can somewhat be separated by
low-pass filtering. We combine the generalized quasi-norm ratio
SOOT/SPOQ1 sparse penalties `p/`q with the BEADS2 ternary-
assisted source separation algorithm. This results in a both
convergent and efficient tool, with a novel Trust-Region block
alternating variable metric forward-backward approach. It out-
performs comparable methods, when applied to typically peaked
analytical chemistry signals. Reproducible code is provided.

Index Terms—Blind deconvolution, sparse signal, trend es-
timation, non-convex optimization, forward-backward splitting,
alternating minimization, source separation

I. INTRODUCTION AND BACKGROUND

Restoration recovers information from observations with
amplitude distortion, level displacement or random distur-
bance. We seek estimates ŝ, t̂ and π̂ from observation y,
under the discrete additive-convolutive degradation:

y = s ∗ π + t+ n . (1)
Among N sample values, a series of spikes (also called
impulses, events, “diracs” or spectral lines) models the first
component, the sought sparse signal s ∈ RN . Its convolution
with an unknown short-support kernel π ∈ RL — typically
peak-shaped — yields the peak-signal x = s ∗ π ∈ RN .
The second component t ∈ RN offsets the reference level,
harming quantitative estimations. It can be called baseline,
background, continuum, drift, or wander. We opt for trend,
a reference above which peaks are detected, evaluated and
measured. “Trends” address slowly varying amplitude shifts
(due to seasonality, calibration distortion, sensor decline. . . ),
challenging its automated removal. Third component n ∈
RN (noise) gathers stochastic residuals. Given (1), the goal
is to perform jointly denoising, detrending and deconvolution.
Namely, given y, retrieve estimations of the spiky signal, the
kernel and the trend. Fig. 1 is reminiscent of standard spectral
subtraction [1], and motivated here by peak-signal retrieval in
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separative analytical chemistry (AC): chromatography, spec-
trometry, spectroscopy [2], where peak localization, amplitude,
width or area provide useful chemical quantitative information.

Whether acquired in its natural domain [3] or after spar-
sification [4], noise/trend/spike models (1) cover many mul-
tidimensional issues: signal (1D), image (2D), video, volume
(3D+). We focus here on 1D data common to diverse do-
mains: Fourier spectral analysis, econometrics, stock prices,
biomedical measurements (ECG, EEG, EMG), environmental
observations, astronomical spectroscopy, etc.

On the one hand, joint denoising and detrending is a long-
standing preprocessing question, ranging from time series
analysis to imaging. Background issues are commonly solved
using a host of filling, fitting and filtering methods. We refer
to overviews in [5], [6], and for AC to background corrections
backcor [7] and BEADS [8].

On the other hand, joint denoising and blind deconvolution
matters from channel estimation in communications [9] to
image deblurring [10]. We refer to [11], [12], and especially
emphasize on sparsity-promoting methods like SOOT [13] and
SPOQ [14], using smoothed “scale-invariant” norm ratios.

PENDANTSS original contributions are (i) a fully coupled
and solvable non-convex formulation for (1) (Section II) and
(ii) a novel efficient joint disentangling algorithm (forward-
backward-based [15], [16]) with proved convergence (Section
III), validated by its comparative performance (Section IV).

II. PROPOSED PROBLEM FORMULATION

A. BEADS peak/trend/noise separation paradigm

Estimates of (ŝ, t̂, π̂) of (s, t,π) are obtained through the
resolution of the penalized least squares problem

minimize s,t∈RN
π∈RL

1

2
‖y − π ∗ s− t‖2 +R(s, t,π), (2)

with regularization term R incorporating prior knowledge.
Disentangling trend and signal is tedious [17]. As in BEADS
[8], we assume that the trend can be recovered from a peakless
observation through a low-pass filter L:

t̂ = L(y − π̂ ∗ ŝ). (3)
This motivates the rewriting of the data fidelity term in (2) as:

(∀s ∈ RN )(∀π ∈ RL) ρ(s,π) =
1

2
‖y −Ly −H(π ∗ s)‖2

=
1

2
‖H(y − π ∗ s)‖2, (4)

where H = IdN − L is a high-pass filter, and IdN the
identity operator of RN . We introduce a regularization term Ψ,
promoting signal sparsity. We add two extra terms to constrain
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estimates ŝ and π̂ to sets C1 ⊂ RN and C2 ⊂ RL assumed
closed, non-empty and convex. The indicator function ιCi ,
i ∈ {1, 2} equals zero when the value evaluated belongs to Ci,
+∞ otherwise. Optimization problem (2) becomes:

minimize
s∈RN ,π∈RL

1

2
||H(y−π∗s)||2+ιC1(s)+ιC2(π)+λΨ(s). (5)

The estimated trend can be obtained from (3) with π̂ and ŝ
obtained by (5).

B. SPOQ/SOOT norm/quasi-norm ratio penalties

Tractable penalties for sparsity characterization include ho-
mogeneous `p-norms, quasi-norms (for 0 < p < 1), or mixed
norms. We refer to [12]–[14], [18], [19] and references therein.
Ratios of norms are also promising proxies, being scale-
invariant [20]. We here promote sparse ŝ through the family of
SPOQ norm ratio penalties, introduced in [14], as a general-
ization to the SOOT ratio [13]. Let p ∈]0, 2[ and q ∈ [2,+∞[.
Smoothed approximations to the `p quasi-norm and `q norm,
parameterized by constants (α, η) ∈]0,+∞[2 are defined, for
every s = (sn)1≤n≤N ∈ RN , as:

`p,α(s) =

(
N∑

n=1

(
(s2n + α2)p/2 − αp

))1/p

, (6)

and

`q,η(s) =

(
ηq +

N∑

n=1

|sn|q
)1/q

. (7)

The non-convex SPOQ penalty is given, for β ∈]0,+∞[, as:

(∀s ∈ RN ) Ψ(s) = log

(
(`pp,α(s) + βp)1/p

`q,η(s)

)
. (8)

Ψ is Lipschitz differentiable on RN [14, Prop. 2] and admits
0N as a local minimizer when [14, Prop. 1]:

q > 2, or q = 2 and η2αp−2 > βp. (9)

Condition (9) is assumed throughout this paper.

III. PROPOSED OPTIMIZATION ALGORITHM

A. Problem structure

The objective function in (5) is the sum of a differentiable
function (least squares + SPOQ) and terms acting separably
on s or π (i.e., indicator terms). In the differentiable part

(∀s ∈ RN )(∀π ∈ RL) f(s,π) = ρ(s,π) + λΨ(s), (10)

with function ρ from (4) quadratic in s and π. In particular,
for every π ∈ RL (resp. ∀s ∈ RN ), the gradient ∇ρ1(·,π)
(resp. ∇ρ2(s, ·)) of ρ with respect to its first (resp. sec-
ond) variable is Lipschitz continuous with constant Λ1(π)
(resp. Λ2(s)). As aforementioned, ∇Ψ is Lipschitz continuous
too. The second part of the objective function reads as:

(∀s ∈ RN )(∀π ∈ RL) g(s,π) = ιC1(s) + ιC2(π). (11)

In a nutshell, Problem (5) amounts to minimizing:

(∀s ∈ RN )(∀π ∈ RL) Ω(s,π) = f(s,π) + g(s,π). (12)

B. Proposed Trust-Region PENDANTSS algorithm

The structure of (12) suggests a block alternating approach
where signal s and kernel π are updated sequentially. We
hereby introduce Algorithm 1, that generalizes the BC-VMFB
algorithm [16], also used in [13] for blind deconvolution.

Algorithm 1: TR-BC-VMFB for solving (5)
Settings: Kmax > 0, ε > 0, I > 0, θ ∈]0, 1[,
(γs,k)k∈N ∈ [γ, 2− γ] and (γπ,k)k∈N ∈ [γ, 2− γ] for
some (γ, γ) ∈]0,+∞[2, (p, q) ∈]0, 2[×[2,+∞[
satisfying (9), convex sets (C1, C2) ⊂ RN × RL.

Initialize: s0 ∈ C1, π0 ∈ C2

for k = 0, 1, . . . do
Update of the signal
for i = 1, . . . , I do

Set TR radius ρk,i using (16) with parameter θ;
Construct MM metric A1,ρk,i(sk,πk)
using (15);

Find sk,i ∈ C1 such that (17) holds.
if sk,i ∈ Bq,ρk,i then

Stop loop
end

end
sk+1 = sk,i;
Update of the kernel
Find πk+1 ∈ C2 such that (19) holds.
Stopping criterion
if ‖sk − sk+1|| ≤ ε or k ≥ Kmax then

Stop loop
end

end
(ŝ, π̂) = (sk+1,πk+1) and t̂ given by (3);
Result: ŝ, π̂, t̂

1) Signal update: Let k ∈ N and (sk,πk) ∈ C1×C2. The
computation of sk+1 follows one Majoration-Minimization
(MM) iteration [21]. First, we build a majorization for Ω(·,πk)
around sk. Second, sk+1 is defined as a minimizer to the
majorant. In practice, both steps can be approximated for
speedup and robustness to numerical errors. As emphasized
in [14], [22], we need the majorization to be valid only within
a neighborhood of the current iterate. For ρ ∈ [0,+∞[, the `q-
ball complement set is:

Bq,ρ = {s = (sn)1≤n≤N ∈ RN |
N∑

n=1

|sn|q ≥ ρq}. (13)

From [14, Prop. 2], we can show that

(∀s ∈ Bq,ρ ∩ C1) Ω(s,πk) ≤ f(sk,πk)

+ (s− sk)
>∇1f(sk,πk) +

1

2
‖s− sk‖2A1,ρ(sk,πk)

, (14)

where we define the so-called MM metric as:

A1,ρ(sk,πk) = (Λ1(πk) + λχq,ρ)IdN+

λ

`pp,α(sk) + βp
Diag((s2n,k + α2)p/2−1)1≤n≤N , (15)



3

with the constant χq,ρ = (q − 1)/(ηq + ρq)2/q . In (14),
‖.‖A denotes the weighted Euclidean norm related to a
symmetric definite positive (SDP) matrix A ∈ RN×N , i.e.,
∀z ∈ RN , ‖z‖A = (z>Az)1/2. Since inequality (14) only
holds on a limited region, we introduce a Trust-Region-based
(TR) loop [22], [23] to make sure that the minimizer of the
majorant is indeed in the validity domain of (14). Namely, we
set I > 0, a maximum number of trials of TR approach. For
i ∈ {1, . . . , I}, we define the TR radius as:

ρk,i =





∑N
n=1 |sn,k|q if i = 1 ,

θρk,i−1 if 2 ≤ i ≤ I − 1 ,

0 if i = I .
(16)

We compute the associated MM metric A1,ρk,i(sk,πk) and
define sk,i as a minimizer of the right term in (14). The loop
stops whenever sk,i belongs to B̄q,ρk,i , which is ensured to
arise in a finite number of steps according to [14]. There re-
mains to explain how we practically compute sk,i. Depending
on the choice for C1, the right term in (14) might not have a
closed-form minimizer. Actually, as we will show, it appears
sufficient for convergence purpose to search for sk,i ∈ C1

satisfying the first order optimality conditions:
{

(sk,i−sk)>∇1f(sk,πk)+γ−1s,k ||sk,i−sk||2A1,ρk,i
(sk,πk)

≤0,

||∇1f(sk,πk)+r
(1)
k,i || ≤ κ1||sk,i−sk||A1,ρk,i

(sk,πk)

(17)
for some r(1)k,i ∈ NC1

(sk,i) (i.e., the normal cone of C1 at
sk,i [24]), and some κ1 > 0. The existence of such an sk,i
can be shown from [25, Rem. 3.3]. In particular, a minimizer
over C1 of the right term in (14) satisfies (17).

2) Kernel update: It follows a similar approach. The main
difference is that we do not use the TR loop in that case,
as the function to minimize here is simpler. Let k ∈ N, and
(sk+1,πk) ∈ C1 × C2. By descent lemma,

(∀π ∈ C2) Ω(sk+1,π) ≤ f(sk+1,πk)

+ (π − πk)>∇2f(sk+1,πk) +
Λ2(sk+1)

2
‖π − πk‖2. (18)

The new iterate πk+1 is then defined as a minimizer of the
right term of (18). Hereagain, we can solve this problem in
an inexact manner, that is to search for some πk+1 ∈ C2

satisfying




(πk+1 − πk)>∇2f(sk+1,πk)

+γ−1π,kΛ2(sk+1)‖πk+1 − πk‖2 ≤ 0,

‖∇2f(sk+1,πk) + r
(2)
k ‖ ≤ κ2

√
Λ2(sk+1)‖πk+1 − πk‖,

(19)
for some r(2)k ∈ NC2(πk+1) and κ2 > 0. The existence of
πk+1 can be shown from [25, Rem. 3.3]. In particular, a
minimizer over C2 of the right term in (18) satisfies (19).
The kernel update can be deactivated, if the kernel is known
(i.e., non blind case), Algorithm 1 then identifies with [14].

C. Convergence Result

We establish the following convergence theorem for Algo-
rithm 1. Its proof is provided in the supplementary material.

Theorem 1. Let (sk)k∈N and (πk)k∈N be sequences gener-
ated by Alg. 1. If (C1, C2) are semi-algebraic sets, and ∇f is
Lipschitz on the domain of Ω, then the sequence (sk,πk)k∈N
converges to a critical point (ŝ, π̂) of Problem (5).

The above result is novel, as it extends [14, Theo.1] to
the block alternating case using proof ingredients from [16],
[26]. The assumption on (C1, C2) ensures that function Ω
satisfies Kurdyka-Łojasiewicz inequality, which is essential for
the proof of descent schemes in a non-convex setting [15].

IV. NUMERICAL RESULTS

A. Datasets

Two datasets A and B were considered. The original sparse
signal s and the observed signal y are shown in Fig. 1, both
of size N = 200. Signal y is obtained from (1) where π is a
normalized Gaussian kernel with standard deviation 0.15 and
size L = 21. The noise n is zero-mean white Gaussian with
variance σ2 either equals 0.5 % or 1.0 % of xmax defined as
the maximum amplitude of x = π ∗ s. Signal and kernel
convolution is implemented with zero padding. Trend t is
taken as the low-frequency signal from [8].

B. Algorithmic settings

We set C1 = [0, 100]N , and C2 the simplex unit set,
i.e. C2 = {π = (π`)1≤`≤L ∈ [0,+∞[L s.t.

∑L
`=1 π` = 1}.

For such choices, the assumptions of Theorem 1 hold, and
since metric (15) is diagonal, the resolution of (17) and (19) is
straightforward, by [24, Prop. 24.11] and [27, Cor. 9]. Namely,
for every k ∈ N, and i ∈ {1, . . . , I},
{
sk,i=ProjC1

(
sk−γs,kA1,ρk,i(sk,πk)−1∇1f(sk,πk)

)
,

πk+1 = ProjC2

(
πk − γπ,kΛ2(sk+1)−1∇2f(sk+1,πk)

)
.

Hereabove, ProjC1
is the projection over the positive orthant,

that has a simple closed form expression, while ProjC2
is the

projection over the simplex unit set, that can be computed
using the fast procedure from [28]. For simplicity, we set
constant stepsizes γs,k ≡ γπ,k ≡ 1.9, thus satisfying the
required range assumption. Moreover, we take θ = 0.5 in
the TR update, and a maximum of I = 50 of TR trials.
We use the same initialization strategy for all methods as
in [13], namely s0 ∈ C1 is a constant positive-valued signal
and π0 ∈ C2 is a centered Gaussian filter with standard
deviation of 1. The stopping criterion parameters are set
as ε =

√
N × 10−6 and Kmax = 2000.

C. Numerical results

PENDANTSS jointly performs blind deconvolution and
trend removal, using SPOQ penalty. Let us recall that SOOT
penalty from [13] is retrieved by setting (p, q) = (1, 2) in
SPOQ. Another setting will be analyzed, namely (p, q) =
(0.75, 2). Other choices led to similar or poorer restoration
results, as also observed in [14]. In the spirit of an ablation
study, we compare PENDANTSS pipeline with the state-of-
the-art background estimation method backcor [7] to estimate
and remove the trend, followed by the blind deconvolution
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method [13], to estimate the signal ŝ and the kernel π̂. In
both cases, we either use SPOQ (p, q) = (0.75, 2), or SPOQ
(p, q) = (1, 2) (i.e., SOOT) for promoting sparsity in ŝ.

We use signal-to-noise ratios to evaluate our estimations,
respectively for signal (SNRs), kernel (SNRπ) and trend
(SNRt). For instance, SNRs = 20 log10(‖s‖2/‖s − ŝ‖2).
Moreover, TSNR evaluates the SNR only on the support of
the original sparse signal. While their support are not known
in general, it reveals how peak-derived quantities (height,
width, area), important for downstream quantitative chemical
analysis, would be impacted by detrending and deconvolution.

Hyperparameters, e.g. regularization parameters of back-
cor [7] and SPOQ/SOOT parameters (λ, β, η), are adjusted
through grid search to maximize a weighted sum of SNRs
for one completely known reference realization, i.e. 2SNRs+
SNRπ + SNRt, which appeared as a representative metric
in our experiments. We set α = 7 × 10−7 as recommended
in [14]. In practice, (α, β, η) have little influence on perfor-
mance, while the choice of λ is critical. The cutoff frequency
of the low-pass filter in (3) is chosen as the best performing
point over the first ten peak points of the modulus of the signal
frequency spectrum. To assure the kernel is centered, a spatial
shift on the estimated kernel and the sparse signal is applied as
a post-processing step as spatially shifted kernels and sparse
signals result in the same observed signal. A rough grid search
determines the number of inner loops to maximize the SNRs.

Table I summarizes the results of mean SNR values, and
standard deviations after the “±” sign, calculated over two
hundred noise realizations. Best and second best values are
almost always achieved by the proposed PENDANTSS ap-
proach with (p, q) = (0.75, 2) or (1, 2). The difference with
the baseline methods is also significant for all cases especially
in terms of TSNRs and SNRt. One exception lies on SNRπ
with dataset B with the noise level of 1.0 % of xmax, where the
second best is achieved by the combination backcor+SPOQ.
We stress out that in such problems, correct estimations of
sparse signal and baseline are usually more important than
kernel estimation.

Regarding parameters (p, q), the performance of PEN-
DANTSS is dependent on the datasets and the noise level.
Considering various SPOQ parameters is indeed beneficial.
According to the presented simulation results, PENDANTSS
with (p, q) = (0.75, 2) is better for datasets with sparser,
well-separable peaks (dataset A) whereas PENDANTSS with
(p, q) = (1, 2) is preferable for more challenging datasets
(dataset B). Graphical details on the quality of estimated peaks
are provided as supplementary material. Computational cost
for PENDANTSS is slightly higher than for the sequential
method with backcor: in the order of 4 s. vs 1 s. for dataset
A and 20 s. vs 10 s. for dataset B on a standard laptop.

V. CONCLUSION AND PERSPECTIVES

We address a complicated joint sparse signal blind de-
convolution and additive trend problem. Our method handles
smooth trend removal by exploiting the low-pass property and
simplifies the problem into a blind deconvolution problem
formulation integrating the SPOQ sparse penalty and appro-
priate constraints. A new block alternating algorithm with
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(a) Dataset A.
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(b) Sparse spike signal for dataset A.
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(c) Dataset B.
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(d) Sparse spike signal for dataset B.
Fig. 1. Unknown sparse signal s (b) and (d); in (a) and (c) observation y
(blue) and baseline t (black) (bottom) for datasets A and B. Signal A has 10
spikes (5.0 % of sparsity) while signal B has 20 spikes (10.0 % of sparsity).

TABLE I
NUMERICAL RESULTS ON DATASETS A AND B. SNR QUANTITIES IN DB.

BEST PERFORMING METHOD FOLLOWED BY **, SECOND BY *.
Dataset A Dataset B

Noise level σ (% of xmax) 0.5 % 1.0 % 0.5 % 1.0 %

SN
R
s

backcor+SOOT 29.2±0.7 28.5±1.9 14.9±4.0 11.5±4.7

backcor+SPOQ 29.2±0.7 29.3±1.3 12.9±3.5 11.3±4.4

PENDANTS (1, 2) 32.9±1.5* 30.9±2.2* 22.3±8.2** 17.5±8.4**

PENDANTS (0.75, 2) 33.2±2.3** 31.0±4.2** 15.9±4.5* 12.9±4.6*

T
SN

R
s

backcor+SOOT 29.2±0.7 29.3±1.3 16.6±3.5 13.4±4.3

backcor+SPOQ 29.2±0.7 29.3±1.3 15.1±3.0 13.7±3.7

PENDANTS (1, 2) 34.1±1.4* 32.2±2.1* 24.9±8.0** 19.2±7.7**

PENDANTS (0.75, 2) 35.4±1.7** 32.6±3.8** 17.7±4.0* 14.5±4.1*

SN
R
t

backcor+SOOT 20.5±0.2 20.3±0.4 15.5±0.5 14.8±0.8

backcor+SPOQ 20.5±0.2 20.3±0.4 15.5±0.5 14.8±0.8

PENDANTS (1, 2) 26.9±0.5** 26.0±0.8** 22.0±0.4* 21.6±1.0**

PENDANTS (0.75, 2) 26.9±0.6** 26.0±1.0** 24.6±0.6** 19.6±3.9*

SN
R
π

backcor+SOOT 36.3±1.3 33.9±1.7 30.3±1.3 28.5±1.8

backcor+SPOQ 36.3±1.3 34.0±1.7 33.1±1.9 31.2±2.1*

PENDANTS (1, 2) 41.3±2.0** 34.4±2.4** 38.3±1.9** 33.6±2.2**

PENDANTS (0.75, 2) 41.3±2.0** 34.2±2.5* 35.7±1.5* 25.4±5.5

trust region acceleration is introduced, and its convergence is
established. PENDANTSS outperforms comparable methods
on typical sparse analytical signals on simulation results.
Further works include its validation on other sparse spike
signals. The appropriate parameters for the sparsity-promoting
norm ratio penalty ought to be investigated, for instance with
respect to the alleged signal sparsity or peak separability. PEN-
DANTSS Matlab code and hyper-parameter extensive analysis
are available at https://github.com/paulzhengfr/PENDANTSS.
The authors thank Vincent Mazet, Bruno Lety, the reviewers
and the associate editor.
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PENDANTSS: Supplementary Material

I. PROOF OF THEOREM 1 FOR ALGORITHM 1

We first provide a useful majorant metric matrix property.

Lemma 1 There exists (λ, λ) ∈]0,+∞[2 such that for every
k ∈ N, and for every i ∈ {1, . . . , I},

{
λIdN � A1,ρk,i(sk,πk) � λIdN ,
λ ≤ Λ2(sk) ≤ λ. (A1)

Proof. Direct consequence of [14, Prop. 2] and [13, Prop. 1].
We then show that Algorithm 1 satisfies two essential descent
properties, that are key for the convergence analysis.

Lemma 2 There exists (µ1, µ2) ∈]0,+∞[2 such that, for
every k ∈ N, the following descent properties hold:

Ω(sk+1,πk) ≤ Ω(sk,πk)− µ1

2
||sk+1 − sk||2, (A2)

Ω(sk+1,πk+1)≤Ω(sk+1,πk)− µ2

2
||πk+1 − πk||2. (A3)

Proof. Let k ∈ N. We remind that the objective function Ω
is defined in (12), with g specified in (11). By construction,
sk+1 ∈ B̄q,ρ ∩ C1 for some i ∈ {1, . . . , I}. Summing the
majoration (14) and the first inequality in (17) yields:

Ω(sk+1,πk) ≤ f(sk,πk)−(γ−1
s,k− 1

2 )‖sk−sk+1‖2A1,ρ(sk,πk)
.

We notice that f(sk,πk) = Ω(sk,πk) since sk ∈ C1

and πk ∈ C2. Using Lemma 1 and the range assumption on
γs,k allows to show (A2) for µ1 = λγ/(2− γ). Again by
construction, πk+1 ∈ C2. Summing (18) and (19) leads to:

Ω(sk+1,πk+1) ≤ f(sk+1,πk)−
(γ−1
π,k − 1

2 )Λ2(sk+1)‖πk+1 − πk‖2.
Here again, we use f(sk+1,πk) = Ω(sk+1,πk) as sk+1 ∈
C1 and πk ∈ C2. The descent property (A3) is obtained by
using Lemma 1, the range constraint on γπ,k, and setting µ2 =
λγ̄(2− γ̄).

The rest of the proof of Theorem 1 is obtained by following
the same lines than the one of [16, Theorem 3.1], leveraging
the Lipschitz smoothness of f on the domain C1 × C2 of Ω,
and the Kurdyka-Łojasiewicz inequality satisfied by Ω.

II. ADDITIONAL RESULTS

Figures 2 and 3 provide additional insights into PEN-
DANTSS restoration. Dataset A in Figure 2-(a) presents
sparse and well-isolated peaks. Accurate peak restoration is
secured. Peak shapes are well recovered (left-hand zoom),
and the estimated trend matches well the actual baseline. As
a consequence, peak features that are computed with respect
to the trend (height, area) are likely to be well-estimated with
PENDANTSS. The less sparse Dataset B in Figure 2-(b) shows
that the separation and the height of close peaks are accurately

matched. Some overshoot in trend estimation can be noticed. It
is however not likely to drastically affect relative peak height
or area computations.

Retrieved spikes are exposed in Figure 3. For Dataset A,
well-separated spikes are accurately recovered using PEN-
DANTSS. Estimated amplitudes and locations are almost
indistinguishable from the original ones. This is exemplified
for the less sparse Dataset B in Figure 3-(b). Isolated peaks
are well-estimated. However, some spikes (for instance around
index 175) for Dataset B in Figure 3-(b) remain unelucidated.
Three contiguous spikes are estimated, instead of two. Such an
ambiguous solution is typical to source separation problems.

(a) Dataset A - reconstruction and trend.

(b) Dataset B - reconstruction and trend.
Fig. 2: Ground truth (thick black line) and proposed estimation results (thin
blue line) for the baseline t (dashed dot) and the signal s ∗ π (continuous).

(a) Dataset A - sparse spike signal.

(b) Dataset B - sparse spike signal.
Fig. 3: Ground truth (black line with circle marker) and proposed estimation
results (blue line with cross marker) for sparse spike signal s.
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