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SUMMARY

Multiple attenuation is one of the greatest challenges in
seismic processing. Due to the high cross-correlation
between primaries and multiples, attenuating the latter
without distorting the former is a complicated problem.
We propose here a joint multiple model-based adaptive
subtraction, using single-sample unary filters’ estimation
in a complex wavelet transformed domain. The method
offers more robustness to incoherent noise through re-
dundant decomposition. It is first tested on synthetic
data, then applied on real-field data, with a single-model
adaptation and a combination of several multiple models.

INTRODUCTION

Multiples correspond to unwanted coherent events re-
lated to wavefield reflection bounces on given surfaces.
We refer to Verschuur (2006) for a precise typology. Data
can be transformed to an appropriate domain, to reduce
overlap between primaries and multiples. After multiple
suppression, the filtered data is mapped back to data do-
main. Alternatively, prediction filters (Spitz et al., 2009),
and variations thereof, have demonstrated excellent per-
formance. Recently, modeling based techniques, such as
surface related multiple estimation (SRME), allow data-
or model-driven multiple removal (Weisser et al., 2006;
Lin et al., 2004). These methods, based on multiple mod-
els, consist in predicting then subtracting multiple events
from original seismic data.

Since primaries and multiples are not orthogonal, hybrid
methods mix both transform and prediction approaches.
A recent trend focuses on wavelet-related approaches,
with a review in?. They better promote sparsity (Lin and
Herrmann, 2011) in exploiting slight differences between
primaries and multiples. For instance, Ahmed (2007)
perform matching in a discrete wavelet domain, while
Donno et al. (2010); Neelamani et al. (2010) use (com-
plex) curvelets.

The present work builds upon Ventosa et al. (2011, 2012).
We combine sparsifying transforms and their associated
matched filters via 1) non-stationary Wiener matching
filters, 2) complex trace processing, and 3) continuous
wavelet frames.

The complex Morlet wavelet frame emulates complex
derivatives computed at specific scales. The adaptation
in the wavelet domain is performed at each scale with
a "unary" filter, e.g., a one-coefficient complex match-
ing operator, accounting for localized phase and ampli-
tude variations between data and models. The flexible re-
dundancy and the "complex trace" effect of this wavelet
frame allow a better management of time variability in
model misalignment errors.

We address two specific issues. Firstly, it is well known
that redundancy in a transformation may improve the ro-
bustness to noises. However, it hampers the overall algo-
rithmic efficiency. Secondly, when two or more multiple
models are available (Mei and Zou, 2010), locally com-
bining multiple models with varying weight improves
upon separate processing and averaging procedures.

The methodology is two-fold: firstly choose an appropri-
ate redundancy in the transform to ensure sufficient ro-
bustness to incoherent disturbances. It is performed on a
synthetic dataset with varying redundancy and noise lev-
els. Secondly, the single-model complex wavelet adap-
tive multiple subtraction from Ventosa et al. (2012) is ex-
tended to a joint multi-model approach. The benefits of
the proposed methods are demonstrated on field data with
three different multiple models.
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Figure 1: Portion of first receiver plane: raw data.
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WAVELET-DOMAIN MULTIPLE SUBTRACTION

A classical trace observation model is:

d[n] = p[n]+m[n]+w[n] , (1)

whered[n], p[n], m[n] andw[n] denote the recorded data,
primary events, multiples and background noise, respec-
tively, at discrete time indexn.

Complex wavelet transform decomposition
We perform a time-scale decomposition of each datad[n]
and multiple modelxk[n] traces with a discrete approxi-
mation to a continuous wavelet frame. We choose the
complex Morlet wavelet since it yields a simple interpre-
tation of amplitude and phase delay in the transformed
domain. As it is approximately analytic, it mimics the
complex trace, applied to wavelet scales. It writes:

ψ(t) = π−1/4e−iω0te−t2/2 , (2)

whereω0 is the central frequency of the modulated Gaus-
sian, andt the continuous time variable.

The associated discrete family of functions is defined as
a sampling of the mother wavelet:

ψv
r, j [n] =

1√
2 j+v/V

ψ
(

nT− r2 jb0

2 j+v/V

)
, (3)

with T the sampling rate andV the number of voices
per octave. Indicesr, j ∈ Z and v ∈ [0, . . . ,V − 1] de-
note, respectively, discretized time, octave, and voice.
Finally, b0 stands for the sampling period at scale zero.
The overall redundancy, approximately of 2V/b0, con-
trols the balance between computational efficiency and
robustness.

The time-scale representation of traced[n] is given by the
inner product:

d = dv
r, j =

〈
d[n],ψv

r, j [n]
〉
=
∑

n

d[n]ψv
r, j [n] . (4)

and written in bold.

Supposêd results from some time-scale processing ofd,
here model matching and subtraction. Then the resulting
filtered trace is synthesized back to the time domain with
the dual frame:

d̂[n] =
∑

r

∑

j,v

d̂v
r, j ψ̃

v
r, j [n] , (5)

as a sum of the dual frame components,ψ̃v
r, j [n], weighted

by the adapted multiple decomposition,d̂v
r, j . In prac-

tice, the dual synthesis frame is well approximated by the

analysis frameψ up to a constant factor, providedV ≥ 3
andb0 ≤ 1.5.

The discriminative power of the wavelet frame simpli-
fies the reformulation of a long matching-filter design
with a combined global and local complex unary filters,
minimizing the error between multiple events and their
matched model. The straightforward delay estimation al-
lowed by complex Morlet wavelets, together with frame
redundancy, drastically reduce reconstruction artifacts,
sometimes observed with standard, or orthogonal, dis-
crete wavelet processing (Yu and Whitcombe, 2009).

Single-model unary filter estimation
When the delay difference between model and multiple
sequences is less than half a period at all scales, a sin-
gle multiple modelx1 can be rectified in time-scale, fol-
lowing a least-square-error (LSE) approach. The opti-
mum unary filter, at a given wavelet scale, either in local
or global portions of the trace, is defined as the com-
plex scalara1 which, multiplied by the time-scale de-
composed multiple modelx1, makes the filtered dataset
orthogonal to the filtered model:

aopt = argmin
a1

‖d−a1x1‖2 , (6)

where the complex scalaraopt compensates local delay
and amplitude mismatches. We refer to Ventosa et al.
(2012) for additional information.

Joint multiple model unary filter estimation
When several different multiple modelsxk are available,
different delays and amplitudes may affect the coupling
between each available model and the actual multiple se-
quence. The above criterion is modified accordingly:

aopt = argmin
{ak}(k∈K)

∥∥∥∥∥d−
∑

k

akxk

∥∥∥∥∥

2

. (7)

The optimum value in LSE sense makes the filtered sig-
nal d̂ = d−∑

k akxk orthogonal to thek filtered models
akxk, which using the inner product is:

〈
d−

∑

k

akxk,amxm

〉
= 0 ∀am 6= 0. (8)

Applying linearity on the first argument and conjugate
linearity on the second one, we obtain:

〈d,xm〉=
∑

k

ak 〈xk,xm〉 , (9)
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Figure 2: Synthetics signals used for sensitivity analysis.
(a) From top to bottom: primary, multiple model, random
noise (S/N of 5 dB), sum.); (b) True model and adapted
model after 1D unary filter adaptation; (c) Sensitivity
analysis to random noise and redundancy levels: median
values of S/N (adapted model vs true model) computed
on 100 random noise realizations at each point.
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Figure 3: Models based on (a) wave equation (b) convo-
lution (c) and parabolic Radon.
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that is, the vector Wiener equations for complex signals.
In practice, since some of the multiple models are locally
similar, the cross-correlation matrix is frequently closeto
singular. The solution is obtained by keeping eigenvec-
tors with corresponding eigenvalues above a prescribed
threshold.

RESULTS

Noise robustness and redundancy assessment
The proposed algorithm offers some flexibility, such as
selection of redundancy in the wavelet decomposition.
The quality of adaptation is evaluated using synthetic sig-
nals (Figures 2a, 2b) by varying random noise level (from
5 dB to 20 dB with 0.5 dB steps) and redundancy (from
4 to 16 with steps of 2). In the Monte-Carlo approach,
100 realizations of white Gaussian noise were generated
for each point. Figure 2c shows corresponding results
with b0 = 1. The resulting signal-to-noise (S/N) ratio is
estimated from the truem and the adapted modelmadapt,
using the following formula:

S/Nadapt= 10log10

( ||m||2
||m−madapt||2

)
. (10)

Model adaptation is more robust to random noise thanks
to redundancy. The improvement in S/N is negligible for
large redundancy. Thus, we choose a redundancy of 8 to
process field data, this value offering a good compromise
between adaptation quality and computational time.

Joint multiple models field dataset
Figure 1 represents a part of the first common receiver
plane from a 3D read marine dataset. Several models
(Figure 3) were obtained with wave equation modeling,
convolution (3D-SRME) and parabolic Radon. The sub-
traction results (Figure 4) represent the filtered data after
using the unary complex filters: with the 1D unary com-
plex filter approach. A single model already yields an
efficient multiple attenuation; however, the algorithm ex-
tension to a joint adaptation of several multiple models
allows to take into account a more diverse multiple in-
formation and provides better attenuation. For instance,
some multiples seem to be better attenuated around 3s,
thanks to the joint multiple model approach.

CONCLUSION

We propose a joint multiple model-based adaptive sub-
traction which combines complex Morlet wavelet frame
with unary complex Wiener filters. The flexible redun-
dancy in the wavelet frame implementation allows the

design of fast unary filters, providing an elegant, and
computationally efficient, non-stationary joint multiple
model adaptation. This redundancy, chosen with sim-
ple test on artificially degraded data, additionally yield
robustness to incoherent noises. The computational ef-
ficiency of the proposed algorithm allows for reduced
memory footprint and higher code parallelization.
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Figure 4: Subtraction results using complex wavelet
unary filters with (a) parabolic Radon, (b) joint models.
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