Complex wavelet adaptive multiple subtraction with unary filters

Sergi Ventosa, Herald Rabeson, Patrice Ricarte and Laurent Duval

> Energies nouvelles

© 2011 - IFP Energies nouvelles

IFPEN – EAGE Vienna '11 – 2011/05/24

Introduction

- Multiple contamination is one of the greatest challenges in seismic processing (Backus, 1959; Verschuur and Berkhout, 1992; Matson and Dragoset, 2005)
- Multiple recognition Characteristics
 - Periodicity
 - MoveOut (Velocity and curbature)
- Multiple attenuation methods
 - Filtering methods (Kelamis et al, 2008)
 - Relay on differentiating features
 - **Predictive suppression methods** (Pica et al, 2005; Dragoset et al, 2010)
 - Relay on prior knowledge to build a multiple model

Introduction: Primaries & Multiples

Original data at near receiver plane (non-stacked)

• The model is not accurate enough for a plain subtraction.

IFPEN – EAGE Vienna '11 – 2011/05/24

Introduction: Data & Multiple model

A piece of the 100th trace

- The multiple prediction method has limitations that lead to imperfect multiple models.
 - An adaptive subtraction algorithm is needed.

Introduction: Adaptive subtraction

Main challenges:

- Primaries and multiple are not fully uncorrellated, as they are generated from the same source.
- The variations on amplitude, waveform and delay impose strong constraints on the minimum filter length.
- Standard approaches:
 - Minimum I₂-norm:
 - A long global filter to compensate systematic differences.
 - A short local filter to compensate the differences that remains.

• Other approaches:

- Minimum I₁-norm (Guitton and Verschuur, 2004)
- Work in a tranformed domain.

© 2011- IFP Energies nouvelles

- Introduction
- Complex wavelet adaptive multiple subtraction with unary filters
 - CWT: Implementation
 - Amplitude and phase estimation
 - Integer delay estimation
- Adaptive subtraction algorithm results

Complex wavelet adaptive unary filters

Main objective

 Decompose a complicate wide-band problem into a set of more tractable narrow-band problems.

Main properties

- Controlled redundancy with frames of wavelets.
- Simplifies the filter design:
 - Enables the reduction of the filter length up to a single sample.
- Increase the adaptation capability.

Complex wavelet adaptive unary filters

CWT implementation using frames of wavelet

• Family of functions

$$\psi_{r,j,v}[n] = \frac{1}{\sqrt{2^{j+v/V}}} \psi\left(\frac{nT - r2^{j}b_{0}}{2^{j+v/V}}\right) \frac{\text{Delay}}{\text{Scaling}}$$

Frames of wavelets transform

$$Wd_{j,v}[r] = \langle d[n], \psi_{r,j,v}[n] \rangle = \sum_{r} d[n]\psi_{r,j,v}^*[n]$$

Complex wavelet adaptive unary filters

2.

CWT: Implementation

- Main parameters of the CWT
 - Central freq. of the Morlet wavelet: 2π (Q = 2.7)
 - Mid redundancy, 4 voices/octave + complex (8 times the DWT).

CWT: Example

© 2011- IFP Energies nouvelles

Amplitude and phase estimation

- Main assumptions:
 - Small delay (less than the half of the period)
 - Minimum energy approach
- Problem to solve <u>for each sample in time-scale</u>
 - Find the optimum value that multiplied with the model minimize the square mean error with the data
 Value to estimate

Data
$$dot = \arg \min \xi(a) = \arg \min \|\mathbf{d} - a\mathbf{x}\|^2$$
 Model

$$a_{\text{opt}} = \frac{\langle \mathbf{d}, \mathbf{x} \rangle}{\|\mathbf{x}\|^2}$$

Optimum unary Wiener filter for complex signals

© 2011- IFP Energies nouvelles

- Main challenge
 - What can we do when the delay is higher than the half of period of the central frequency?
- One solution
 - Design an unary complex filter with an integer delay.

$$\xi(a,l) = \sum_{r} |Wd_{j,v}[r] - a_{j,v}Wx_{j,v}[r-l]|^{2} = \|\mathbf{d} - a\mathbf{x}_{l}\|^{2}$$

$$a_{\text{opt}}[l] = \frac{\langle \mathbf{d}, \mathbf{x}_{l} \rangle}{\|\mathbf{x}_{l}\|^{2}}$$
Integer delay
(new parameter)

- Problem to solve:
 - Find a criterion to <u>select the optimum delay</u> well adapted to the nature of the seismic signals

- Criteria to select the optimum integer delay:
 - Option 1: Minimum mean square error

 $l_{\text{opt}} = \arg\min_{l} \xi(a_{\text{opt}}[l])$

- Option 2: Maximum normalized crosscorrelation (coherence)
 - Give importance to the waveform over the amplitude

Data Corrected multiples

$$l_{\text{opt}} = \arg \max_{l} \operatorname{Re} \left[\frac{\langle \mathbf{d}, a_{\text{opt}}[l] \mathbf{x}_{l} \rangle}{\|\mathbf{d}\| \|a_{\text{opt}}[l] \mathbf{x}_{l}\|} \right]$$

© 2011- IFP Energies nouvelles

2.

2.

2.

2.

Filtered data in time-scale

2.

© 2011- IFP Energies nouvelles

2.

Subtraction algorithm results: Original data

• Near receiver plane.

Subtraction algorithm results: Multiple model

• The model is not accurate enough for a plain subtraction.

Adapted model with the 1-D adaptive unary filter.

IFPEN – EAGE Vienna '11 – 2011/05/24

Adapted model with the standard 2-D adaptive filter

Results with the 1-D adaptive unary filter in time-scale.

IFPEN – EAGE Vienna '11 – 2011/05/24

Results with the standard 2-D adaptive filter

© 2011- IFP Energies nouv

IFPEN – EAGE Vienna '11 – 2011/05/24

Difference

Subtraction algorithm results: Shot plane

Original data

1-D adaptive unary

Standard 2-D adaptive

- Statoil for allowing us to show the Norwegian Sea results data example.
- CGGVeritas for the collaboration and comments.
- And especially to Irène Huard, Sylvain Leroy and Antonio Pica for their help and comments.

Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Innovating for energy

www.ifpenergiesnouvelles.com