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SUMMARY
Multiple attenuation is a crucial task in  seismic data processing because multiples usually cover primaries
from fundamental reflectors. Predictive multiple suppression methods remove these multiples by building
an adapted model, aiming at being subtracted from the original signal. However, before the subtraction is
applied, a matching filter is required to minimize amplitude differences and misalignments between
multiples and their prediction, and thus to minimize the multiples in the input dataset after the subtraction.
In this paper we focus on the subtraction element. The proposed complex wavelet transform based
approach simplifies the matching filter estimation.



Introduction

Reducing multiple contamination (Verschuur and Berkhout, 1992; Matson and Dragoset, 2005) repre-
sents one of the greatest challenges in seismic processing. Two major aspects differentiate multiples
and primary reflections: (1) the velocity of primaries is greater than that of multiples, and (2) multiples
are periodic events in contrast with primaries. We can hence classify multiple attenuation methods into
two broad categories:filtering methodsthat find a differentiating feature in the primary and the multiple
(Kelamis et al., 2008); andpredictive suppression methodsthat first predict and then subtract the multi-
ple events from original seismic data (Pica et al., 2005; Weisser et al., 2006). Alas, no single approach
fits all scenarios. Most contractors thus propose an extensive portfolio of demultiple algorithms that, in
practice, may be combined and cascaded to obtain acceptable solutions.

Predictive multiple suppression methods consist of two main elements: predictionand subtraction. Pre-
diction builds a multiple estimation from the primaries using prior knowledge. Subtraction minimizes
amplitude difference and small misalignment between actual multiple events and their predicted mod-
els, to maximize multiple attenuation in the input dataset. The efficiency of this suppression strongly
depends on the adaptation capability of the matching filter employed in the subtraction element. In the
following we will focus on the enhancement of the latter key element.

Primaries and multiples are not fully uncorrelated, as they are generated from the same source. This
poses a major challenge in the design of an optimal matching filter to minimize the multiple events
in the input dataset from their predicted model. Slight differences in their spectra may be exploited
with wavelet-based approaches (Pokrovskaia and Wombell, 2004; Ahmedet al., 2007; Neelamani et al.,
2008). The present paper follows a similar trail, with a twist towards filter adaptation.

Method

With the aim of simplifying the filter design, we propose to decompose a complicatedwide-band prob-
lem into a series of more tractable narrow-band issues by means of waveletframes. Within this approach,
the length of the matching filters at each (wavelet) scale can be reduced down to a single sample while
still increasing “the matching capability”. As this filter is the most computational demanding compo-
nent of the subtraction element, the reduction in its complexity increases the computational efficiency,
despite the use of a redundant representation.

A standard observation model of each 1-D trace of the input dataset canbe written as:

u[n] = p[n]+s[n]+w[n] (1)

whereu[n] denotes the recorded signal,p[n] the primary events,s[n] the multiple events andw[n] the
background noise. To decompose each trace of the data and the model intothe time-scale domain,
we have chosen wavelet frames (Daubechies, 1992; Casazza, 2000; Mallat, 2009) that approximate the
complex Morlet wavelet transform. The Morlet wavelet can be written as:

ψ(t) = π−1/4e− jω0te−t2/2 (2)

whereω0 is the central frequency of the modulated Gaussian andt stands for the time variable. And the
discrete family of functions employed in the frame (i.e. a sampling of the continuous wavelet transform)
is given by:

ψv
r, j [n] =

1√
2 j+v/V

ψ
(

nT− r2 jb0

2 j+v/V

)

(3)

with r, j ∈ ℤ, r being the (discretized) time,j the number of scale,b0 the sampling period at the scale
zero,V the number of voices per octave andv∈ [0,V −1] the octave. Using the above wavelet family,
the time-scale representation of a given traceu[n] is given in closed form by the scalar product formula:
Wuj,v[r] =

〈

u,ψr, j.v
〉

.
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The main problem to solve is the design of an optimum unary (one-sample) filter which minimizes the
error between multiple events and their model, leaving primary events unharmed. Once the multiples
are estimated and subtracted from the original data in time-scale, the filtered trace is synthesized in the
time domain applying an inverse Morlet wavelet transform.

Following a minimum energy approach, the optimum complex valuea is the one that, multiplied with
the decomposed multiple modelWsj,v[r], minimizes the mean square errore(a) with the decomposed
input datasetWuj,v[r]:

aopt = min
a

e(a) = min
a ∑

r

∣

∣Wuj,v[r]−aWsj,v[r]
∣

∣

2
(4)

where sequencesWuj,v[r] andWsj,v[r] are complex and the∑ symbol denotes a locally weighed sum
alongN consecutive samples around time indexr.

The optimum value in the mean square error sense is the unary Wiener filter for complex signals:

aopt =
∑r Wuj,v[r]Ws∗j,v[r]

∑r

∣

∣Wsj,v[r]
∣

∣

2 (5)

This algorithm can either be applied locally or globally, depending on the problem constrains.

At this step, note that proceeding with care is important. Instead of performing a direct measurement of
the fractional delay, or equivalently of the group delay, we attempt to estimatethe phase delay at each
scale or frequency component. When the signal-to-noise ratio (SNR) is high, all the meaningfull phase
components are sufficiently well estimated. Alternatively, when the SNR decreases, the moderate phase
errors made at key scale components could lead to huge errors on the group delay. As a consequence,
a careful processing of theaopt at each scale has to be performed, to provide a low dip varying phase
based on the meaningful components.

When the group delay difference between the input and the reference sequences is less than the half the
signal period at all scales, it is possible to correct this delay with the previously mentioned approach,
because the crosscorrelation between the two sequences is always close to the zero delay. But as the
group delay difference increases over this limit, the crosscorrelation peak moves away from the zero
delay sample and, as a result, the estimation ofaopt done in Equation 5 is no longer possible. As a
consequence, a redesign of the filter length is necessary.

A simple way to yield a filter robust to higher delays, while keeping the minimum mean square error
criterion, consists in the introduction of a delay term into the above unary filter. This is equivalent to
finding the optimum valuea and delaym that minimize the following equation:

e(a,m) = ∑
r

∣

∣Wuj,v[r]−aWsj,v[r −m]
∣

∣

2
, (6)

where the optimuma depending onm, as shown above, is:

aopt[m] =
∑r Wuj,v[r]Ws∗j,v[r −m]

∑r

∣

∣Wsj,v[r −m]
∣

∣

2 (7)

Several criteria can be chosen in the selection of the optimum delay that are well adapted to the nature
of the seismic signals. For example, we can keep with minimum mean square errorcriterion and find the
optimum integer delaym, estimating theaopt at each delay first, and then select the one which minimizes
Equation 6. Or on the contrary, we can define the optimum delay as the one that maximizes the normal-
ized crosscorrelation between the adapted model and the recorded signal, commonly called coherence
(Neidell and Taner, 1971; Taner et al., 1979; Schimmel and Paulssen, 1997), due to the importance of
shape over amplitude.

73rd EAGE Conference & Exhibition incorporating SPE EUROPEC 2011
Vienna, Austria, 23-26 May 2011



2.8 3 3.2 3.4 3.6 3.8 4 4.2

−5

0

5

A
m

pl
itu

de

Time (s)

 

 

Data
Model

(a)
2.8 3 3.2 3.4 3.6 3.8 4 4.2

−2

−1

0

1

A
m

pl
itu

de

Time (s)

 

 

Filtered Data (+)
Filtered Model (−)

(b)

Time (s)

S
ca

le
 (

sm
pl

)

 

 

2.8 3 3.2 3.4 3.6 3.8 4 4.2

 2

 4

 8

16

0

1

2

3

x 10
7

(c) Multiple model Time (s)

S
ca

le
 (

sm
pl

)

 

 

2.8 3 3.2 3.4 3.6 3.8 4 4.2

 2

 4

 8

16

0

500

1000

1500

2000

(e) Recorded signal
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(d) Filtered model Time (s)
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(f) Filtered signal

Figure 1 Subtraction algorithm details. Portion of a trace from the recorded signal, themultiple model,
and the filtered multiple model and recorded signal. In time and in time-scale (modulus). The signals in
(a) and (b) are attenuated by a factor of 1000 except the multiple model that is 5×107. The sampling
rate is 250 smpl/s.
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Figure 2 Subtraction algorithm results. (a) Recorded signal. (b) Results with the 1-Dunary complex
filters in the time-scale domain. (c) Results with a standard 2-D adaptive filter intime-space domain.
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Results

The example shown in Figures 1 and 2 is taken from a 2-D real marine dataset. In both figures the data
is decomposed with a Morlet wavelet withω0 = 6.3 rad/smpl,j ∈ [1,4], v ∈ [0,3] andb0 = 0.5. The
optimum unary filter estimation for each sample uses a rectangular window of 0.636 s. Additionally, to
provide robustness against delays higher than half of the signal period, we have chosen the maximum
normalized crosscorrelation criterion with a range of±12 ms.

Figure 1 provides some intermediate results on a portion of a trace about the first multiple arrival. On
the left panel the recorded signal and the multiple model are plotted in time, together with their modulus
in the time-scale domain; while on the right panel the filtered model and the filteredrecorded signal.
As shown in the time-scale domain figures, the unary filter has successfully reduced the differences be-
tween the real multiple events and their predicted model to attenuate the multiple events in the recorded
signal enough to uncover the main primary events. The main objective in Figure 2(a) is to uncover the
primaries that are masked by the strong first multiple events using the 1-D unary filters and standard
2-D adaptive filter in time-space domain. As can be appreciated in Figures 2(b) and 2(c), despite not
using the additional information that the neighboring traces provide, our 1-D subtraction approach gives
results of the same quality as the standard 2-D adaptive filter in time-space domain. Our 1-D technique
achieve slightly better levels of noise, while the 2-D a slightly better multiple attenuation.

The wavelet frame provides an inherent scale-adaptive windowing. Combined with scale-wise unary
filter estimation it offers a potentially seamless matching procedure in 1-D. It maybe additionally con-
strained by scale-dependent phase filtering. Further developments along the space dimension are being
pursued to reinforce the lateral coherence of the method.
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