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SUMMARY

Multiple attenuation is a crucial task in seismic data processing because multiples usually cover primaries
from fundamental reflectors. Predictive multiple suppression methods remove these multiples by building
an adapted model, aiming at being subtracted from the original signal. However, before the subtraction is
applied, a matching filter is required to minimize amplitude differences and misalignments between
multiples and their prediction, and thus to minimize the multiples in the input dataset after the subtraction.
In this paper we focus on the subtraction element. The proposed complex wavelet transform based
approach simplifies the matching filter estimation.
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I ntroduction

Reducing multiple contamination (Verschuur and Berkhout, 1992; Matsdrbaagoset, 2005) repre-
sents one of the greatest challenges in seismic processing. Two majotsadifferentiate multiples
and primary reflections: (1) the velocity of primaries is greater than that dfpias, and (2) multiples
are periodic events in contrast with primaries. We can hence classify multipfeiation methods into
two broad categoriegiltering methodshat find a differentiating feature in the primary and the multiple
(Kelamis et al., 2008); angredictive suppression methotiat first predict and then subtract the multi-
ple events from original seismic data (Pica et al., 2005; Weisser et al.).28@6, no single approach
fits all scenarios. Most contractors thus propose an extensive jmafaemultiple algorithms that, in
practice, may be combined and cascaded to obtain acceptable solutions.

Predictive multiple suppression methods consist of two main elements: predintiosubtraction. Pre-
diction builds a multiple estimation from the primaries using prior knowledge. Stil@raminimizes

amplitude difference and small misalignment between actual multiple events andrédicted mod-

els, to maximize multiple attenuation in the input dataset. The efficiency of thisesgipn strongly
depends on the adaptation capability of the matching filter employed in the sidstralement. In the
following we will focus on the enhancement of the latter key element.

Primaries and multiples are not fully uncorrelated, as they are generatadtie same source. This
poses a major challenge in the design of an optimal matching filter to minimize the multgiesev
in the input dataset from their predicted model. Slight differences in theictsgo may be exploited

with wavelet-based approaches (Pokrovskaia and Wombell, 2004; Abinaéd2007; Neelamani et al.,
2008). The present paper follows a similar trail, with a twist towards filteptadien.

M ethod

With the aim of simplifying the filter design, we propose to decompose a complieatiedband prob-
lem into a series of more tractable narrow-band issues by means of wisaeles. Within this approach,
the length of the matching filters at each (wavelet) scale can be reducedtd@isingle sample while
still increasing “the matching capability”. As this filter is the most computational deling compo-
nent of the subtraction element, the reduction in its complexity increases thaitaiiopal efficiency,
despite the use of a redundant representation.

A standard observation model of each 1-D trace of the input dataséecaritten as:
u[n] = p[n] +s[n} +wn] 1)

whereu[n| denotes the recorded signg|n] the primary eventsg[n] the multiple events and/[n] the
background noise. To decompose each trace of the data and the modeleiritme-scale domain,
we have chosen wavelet frames (Daubechies, 1992; Casazza\28l(fi, 2009) that approximate the
complex Morlet wavelet transform. The Morlet wavelet can be written as:

Y(t) = e te 2 (2)

whereay is the central frequency of the modulated Gaussian atands for the time variable. And the
discrete family of functions employed in the frame(a sampling of the continuous wavelet transform)

is given by: _
1 nT —r2lbg
v —
q"l’,j [n] - WW( 2j+V/V ) (3)
with r, j € Z, r being the (discretized) timg,the number of scaldyy the sampling period at the scale

zero,V the number of voices per octave and [0,V — 1] the octave. Using the above wavelet family,
the time-scale representation of a given traleg is given in closed form by the scalar product formula:

Wy v[r] = <U7 Lﬂr,j.v>-
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The main problem to solve is the design of an optimum unary (one-sample) filtehwminimizes the

error between multiple events and their model, leaving primary events unha@mez the multiples
are estimated and subtracted from the original data in time-scale, the filteredsisynthesized in the
time domain applying an inverse Morlet wavelet transform.

Following a minimum energy approach, the optimum complex valigethe one that, multiplied with
the decomposed multiple modéis ,[r], minimizes the mean square erejr) with the decomposed
input datasedVu; y[r]:

Gopt = minef@) =miny Wiy, 1] —aW s @

where sequencé&'u; ,[r] andWs ,[r] are complex and th§ symbol denotes a locally weighed sum
alongN consecutive samples around time index

The optimum value in the mean square error sense is the unary Wiener filteniplex signals:

_ S WU [rWs 1] 5)
> Wsalrf

This algorithm can either be applied locally or globally, depending on thegmobonstrains.

Aopt

At this step, note that proceeding with care is important. Instead of perfgranitirect measurement of
the fractional delay, or equivalently of the group delay, we attempt to estitmatehase delay at each
scale or frequency component. When the signal-to-noise ratio (SNR)Hsdllghe meaningfull phase
components are sufficiently well estimated. Alternatively, when the SNRedses, the moderate phase
errors made at key scale components could lead to huge errors on thedgiay. As a consequence,

a careful processing of tha; at each scale has to be performed, to provide a low dip varying phase
based on the meaningful components.

When the group delay difference between the input and the referegquoersces is less than the half the
signal period at all scales, it is possible to correct this delay with the prslyianentioned approach,
because the crosscorrelation between the two sequences is alwaysoclbe zero delay. But as the
group delay difference increases over this limit, the crosscorrelation ppeses away from the zero
delay sample and, as a result, the estimatioa.gf done in Equation 5 is no longer possible. As a
consequence, a redesign of the filter length is necessary.

A simple way to yield a filter robust to higher delays, while keeping the minimum meaars error
criterion, consists in the introduction of a delay term into the above unary: filteis is equivalent to
finding the optimum value and delaym that minimize the following equation:

eam =3 [Wu[r] —awsy[r —m) |2 : (6)

T

where the optimuna depending om, as shown above, is:
Wu; [r]Ws [r —m]
Aopt|M| = 2y il 2
2r ’W91'7v[r - m”

Several criteria can be chosen in the selection of the optimum delay thatdradapted to the nature

of the seismic signals. For example, we can keep with minimum mean squareréendon and find the
optimum integer delayn, estimating thegp at each delay first, and then select the one which minimizes
Equation 6. Or on the contrary, we can define the optimum delay as the amaatkianizes the normal-
ized crosscorrelation between the adapted model and the recordel] siggneonly called coherence
(Neidell and Taner, 1971; Taner et al., 1979; Schimmel and Pauls88#),due to the importance of
shape over amplitude.

(7)
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Figure 1 Subtraction algorithm details. Portion of a trace from the recorded signalnibkiple model,

and the filtered multiple model and recorded signal. In time and in time-soade(lus). The signals in
(a) and (b) are attenuated by a factor of 1000 except the multiple modeistbac 10’. The sampling

rate is 250 smpl/s.

7 ST
1600 1700 1800
Receiver number

1900

1500 1600 1700 1800
(c) Receiver number

1500 1600 1700 1800 1900 1500 1900

(a) Receiver number (b)

Figure 2 Subtraction algorithm results. (a) Recorded signal. (b) Results with theuhddy complex
filters in the time-scale domain. (c) Results with a standard 2-D adaptive filtenatspace domain.
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Results

The example shown in Figures 1 and 2 is taken from a 2-D real marine tldtabeth figures the data
is decomposed with a Morlet wavelet withy = 6.3 rad/smpl,j € [1,4], v € [0,3] andbg = 0.5. The
optimum unary filter estimation for each sample uses a rectangular window38 6. Additionally, to
provide robustness against delays higher than half of the signal par@bave chosen the maximum
normalized crosscorrelation criterion with a rangetdf2 ms.

Figure 1 provides some intermediate results on a portion of a trace aboutsthaditiple arrival. On
the left panel the recorded signal and the multiple model are plotted in time, éogdgth their modulus
in the time-scale domain; while on the right panel the filtered model and the filtecedded signal.
As shown in the time-scale domain figures, the unary filter has successdlged the differences be-
tween the real multiple events and their predicted model to attenuate the multipie evéne recorded
signal enough to uncover the main primary events. The main objective ineéFfay is to uncover the
primaries that are masked by the strong first multiple events using the 1-B filtenrs and standard
2-D adaptive filter in time-space domain. As can be appreciated in Figungs2d 2(c), despite not
using the additional information that the neighboring traces provide, @usdbtraction approach gives
results of the same quality as the standard 2-D adaptive filter in time-spacénd@uoa 1-D technique
achieve slightly better levels of noise, while the 2-D a slightly better multiple attemuatio

The wavelet frame provides an inherent scale-adaptive windowingnb@ed with scale-wise unary
filter estimation it offers a potentially seamless matching procedure in 1-D. Itomagditionally con-
strained by scale-dependent phase filtering. Further developmengsthésapace dimension are being
pursued to reinforce the lateral coherence of the method.
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