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Motivation: Inverse problems
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Objective: Find an estimation ŝ ∈ R
N of s from y .

Observation model
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Variational formulation

Define estimate ŝ as a solution to minimize
s∈RN

F (s) + R(s).

Minimization problem

⋆ F is a data fidelity term related to the observation model

⋆ R is a regularization term related to a priori assumptions on
the target solution
• e.g. a priori on the smoothness of an image,
• e.g. a priori on the sparsity of a signal,
• e.g. support constraint,
• e.g. amplitude/energy bounds,
• etc.
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Variational formulation

Define estimate ŝ as a solution to minimize
s∈RN

F (s) + R(s).

Minimization problem

⋆ F is a data fidelity term related to the observation model

⋆ R is a regularization term related to a priori assumptions on
the target solution

In the context of large scale problems, how to find an optimization
algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement?

?
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Blind deconvolution

Blind deconvolution problem : y = h ∗ s + w , with

⋆ s: unknown sparse latent signal

Ultrasonic NDT/NDE Mass spectrometry/chromatography
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Blind deconvolution

Blind deconvolution problem : y = h ∗ s + w , with

⋆ s: unknown sparse latent signal

⋆ h: unknown impulse response
◮ blur, linear sensor response, point spread function, seismic wavelet,

spectral broadening

Objective: Find estimate (ŝ , ĥ) ∈ R
N1 × R

N2 from y .

Define estimate (ŝ , ĥ) as a solution to minimize
(s,h)∈RN1+N2

F (s, h) + R1(s) + R2(h).

Minimization problem
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Choose a regularization term to promote sparsity in the signal

ℓ2

• Smooth and convex

• Not efficient as a sparsity measure
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Choose a regularization term to promote sparsity in the signal

ℓ0

• Nonsmooth and nonconvex

• Difficult to manage



Introduction Proposed minimization method Seismic blind deconvolution problem Conclusion

Sparse deconvolution of seismic data with a regularized norm ratio 6/25

Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1

• Convex relaxation of the ℓ0-penalization function

• Nonsmooth and convex

• Do not lead to a good estimation of s in the context of blind deconvolution
problems

[Benichoux et al. – 2013]



Introduction Proposed minimization method Seismic blind deconvolution problem Conclusion

Sparse deconvolution of seismic data with a regularized norm ratio 6/25

Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2

◮ Used in:

◮ Non-negative Matrix Factorization (NMF) [Hoyer – 2004]
◮ Sharpness constraint on wavelet coefficients in images
◮ Non-destructive testing/evaluation (NDT/NDE)
◮ Sparse recovery [Esser et al. – 2015]
◮ Potential avoidance of pitfalls [Benichoux et al. – 2013]
◮ Earlier mentions in geophysics [Gray – 1978]
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Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2

Comparison of different measures:

• Let a = (a(n))1≤n≤N such that (∀n ∈ {1, . . . ,N}) a(n) = 1/N

• Let b = (b(n))1≤n≤N such that b(1) = 1 and (∀n ∈ {2, . . . ,N}) b(n) = 0

◮ Same ℓ1 norm: ‖a‖1 = ‖b‖1 = 1

◮ ‖a‖0 = N ≥ ‖b‖0 = 1

◮ ‖a‖1/‖a‖2 =
√
N ≥ ‖b‖1/‖b‖2 = 1
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Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2

• Nonsmooth and nonconvex

• Efficient in the context of blind deconvolution problems

[Benichoux et al. – 2013]

• Difficult to manage
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Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2 ℓ1,α/ℓ2,η

⋆ Use a smooth approximation of the ℓ1/ℓ2 penalization function.

• (∀s ∈ R
N) ℓ1,α(s) =

N1∑

n=1

(√
(s(n))2 + α2 − α

)
, where α ∈]0,+∞[

 also known as the hybrid ℓ1 − ℓ2 or the hyperbolic norm

• (∀s ∈ R
N) ℓ2,η(s) =

√√√√
N1∑

n=1

(s(n))2 + η2, where η ∈]0,+∞[
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Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2 ℓ1,α/ℓ2,η log
(

ℓ1,α+β

ℓ2,η

)

⋆ Use a smooth approximation of the ℓ1/ℓ2 penalization function.

• (∀s ∈ R
N) ℓ1,α(s) =

N1∑

n=1

(√
(s(n))2 + α2 − α

)
, where α ∈]0,+∞[

• (∀s ∈ R
N) ℓ2,η(s) =

√√√√
N1∑

n=1

(s(n))2 + η2, where η ∈]0,+∞[
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Choose a regularization term to promote sparsity in the signal

ℓ0 ℓ1 ℓ1/ℓ2 ℓ1,α/ℓ2,η log
(

ℓ1,α+β

ℓ2,η

)

⋆ Use a smooth approximation of the ℓ1/ℓ2 penalization function.

• The logarithm function strengthens the sparsity measure of the ℓ1/ℓ2
function.

• Differentiable nonconvex function.
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Minimization problem

Find x̂ ∈ Argmin
x∈RN

{
G (x) = F (x) + R(x)

}
Optimization problem

where

◮ R : RN →] −∞,+∞] is proper, lsc, bounded from below by
an affine function, and the restriction to its domain is
continuous,

◮ F : RN →] −∞,+∞[ is β-Lipschitz differentiable ,

◮ G is coercive.
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Forward-Backward algorithm

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγkR (xk − γk∇F (xk))

Let R : RN →] − ∞,+∞] be proper, lsc, and bounded from below by an affine
function.
The proximity operator of R at x ∈ R

N is defined by

proxR(x) = Argmin
y∈R

N

R(y) +
1

2
‖y − x‖2.
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2
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⋆ When R is convex , then proxR(x) is reduced to a singleton.
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Forward-Backward algorithm

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγkR (xk − γk∇F (xk))

Let R : RN →] − ∞,+∞] be proper, lsc, and bounded from below by an affine
function.
The proximity operator of R at x ∈ R

N is defined by

proxR(x) = Argmin
y∈R

N

R(y) +
1

2
‖y − x‖2.

⋆ When R is convex , then proxR(x) is reduced to a singleton.

⋆ When R = ιC is the indicator function of the non empty closed convex set

C ⊂ R
N , then proxιC (x) = ΠC(x) = argmin

y∈C

‖y − x‖2.
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Forward-Backward algorithm

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγkR (xk − γk∇F (xk))

Let R : RN →] − ∞,+∞] be proper, lsc, and bounded from below by an affine
function. Let U ∈ R

N×N be a symmetric positive definite (SPD) matrix.
The proximity operator of R at x ∈ R

N is defined by

proxU,R(x) = Argmin
y∈R

N

R(y) +
1

2
‖y − x‖2U ,

where ‖x‖2U = 〈x | Ux〉.

⋆ When R is convex , then proxR(x) is reduced to a singleton.

⋆ When R = ιC is the indicator function of the non empty closed convex set

C ⊂ R
N , then proxιC (x) = ΠC(x) = argmin

y∈C

‖y − x‖2.
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Forward-Backward algorithm

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγkR (xk − γk∇F (xk))

Existing convergence results:

⋆ Convergence of (xk)k∈N to a minimizer of G is ensured when
F and R are convex, and 0 < inf

k∈N
γk ≤ sup

k∈N

γk < 2β−1.

[Combettes & Wajs – 2005]
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Forward-Backward algorithm

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγkR (xk − γk∇F (xk))

Existing convergence results:

⋆ Convergence of (xk)k∈N to a minimizer of G is ensured when
F and R are convex, and 0 < inf

k∈N
γk ≤ sup

k∈N

γk < 2β−1.

[Combettes & Wajs – 2005]

⋆ Convergence of (xk)k∈N to a critical point of G is ensured
when F and/or R are nonconvex, and
0 < inf

k∈N
γk ≤ sup

k∈N

γk < β−1.

[Attouch, Bolte & Svaiter – 2011]

 Proof based on Kurdyka- Lojasiewicz inequality
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Kurdyka- Lojasiewizc inequality

Function G satisfies the Kurdyka- Lojasiewicz inequality i.e., for every
ξ ∈ R, and, for every bounded subset E of R

N , there exist three
constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that

(
∀t ∈ ∂G (x)

)
‖t‖ ≥ κ|G (x) − ξ|θ,

for every x ∈ E such that |G (x) − ξ| ≤ ζ.
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Kurdyka- Lojasiewizc inequality

Function G satisfies the Kurdyka- Lojasiewicz inequality i.e., for every
ξ ∈ R, and, for every bounded subset E of R

N , there exist three
constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that

(
∀t ∈ ∂G (x)

)
‖t‖ ≥ κ|G (x) − ξ|θ,

for every x ∈ E such that |G (x) − ξ| ≤ ζ.

⋆ Note that other forms of the KL inequality can be found in the
literature [Bolte et al. - 2007][Bolte et al. - 2010].

⋆ Technical assumption satisfied for a wide class of nonconvex
functions :

• real analytic functions
• semi-algebraic functions
• ...
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Kurdyka- Lojasiewizc inequality

Function G satisfies the Kurdyka- Lojasiewicz inequality i.e., for every
ξ ∈ R, and, for every bounded subset E of R

N , there exist three
constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that

(
∀t ∈ ∂G (x)

)
‖t‖ ≥ κ|G (x) − ξ|θ,

for every x ∈ E such that |G (x) − ξ| ≤ ζ.

⋆ Note that other forms of the KL inequality can be found in the
literature [Bolte et al. - 2007][Bolte et al. - 2010].

⋆ Technical assumption satisfied for a wide class of nonconvex
functions :

• real analytic functions
• semi-algebraic functions
• ...

 So far, almost every practically useful function imagined.
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Variable metric forward-backward algorithm

⋆ Introduce preconditioning symmetric positive definite (SDP) matrices.

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[ and Ak(xk) ∈ R

N×N an SPD matrix.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγ−1

k
Ak(xk),R

(
xk − γkAk(xk) −1∇F (xk)

)
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⋆ Introduce preconditioning symmetric positive definite (SDP) matrices.

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[ and Ak(xk) ∈ R

N×N an SPD matrix.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγ−1

k
Ak(xk),R

(
xk − γkAk(xk) −1∇F (xk)

)

⋆ Existing convergence result:

• Convergence of (xk)k∈N to a minimizer of G
when F and R are convex [Combettes & Vũ - 2012]
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Variable metric forward-backward algorithm

⋆ Introduce preconditioning symmetric positive definite (SDP) matrices.

Let x0 ∈ domR .
Let, for every k ∈ N, γk ∈]0,+∞[ and Ak(xk) ∈ R

N×N an SPD matrix.
For k = 0, 1, . . .⌊
xk+1 ∈ proxγ−1

k
Ak(xk),R

(
xk − γkAk(xk) −1∇F (xk)

)

⋆ Existing convergence result:

• Convergence of (xk)k∈N to a minimizer of G
when F and R are convex [Combettes & Vũ - 2012]

⋆ Our contributions:

✓ Convergence in the nonconvex case
✓ Choice of the preconditioning matrices
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Majorize-Minimize strategy [Jacobson & Fessler – 2007]

For every k ∈ N, there exists an SPD matrix Ak (xk ) ∈ R
N×N such that

(∀x ∈ R
N) Q(x , xk ) = F (xk ) + 〈x − xk | ∇F (xk )〉 +

1

2
‖x − xk‖2Ak (xk )

is a majorant function of F at xk on domR , i.e.,

F (xk ) = Q(xk , xk) and (∀x ∈ domR) F (x) ≤ Q(x , xk ).

F

xk

Q(·, xk)
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Majorize-Minimize strategy [Jacobson & Fessler – 2007]

For every k ∈ N, there exists an SPD matrix Ak (xk ) ∈ R
N×N such that

(∀x ∈ R
N) Q(x , xk ) = F (xk ) + 〈x − xk | ∇F (xk )〉 +

1

2
‖x − xk‖2Ak (xk )

is a majorant function of F at xk on domR , i.e.,

F (xk ) = Q(xk , xk) and (∀x ∈ domR) F (x) ≤ Q(x , xk ).

F is differentiable with a
β-Lipschitzian gradient on

a convex subset of RN

Ak(xk) ≡ β IN satisfies
the majorization condition

[Bertsekas - 1999]
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VMFB algorithm: Convergence results

◮ G satisfies the KL inequality .

◮ ∃(ν, ν) ∈]0,+∞[2 such that (∀k ∈ N) νIN 4 Ak(xk ) 4 νIN .

◮ The step-size is chosen such that either:

• ∃(γ, γ) ∈]0,+∞[2 such that (∀k ∈ N) γ ≤ γk ≤ 1 − γ.

• R is convex and ∃(γ, γ) ∈]0,+∞[2 such that (∀k ∈ N) γ ≤ γk ≤ 2 − γ.

◮ Global convergence

⋆ (xk )k∈N converges to a critical point x̂ of G .
⋆ (G(xk ))k∈N is a nonincreasing sequence converging to G(x̂).

◮ Local convergence

If (∃υ > 0) such that G(x0) ≤ infx∈RN G(x) + υ,
then (xk )k∈N converges to a solution x̂ to the minimization problem.
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Block separable structure

◮ R is an additively block separable function.
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Block separable structure

◮ R is an additively block separable function.

x ∈ R
N

x(1) ∈ R
N1

x(2) ∈ R
N2

·
·
·
·

x(J) ∈ R
NJ

N =
J∑

j=1

Nj

(∀̇ ∈ {1, . . . , J}) R̇ : RN̇ →] −∞,+∞] is a proper, lsc function,
continuous on its domain and bounded from below by an affine function.

R
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Block separable structure

◮ R is an additively block separable function.

x

x(1)

x(2)

·
·
·
·

x(J)

=
J∑

j=1

R(x(j))

(∀̇ ∈ {1, . . . , J}) R̇ : RN̇ →] −∞,+∞] is a proper, lsc function,
continuous on its domain and bounded from below by an affine function.

R = R
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Block coordinate approach

Find x̂ ∈ Argmin
x∈RN

{
G (x) = F (x) +

J∑

j=1

Rj(x
(j))

}

Optimization problem

⋆ Principle

At each iteration k ∈ N, update only a subset of components
(∼ Gauss-Seidel methods)

⋆ Advantages

• more flexibility,
• reduce computational cost at each iteration,
• reduce memory requirement.
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Block coordinate VMFB algorithm

Let x0 ∈ domR .
For k = 0, 1, . . .

Let ̇k ∈ {1, . . . , J},A̇k (xk) ∈ R
N̇k

×N̇k and γk ∈]0,+∞[.

x
(̇k)
k+1 ∈ proxγ−1

k
A̇k

(xk),R̇k

(
x
(̇k)
k

− γkA̇k (xk) −1∇̇kF (xk)
)

x
(k)
k+1 = x

(k)
k

where (∀k ∈ N) x
(k)
k

=
(
x(1), . . . , x(k−1), x(k+1), . . . , x(J)

)
.
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Block coordinate VMFB algorithm

Let x0 ∈ domR .
For k = 0, 1, . . .

Let ̇k ∈ {1, . . . , J},A̇k (xk) ∈ R
N̇k

×N̇k and γk ∈]0,+∞[.

x
(̇k)
k+1 ∈ proxγ−1

k
A̇k

(xk),R̇k

(
x
(̇k)
k − γkA̇k (xk) −1∇̇kF (xk)

)

x
(k)
k+1 = x

(k)
k

Existing convergence results:

⋆ [Bolte, Sabach & Teboulle – 2013]

When A̇k
(xk ) ≡ IN̇k

and a cyclic updating rule is adopted.

⋆ [Frankel, Garrigos & Peypouquet – 2014]

When A̇k
(xk ) is a general SPD matrix and a cyclic updating rule is adopted.

⋆ [Combettes & Pesquet – 2014]

In the convex case, when A̇k
(xk ) ≡ IN̇k

and a random updating rule is adopted.
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Block coordinate VMFB algorithm

Let x0 ∈ domR .
For k = 0, 1, . . .

Let ̇k ∈ {1, . . . , J},A̇k (xk) ∈ R
N̇k

×N̇k and γk ∈]0,+∞[.

x
(̇k)
k+1 ∈ proxγ−1

k
A̇k

(xk),R̇k

(
x
(̇k)
k − γkA̇k (xk) −1∇̇kF (xk)

)

x
(k)
k+1 = x

(k)
k

⋆ Our contributions:

✓ Convergence in the nonconvex case.
✓ Choice of preconditioning matrices (A̇k (xk))

k∈N
.

✓ General updating rule for (̇k)k∈N.
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BC-VMFB algorithm: Convergence results

◮ Choice of preconditioning matrices (A̇k (xk))
k∈N

For every k ∈ N, for every ̇k ∈ {1, . . . , J}, A̇k
(xk ) satisfies the

MM assumption at x
(̇k )
k for the restriction of F to the block ̇k :

y ∈ R
N̇k 7→ F

(
x
(1)
k , . . . , x

(̇k−1)
k , y , x

(̇k+1)
k , . . . , x

(J)
k

)
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BC-VMFB algorithm: Convergence results

◮ Choice of preconditioning matrices (A̇k (xk))
k∈N

For every k ∈ N, for every ̇k ∈ {1, . . . , J}, A̇k
(xk ) satisfies the

MM assumption at x
(̇k )
k for the restriction of F to the block ̇k :

y ∈ R
N̇k 7→ F

(
x
(1)
k , . . . , x

(̇k−1)
k , y , x

(̇k+1)
k , . . . , x

(J)
k

)

◮ Updating rule for (̇k)k∈N
Blocks (̇k )k∈N updated according to a quasi-cyclic rule , i.e., there exists

K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇k , . . . , ̇k+K−1}.
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• K = 3:

• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .}
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}
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Blocks (̇k )k∈N updated according to a quasi-cyclic rule , i.e., there exists

K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇k , . . . , ̇k+K−1}.
Example: J = 3 blocks denoted {1, 2, 3}

• K = 3:

• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .}
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}

• K = 4: possibility to update some blocks more than once every K iteration

• {1, 3, 2, 2, 2, 2, 1, 3, . . .}
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◮ Choice of preconditioning matrices (A̇k (xk))
k∈N

For every k ∈ N, for every ̇k ∈ {1, . . . , J}, A̇k
(xk ) satisfies the

MM assumption at x
(̇k )
k for the restriction of F to the block ̇k :
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(1)
k , . . . , x

(̇k−1)
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(̇k+1)
k , . . . , x

(J)
k

)

◮ Updating rule for (̇k)k∈N
Blocks (̇k )k∈N updated according to a quasi-cyclic rule , i.e., there exists

K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇k , . . . , ̇k+K−1}.

Same convergence results as for the VMFB algorithm:

◮ Global convergence to a critical point of G .

◮ Local convergence to a minimizer of G .
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Seismic blind deconvolution problem
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where

◮ y ∈ R
N1 observed signal (N1 = 784)

◮ s ∈ R
N1 unknown sparse original seismic signal

◮ h ∈ R
N2 unknown original blur kernel (N2 = 41)

◮ w ∈ R
N1 additive noise: realization of a zero-mean white

Gaussian noise with variance σ2
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Proposed criterion

Observation model: y = h ∗ s + w

minimize
s∈RN1 ,h∈RN2

(G (s, h) = F (s, h) + R1(s) + R2(h))

⋆ F (s, h) = ρ(s, h) + ϕ(s), where

• ρ(s, h) = 1
2‖h ∗ s − y‖2  data fidelity term,

• ϕ(s) = λ log

(
ℓ1,α(s) + β

ℓ2,η(s)

)
 smooth regularization term,

with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp.

ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4.
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 smooth regularization term,

with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp.

ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4.

⋆ ℓ1,α(s) =
∑N

n=1

(√
(s(n))2 + α2 − α

)
.

⋆ ℓ2,η(s) =

√∑N

n=1(s(n))2 + η2.
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• ϕ(s) = λ log

(
ℓ1,α(s) + β

ℓ2,η(s)

)
 smooth regularization term,

with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp.

ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4.

• R1(s) = ι[smin,smax]N1
(s), with (smin, smax) ∈]0,+∞[2.

• R2(h) = ιC(h), with C = {h ∈ [hmin, hmax]N2 | ‖h‖ ≤ δ}, for
(hmin, hmax, δ) ∈]0,+∞[3.
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SOOT algorithm

Let s0 ∈ domR1 and h0 ∈ domR2.
For k = 0, 1, . . .

Let (Ks ,Kh) ∈ (N∗)2,A1(sk , hk) ∈ R
N1×N1 ,A2(sk , hk) ∈ R

N2×N2 ,
and γk ∈]0,+∞[. Let sk,0 = sk , and hk,0 = hk .
For j = 1, . . . ,Ks⌊

sk+1,j ∈ prox
γ
−1
k

A1(sk,j ,hk ),R1

(
sk,j − γkA1(sk,j , hk) −1∇1F (sk,j , hk)

)

sk+1 = sk,Ks
.

For i = 1, . . . ,Kh⌊
hk+1,i ∈ prox

γ
−1
k

A2(sk+1,hk,i ),R1

(
sk,j − γkA2(sk+1, hk,i)

−1∇1F (sk+1, hk,i)
)

hk+1 = hk,Kh
.

Assume that there exists (ν, ν) ∈]0,+∞[2 such that, for all k ∈ N,

(∀j ∈ {0, . . . ,Ks − 1}) ν IN1 � A1(sk,j , hk) � ν IN1 ,

(∀i ∈ {0, . . . ,Kh − 1}) ν IN2 � A2(sk+1, hk,i) � ν IN2 .

Thus (sk , hk)k∈N converges to a critical point (ŝ , ĥ) of G and
(
G(sk , hk)

)
k∈N

is a

nonincreasing sequence converging to G(ŝ , ĥ).
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SOOT algorithm: preconditioning matrices

Construction of the quadratic majorants

For every (s, h) ∈ R
N1 × R

N2, let

A1(s, h) =

(
L1(h) +

9λ

8η2

)
IN1

+
λ

ℓ1,α(s) + β
Aℓ1,α(s),

A2(s, h) = L2(s) IN2
,

where

Aℓ1,α(s) = Diag

((
((s(n))2 + α2)−1/2

)
1≤n≤N1

)
,

and L1(h) (resp. L2(s)) is a Lipschitz constant for ∇1ρ(·, h) (resp.
∇2ρ(s, ·)). Then, A1(s, h) (resp. A2(s, h)) satisfies the majoration
condition for F (·, h) at s (resp. F (s, ·) at h).
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Algorithm behavior

Effect of the quasi-cyclic rule on convergence speed
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Numerical results

Noise level (σ) 0.01 0.02 0.03

Observation error
ℓ2 (×10−2) 7.14 7.35 7.68
ℓ1 (×10−2) 2.85 3.44 4.09

Signal error
Krishnan et al., 2011

ℓ2 (×10−2) 1.23 1.66 1.84
ℓ1 (×10−3) 3.79 4.69 5.30

SOOT
ℓ2 (×10−2) 1.09 1.63 1.83
ℓ1 (×10−3) 3.42 4.30 4.85

Kernel error
Krishnan et al., 2011

ℓ2 (×10−2) 1.88 2.51 3.21
ℓ1 (×10−2) 1.44 1.96 2.53

SOOT
ℓ2 (×10−2) 1.62 2.26 2.93
ℓ1 (×10−2) 1.22 1.77 2.31

Time (s.)
Krishnan et al., 2011 106 61 56

SOOT 56 22 18



Introduction Proposed minimization method Seismic blind deconvolution problem Conclusion

Sparse deconvolution of seismic data with a regularized norm ratio 23/25

Numerical results

Sparse seismic reflectivity signal recovery
• Continuous red line: s

• Dashed black line: ŝ
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Numerical results

Band-pass seismic “wavelet” recovery
• Continuous red line: h

• Dashed black line: ĥ
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Conclusion

 Smooth parametric approximations to the ℓ1/ℓ2 norm ratio.



Introduction Proposed minimization method Seismic blind deconvolution problem Conclusion

Sparse deconvolution of seismic data with a regularized norm ratio 24/25

Conclusion

 Smooth parametric approximations to the ℓ1/ℓ2 norm ratio.

 Proposition of the SOOT algorithm based on a new
BC-VMFB algorithm for minimizing the sum of

• a nonconvex smooth function F ,

• a nonconvex non necessarily smooth function R .

 Convergence results both on iterates and function values.

 Blocks updated according to a flexible quasi-cyclic rule.

 Acceleration of the convergence thanks to the choice of
preconditioning matrices based on MM principle.
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Conclusion

 Smooth parametric approximations to the ℓ1/ℓ2 norm ratio.

 Proposition of the SOOT algorithm based on a new
BC-VMFB algorithm for minimizing the sum of

• a nonconvex smooth function F ,

• a nonconvex non necessarily smooth function R .

 Convergence results both on iterates and function values.

 Blocks updated according to a flexible quasi-cyclic rule.

 Acceleration of the convergence thanks to the choice of
preconditioning matrices based on MM principle.

 Application to sparse blind deconvolution .

 Results demonstrated on sparse seismic reflectivity series.
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