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Motivations on blind deconvolution

Blind deconvolution y = h ∗ s + w , with sparse latent signals

Ultrasonic NDT/NDE Mass spectrometry/chromatography
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Motivations on blind deconvolution

Blind deconvolution y = h ∗ s + w , with sparse latent signals

◮ h: (unknown) impulse response
◮ blur, linear sensor response, point spread function, seismic

wavelet, spectral broadening

◮ Objective: find estimates (ŝ, ĥ) ∈ R
N1 × R

N2 using an
optimization approach

◮ Many works on Euclidean (ℓ2) and Taxicab (ℓ1) penalties

Scale-ambiguity  focus on a scale-invariant contrast function
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)

◮ Taxicab-Euclidean norm ratio
◮ ℓ2 ≤ ℓ1 ≤

√
Nℓ2

◮ Scale-invariant “measure” of sparsity

◮ Used in the last decade in:
◮ Non-negative Matrix Factorization (NMF, Hoyer, 2004)
◮ Sharpness constraint on wavelet coefficients in images
◮ Non-destructive testing/evaluation (NDT/NDE)
◮ Sparse recovery

◮ Bonuses:
◮ Potential avoidance of pitfalls (Benichoux et al., 2013)
◮ Earlier mentions in geophysics (Variable norm decon., 1978)
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)

Comparison of different measures

◮ an = 1/N for n ∈ {0, . . . ,N − 1}
◮ b0 = 1 and bn = 0 for n ∈ {1, . . . ,N − 1}

◮ Same ℓ1 norm: ‖a‖1 = ‖b‖1 = 1

◮ ‖a‖0 = N ≥ ‖b‖0 = 1

◮ ‖a‖1/‖a‖2 =
√
N ≥ ‖b‖1/‖b‖2 = 1

◮ Evaluation of ℓ1/ℓ2 for power laws x → xp, (p > 0)
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

A
m
p
li
tu
d
e

xp

Power law series



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20

Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)
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Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio)

ℓ0 quasi-norm ℓ1 norm

ℓ 1
2
quasi-norm SOOT ℓ1/ℓ2 norm ratio
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Formulation

Inverse problem: Estimation of an object of interest x ∈ R
N

obtained by minimizing an objective function

G = F + R
where

◮ F is a data-fidelity term related to the observation model

◮ R is a regularization term related to some a priori assumptions
on the target solution
 e.g. an a priori on the smoothness of a signal,
 e.g. a support constraint,
 e.g. a sparsity/sparseness enforcement,
 e.g. amplitude/energy bounds.
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Formulation

Inverse problem: Estimation of an object of interest x ∈ R
N

obtained by minimizing an objective function

G = F + R

where

◮ F is a data-fidelity term related to the observation model

◮ R is a regularization term related to some a priori assumptions
on the target solution

In the context of large scale problems, how to find an optimization
algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement ?

⇒ Block alternating minimization.

⇒ Variable metric.
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Minimization problem

Problem

Find x̂ ∈ Argmin{G = F + R},

where:

• F : RN → R is differentiable ,

and has an L-Lipschitz gradient on domR , i.e.
(
∀(x , y) ∈ (domR)2

)
‖∇F (x)−∇F (y)‖ ≤ L‖x − y‖,

• R : RN →]−∞,+∞] is proper, lower semicontinuous.

• G is coercive, i.e. lim‖x‖→+∞ G (x) = +∞,

and is non necessarily convex .
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Forward-Backward algorithm

FB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .⌊
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F (xℓ)) , γℓ ∈]0,+∞[.

◮ Let x ∈ R
N . The proximity operator is defined by

proxγℓ R(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2.

 When R is nonconvex:

• Non necessarily uniquely defined.
• Existence guaranteed if R is bounded from below by an affine

function.
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Forward-Backward algorithm
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Let x0 ∈ R
N

For ℓ = 0, 1, . . .⌊
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F (xℓ)) , γℓ ∈]0,+∞[.

◮ Let x ∈ R
N . The proximity operator is defined by

proxγℓ R(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2.

 When R is nonconvex:

• Non necessarily uniquely defined.
• Existence guaranteed if R is bounded from below by an affine

function.

◮ Slow convergence.
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Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
xℓ+1 ∈ prox

γ−1
ℓ Aℓ(xℓ) ,R

(
xℓ − γℓ Aℓ(xℓ)

−1∇F (xℓ)
)
,

with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix.

◮ Let x ∈ R
N . The proximity operator relative to the metric

induced by Aℓ(xℓ) is defined by

proxγ−1
ℓ Aℓ(xℓ) ,R

(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2

Aℓ(xℓ)
.
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Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
xℓ+1 ∈ prox

γ−1
ℓ Aℓ(xℓ) ,R

(
xℓ − γℓ Aℓ(xℓ)

−1∇F (xℓ)
)
,

with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix.

◮ Let x ∈ R
N . The proximity operator relative to the metric

induced by Aℓ(xℓ) is defined by

proxγ−1
ℓ Aℓ(xℓ) ,R

(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2

Aℓ(xℓ)
.

◮ Convergence is established for a wide class of nonconvex
functions G and (Aℓ(xℓ))ℓ∈N are general SDP matrices in
[Chouzenoux et al., 2013]
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Block separable structure

◮ R is an additively block separable function.
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Block separable structure

◮ R is an additively block separable function.

x ∈ R
N

x
(1)∈ R

N1

x
(2)∈ R

N2

x
(J)∈ R

NJ

N =
J∑

̇=1

N̇
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Block separable structure

◮ R is an additively block separable function.

xR = R =
J∑

̇=1

R̇(x
(̇))

(∀̇ ∈ {1, . . . , J}) R̇ : R
N̇ →]−∞,+∞] is a lsc, proper function,

continuous on its domain and bounded from below by an affine function.

x
(1)

x
(2)

x
(J)
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BC Forward-Backward algorithm

BC-FB Algorithm [Bolte et al., 2013]

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
Let ̇ℓ ∈ {1, . . . , J},
x
(̇ℓ)
ℓ+1 ∈ proxγℓ R̇ℓ

(
x
(̇ℓ)
ℓ − γℓ∇̇ℓF (xℓ)

)
, γℓ ∈]0,+∞[,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ .

◮ Advantages of a block coordinate strategy:

• more flexibility,

• reduce computational cost at each iteration,

• reduce memory requirement.
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BC Variable Metric Forward-Backward algorithm

BC-VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .

Let ̇ℓ ∈ {1, . . . , J},
x
(̇ℓ)
ℓ+1 ∈ prox

γ−1
ℓ A̇ℓ (xℓ), R̇ℓ

(
x
(̇ℓ)
ℓ − γℓ A̇ℓ(xℓ)

−1∇̇ℓF (xℓ)
)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ ,

with γℓ ∈]0,+∞[, and A̇ℓ(xℓ) a SDP matrix.

Our contributions:

• How to choose the preconditioning matrices (A̇ℓ(xℓ))ℓ∈N?
 Majorize-Minimize principle.

• How to define a general update rule for (̇ℓ)ℓ∈N?
 Quasi-cyclic rule.
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Majorize-Minimize assumption [Jacobson et al., 2007]

MM Assumption

(∀ℓ ∈ N) there exists a lower and upper
bounded SDP matrix A̇ℓ(xℓ) ∈ R

N̇ℓ
×N̇ℓ

such that (∀y ∈ R
N̇ℓ )

Q̇ℓ(y | xℓ) = F (xℓ) + (y − x
(̇ℓ)
ℓ )⊤∇̇ℓF (xℓ)

+ 1
2
‖y − x

(̇ℓ)
ℓ ‖2A̇ℓ

(xℓ)
,

is a majorant function on domR̇ℓ of the

restriction of F to its jℓ-th block at x
(̇ℓ)
ℓ , i.e.,

(∀y ∈ domR̇ℓ)

F
(

x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , y , x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ

)

≤ Q̇ℓ(y | xℓ).

F (x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , ·, x (̇ℓ+1)

ℓ , . . . , x
(J)
ℓ )

Q̇ℓ(· | xℓ)

x
(̇ℓ)
ℓ
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MM Assumption
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N̇ℓ
×N̇ℓ

such that (∀y ∈ R
N̇ℓ )

Q̇ℓ(y | xℓ) = F (xℓ) + (y − x
(̇ℓ)
ℓ )⊤∇̇ℓF (xℓ)

+ 1
2
‖y − x

(̇ℓ)
ℓ ‖2A̇ℓ

(xℓ)
,

is a majorant function on domR̇ℓ of the

restriction of F to its jℓ-th block at x
(̇ℓ)
ℓ , i.e.,

(∀y ∈ domR̇ℓ)

F
(

x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , y , x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ

)

≤ Q̇ℓ(y | xℓ).

F (x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , ·, x (̇ℓ+1)

ℓ , . . . , x
(J)
ℓ )

Q̇ℓ(· | xℓ)

x
(̇ℓ)
ℓ

domR is convex and F is
L-Lipschitz differentiable ⇒

The above assumption holds if
(∀ℓ ∈ N) A̇ℓ(xℓ) ≡ L IN̇ℓ



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20

Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

• semi-algebraic functions
• real analytic functions
• ...



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20

Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

• semi-algebraic functions
• real analytic functions
• ...

 So far, almost every practically useful function imagined
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(
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)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20

Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.
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• K = 3:
• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .}
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}
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◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.

Example: J = 3 blocks denoted {1, 2, 3}

• K = 3:
• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .}
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}

• K = 4: possibility to update some blocks more than once every K

iteration
• {1, 3, 2, 2, 2, 2, 1, 3, . . .}
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◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.

◮ The step-size is chosen such that:

• ∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 1 − γ.

• For every ̇ ∈ {1, . . . , J}, R̇ is a convex function and
∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 2 − γ.
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Convergence results

Convergence theorem

Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm.

◮ Global convergence:
 (xℓ)ℓ∈N converges to a critical point x̂ of G .

 (G (xℓ))ℓ∈N is a nonincreasing sequence converging to
G (x̂).

◮ Local convergence:
If (∃υ > 0) such that G (x0) ≤ infx∈RN G (x) + υ,
then (xℓ)ℓ∈N converges to a solution x̂ to the minimization
problem.
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Convergence results

Convergence theorem

Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm.

◮ Global convergence:
 (xℓ)ℓ∈N converges to a critical point x̂ of G .

 (G (xℓ))ℓ∈N is a nonincreasing sequence converging to
G (x̂).

◮ Local convergence:
If (∃υ > 0) such that G (x0) ≤ infx∈RN G (x) + υ,
then (xℓ)ℓ∈N converges to a solution x̂ to the minimization
problem.

 Similar results in [Frankel et al., 2014]
restricted to a cyclic updating rule for (̇ℓ)ℓ∈N.
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Seismic blind deconvolution problem
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where

◮ y ∈ R
N1 observed signal (N1 = 784)

◮ s ∈ R
N1 unknown sparse original seismic signal

◮ h ∈ R
N2 unknown original blur kernel (N2 = 41)

◮ w ∈ R
N1 additive noise: realization of a zero-mean white

Gaussian noise with variance σ2
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Proposed criterion

Observation model: y = h ∗ s + w

minimize
s∈RN1 ,h∈RN2

(G (s, h) = F (s, h) + R1(s) + R2(h))

• F (s, h) =
1

2
‖h ∗ s − y‖2

︸ ︷︷ ︸
data fidelity term

+ λ log

(
ℓ1,α(s) + β

ℓ2,η(s)

)

︸ ︷︷ ︸
smooth regularization term

with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm),

for (α, β, η, λ) ∈]0,+∞[4.
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with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm),

for (α, β, η, λ) ∈]0,+∞[4.

• ℓ1,α(s) =
∑N

n=1

(√
s2n + α2 − α

)
.

• ℓ2,η(s) =
√∑N

n=1 s
2
n + η2.
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with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm),

for (α, β, η, λ) ∈]0,+∞[4.

• R1(s) = ι[smin,smax]N1
(s), with (smin, smax) ∈]0,+∞[2.

• R2(h) = ιC(h), with C = {h ∈ [hmin, hmax]
N2 | ‖h‖ ≤ δ}, for

(hmin, hmax, δ) ∈]0,+∞[3.
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SOOT algorithm: propositions

Convergence

Let (sk)k∈N and (hk)k∈N be sequences generated by SOOT. If:

1. There exists (ν, ν) ∈]0,+∞[2 such that, for all k ∈ N,

(∀j ∈ {0, . . . , Jk − 1}) ν IN � A1(s
k,j , hk) � ν IN ,

(∀i ∈ {0, . . . , Ik − 1}) ν IS � A2(s
k+1, hk,i ) � ν IS .

2. Step-sizes γℓ for s and h are chosen in the interval [γ, 2− γ].

3. G is a semi-algebraic function.

Then (sk , hk)k∈N converges to a critical point (ŝ, ĥ) of G (s, h).(
G (sk , hk)

)
k∈N

is a nonincreasing sequence converging to G (ŝ, ĥ).



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 16/20

SOOT algorithm: propositions

Construction of the quadratic majorants

For every (s, h) ∈ R
N1 × R

N2 , let

A1(s, h) =

(
L1(h) +

9λ

8η2

)
IN1 +

λ

ℓ1,α(s) + β
Aℓ1,α(s),

A2(s, h) = L2(s) IN2 ,

where

Aℓ1,α(s) = Diag

((
(s2n + α2)−1/2

)
1≤n≤N1

)
,

and L1(h) (resp. L2(s)) is a Lipschitz constant for ∇1ρ(·, h) (resp.
∇2ρ(s, ·)). Then, A1(s, h) (resp. A2(s, h)) satisfies the majoration
condition for F (·, h) at s (resp. F (s, ·) at h).
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Numerical results

Effect of the quasi-cyclic rule on convergence speed
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Numerical results

Noise level (σ) 0.01 0.02 0.03

Observation error
ℓ2 (×10−2) 7.14 7.35 7.68
ℓ1 (×10−2) 2.85 3.44 4.09

Signal error
Krishnan et al., 2011

ℓ2 (×10−2) 1.23 1.66 1.84
ℓ1 (×10−3) 3.79 4.69 5.30

SOOT
ℓ2 (×10−2) 1.09 1.63 1.83
ℓ1 (×10−3) 3.42 4.30 4.85

Kernel error
Krishnan et al., 2011

ℓ2 (×10−2) 1.88 2.51 3.21
ℓ1 (×10−2) 1.44 1.96 2.53

SOOT
ℓ2 (×10−2) 1.62 2.26 2.93
ℓ1 (×10−2) 1.22 1.77 2.31

Time (s.)
Krishnan et al., 2011 106 61 56

SOOT 56 22 18
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Numerical results

Sparse seismic reflectivity signal recovery
• Continuous red line: s
• Dashed black line: ŝ
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Numerical results

Band-pass seismic “wavelet” recovery
• Continuous red line: h
• Dashed black line: ĥ

1 10 20 30 40
−0.5

0

0.5

1



Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses

Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 18/20

Conclusion

 Proposition of the SOOT algorithm based on a new
BC-VMFB algorithm for minimizing the sum of

• a nonconvex smooth function F ,

• a nonconvex non necessarily smooth function R .

 Smooth parametric approximations to the ℓ1/ℓ2 norm ratio

 Convergence results both on iterates and function values.

 Blocks updated according to a flexible quasi-cyclic rule.

 Acceleration of the convergence thanks to the choice of
matrices (A̇ℓ(xℓ))ℓ∈N based on MM principle.

 Application to sparse blind deconvolution

 Results demonstrated on sparse seismic reflectivity series
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So, why Tobrouk (or Tobruk)?

A bunker named Tobruk

or a concrete ℓ1 ⊂ ℓ2 embedding

http://fr.wikipedia.org/wiki/Tobrouk#Fortification
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