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Abstract

Background: Inferring gene networks from high-throughput data constitutes an
important step in the discovery of relevant regulatory relationships in organism
cells. Despite the large number of available Gene Regulatory Network inference
methods, the problem remains challenging: the underdetermination in the space
of possible solutions requires additional constraints that incorporate a priori
information on gene interactions.

Methods: Weighting all possible pairwise gene relationships by a probability of
edge presence, we formulate the regulatory network inference as a discrete
variational problem on graphs. We enforce biologically plausible coupling between
groups and types of genes by minimizing an edge labeling functional coding for a
priori structures. The optimization is carried out with Graph cuts, an approach
popular in image processing and computer vision. We compare the inferred
regulatory networks to results achieved by the mutual-information-based Context
Likelihood of Relatedness (CLR) method and by the state-of-the-art GENIE3,
winner of the DREAM4 multifactorial challenge.

Results: Our BRANE Cut approach infers more accurately the five DREAM4 in
silico networks (with improvements from 6 % to 11 %). On a real Escherichia coli

compendium, an improvement of 11.8 % compared to CLR and 3 % compared to
GENIE3 is obtained in terms of Area Under Precision-Recall curve. Up to 48
additional verified interactions are obtained over GENIE3 for a given precision.
On this dataset involving 4345 genes, our method achieves a performance similar
to that of GENIE3, while being more than seven times faster. The BRANE Cut
code is available at:
http://www-syscom.univ-mlv.fr/˜pirayre/Codes-GRN-BRANE-cut.html

Conclusions: BRANE Cut is a weighted graph thresholding method. Using
biologically sound penalties and data-driven parameters, it improves three
state-of-the-art GRN inference methods. It is applicable as a generic network
inference post-processing, due its computational efficiency.

Keywords: Network inference; Reverse engineering; Discrete optimization; Graph
cuts; Gene expression data; DREAM challenge

Background
Gene expression microarray techniques and high-throughput sequencing-based ex-

periments furnish numerical data for gene regulatory process characterization. Gene

Regulatory Network (GRN) inference provides a framework to transform high-

throughput data into meaningful information. It consists of the construction of

mailto:aurelie.pirayre@ifpen.fr; camille.couprie@ifpen.fr; frederique.bidard-michelot@ifp.fr; laurent.duval@ifpen.fr; jean-christophe.pesquet@univ-paris-est.fr
http://www-syscom.univ-mlv.fr/~pirayre/Codes-GRN-BRANE-cut.html


Pirayre et al. Page 2 of 17

graph structures that highlight regulatory links between transcription factors and

their target genes. GRNs are used as an initial step for experimental condition anal-

ysis or network interpretation, for instance classification tasks [1], leading to more

insightful biological knowledge extraction. It may also directly offer genetic targets

for specific experiments, such as directed mutagenesis and/or knock-out procedures.

Despite the large variety of proposed GRN inference methods, building a GRN

remains a challenging task due to the nature of gene expression and the structure of

the experimental data. It notably involves data dimensionality, especially in terms of

gene/replicate/condition proportions. Indeed, gene expression data obtained from

microarrays or high-throughput technologies correspond to the expression profiles

of thousands of genes. Expression profiles reflect gene expression levels for differ-

ent replicates or strains studied in different physico-chemical, temporal or culture

medium conditions. Although the cost of biological experiments diminishes, gene ex-

pression data is often acquired under a limited number of replicates and conditions

compared to the number of genes. This causes difficulties in properly inferring gene

regulatory networks and in recovering reliable biological interpretations of such net-

works. Continuous efforts from the bioinformatics community, partly driven by the

organization of the DREAM challenges [2], hitherto allowed for constant progresses

in GRN inference efficiency.

GRN inference approaches are often cleaved into two classes of methods [3, 4]:

model-based or information-theoretic score-based. The latter notably employs

mutual-information measures, which quantify the mutual dependence or the in-

formation shared by stochastic phenomena. They are used in frequently mentioned

and compared GRN methods, for instance: Relevance Network (RN) [5], Algorithm

for the Reconstruction of Accurate Cellular Network (ARACNE) [6], Minimum Re-

dundancy NETwork (MRNET) [7], or Context Likelihood of Relatedness (CLR) [8].

CLR was shown to outperform RN, ARACNE and MRNET on several datasets [8].

While RN removes edges whose mutual information is lower than a threshold, CLR

exhibits improved performance by computing a score derived from Z-statistics on

mutual-information, leading to more robust results. Model-based methods include

Bayesian approaches, Gaussian graphical models [9, 10], or differential equations

[11, 4]. Graphical models rely on strong hypotheses on data distribution, that may

yield poor performance when tested on real datasets where the number of replicates

or conditions is very small in proportion to the number of genes. The performance

of such inferred networks can be sensibly improved by a network deconvolution

approach ([12], thereafter denoted by ND) that removes global transitive or in-

direct effects by eigen-decompositions. Differential equation approaches are often

restricted by limited-size time course data. The more recent GENIE3 (GEne Net-

work Inference with Ensemble of trees) [13] and Jump3 [14] approaches prevent such

a pitfall by avoiding assumptions on the data. Instead, they formulate the graph

inference as a feature selection problem, and learn a ranking of edge presence prob-

ability. A drawback of model-based versus mutual-information-based approaches is

a rather high computational cost on standard-size networks.

The problem of network inference boils down to finding a set of edges that (hope-

fully) represents actual regulations between genes, given their expression profiles.

As we search for a set of regulatory edges, the outcome can be related to an integer
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binary solution: presence or absence for each gene-to-gene edge. From this frame-

work, we incorporate additional structural a priori based on biological observations

and assumptions. They control different connectivity aspects involving particular

genes coding for transcription factors. Such supplementary information from het-

erogeneous data sources, when available, supports the network inference process

[15]. We then translate the network inference problem into a variational formula-

tion as detailed in the ‘Mathematical modeling of the structural a priori’ section.

Our approach generalizes classical inference. A first additional penalty influences

the degree of connectivity of transcription factors and target genes. A second con-

straint promotes edges related to co-regulation mechanisms. The obtained integer

programming problem may be solved by finding a maximal flow in a graph, as ex-

plained in the ‘Optimization strategy’ section. This approach, known as Graph cuts,

is well-investigated in the computer vision and image processing literature, where

it has demonstrated computational efficiency in a large number of tasks [16].

Our contributions are the following:

1. We introduce BRANE Cut, a novel Biologically-Related A priori Network En-

hancement for gene regulation based on Graph cuts. Previous Graph cuts formu-

lations in bioinformatics were employed only for clustering in biological network

analysis [17] or for feature selection in the Genome-Wide Association Study con-

text [18].

2. The proposed method generalizes standard regulatory network inference by incor-

porating additional terms with biological interpretation. Since their regularization

parameters are estimated from gene set cardinality, it can be applied to various

transcriptomic data.

3. The computation time of our method is negligible in comparison with other

model-based approaches with inference improvements.

4. It can be used as a generic GRN post-processing with any input weights and

supplementary information on transcription factors.

The paper is organized as follows: we propose in the next section the novel varia-

tional approach for building GRNs and we detail the efficient optimization strategy

used to solve the related minimization problem. BRANE Cut outcomes and per-

formance on benchmark datasets coming from the DREAM4 challenge and the

Escherichia coli compendium are provided in the ‘Results and discussion’ section.

We finally conclude and offer perspectives.

Methods
Mathematical modeling of the structural a priori

We first introduce our notations before detailing our structural models and vari-

ational formulation. Let G represent the total number of genes for which expres-

sion data is collected. Expression data is gathered in a symmetric weighted adja-

cency matrix W ∈ R
G×G. Its (i, j) element corresponds to a statistical measure

reflecting the strength of the link, or information shared, between the expression

profiles of gene i ∈ {1, . . . , G} and gene j ∈ {1, . . . , G}. Our approach uses non-

negative weights. A convenient choice for ωi,j is the normalized mutual information

(ωi,j ∈ [0, 1]) computed between the expression profiles of genes i and j.

Let G(V, E) be a fully connected, undirected and non-reflexive graph where V =

{v1, . . . vG} is a set of nodes (corresponding to genes), and E = (ei,j)(i,j)∈V2|i<j is a
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set of edges (corresponding to plausible gene interactions). Each edge ei,j is weighted

by the value ωi,j from matrix W. The initial number of gene-to-gene edges of G,

denoted by ǫ, is equal to G(G − 1)/2. Inferring a GRN from G aims to construct a

final graph selecting a subset of edges E∗ ⊂ E which reflects true gene regulatory

processes. We formulate the search for this graph by computing an edge indicator

vector x ∈ {0, 1}ǫ whose components xi,j are such that

xi,j =







1 if ei,j ∈ E∗,

0 otherwise.
(1)

We assume in this work that a list of putative transcription factors is available. A

gene supposed to code for a transcription factor is metonymically denoted by TF. A

gene not identified with this property is designated by TF. The TFs/TFs notation

defines two complementary subsets of the ensemble of genes V. Subsequently, T ⊆ V

denotes the set of putative TFs. We consider that regulation is implicitly oriented

from TF toward TF genes, and do not infer edge directions between TF-TF links.

Assuming that significant edges have stronger weights ωi,j , we wish to maximize

the sum of weights, while expressing our structural a priori in the inference model.

To that goal, the edge labeling problem is formulated as the minimization of the

composite functional:

minimize
x∈{0,1}ǫ

∑

(i,j)∈V2

i<j

ωi,j |xi,j − 1|

︸ ︷︷ ︸

favors strongly

weighted edges

+
∑

(i,j)∈V2

i<j

λi,jxi,j

︸ ︷︷ ︸

favors TF-TF

edge presence

+
∑

i∈V\T ,

(j,j′)∈T 2

j<j′

ρi,j,j′ |xi,j − xi,j′ |

︸ ︷︷ ︸

enforces regulatory

relationships coupling

. (2)

Let us comment the first term in the above functional. In order to select edges of

strong weights ωi,j , the first term reflects a biological data fidelity term. It represents

a gene-to-gene edge deletion cost. Thus, if ωi,j is large (respectively, small), its

edge deletion cost is high (respectively, low), disfavoring (respectively, favoring) its

deletion. We now explore the two last penalty terms of (2) corresponding to our

biologically-related structural a priori regularization.

The second term counterbalances the first one. Independently from the fact that

actual TF genes are less numerous than TF genes, regulatory relationships between

couples of TFs are expected to be less frequent than between one TF and one TF.

This expectation may promote biological graphs with a modular structure [19, 20].

An illustration is presented in Figure 1. As we are looking for gene regulatory

knowledge, we infer edges linked to at least one TF. In addition, we want to favor

the preservation of TF-TF edges over TF-TF links. This edge selection capability

is driven by positive weights λi,j . Their values depend on the three types of pairs

of nodes i and j. We define these case-dependent weights as follows:

λi,j =







2η if i /∈ T and j /∈ T ,

2 λTF if i ∈ T and j ∈ T ,

λTF + λTF otherwise.

(3)
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Figure 1 Illustration of our first a priori on a synthetic GRN. The TF-TF edges (red

edges) are less represented than the TF-TF edges (blue edges). The red nodes code for the TF

genes while the green nodes code for TF genes. The ratio of the number of TF on the total
number of genes is 5/18 in this example. The ratio of the number of TF-TF edges on the total
number of edges is 2/20, which is about 2.5 times smaller.

Hence, TF-TF edges have weights assigned to 2η. The parameter λTF (respectively,

λTF) acts in the neighborhood of TF genes (respectively, TF genes). They may be

interpreted as two threshold parameters. This double threshold promotes grouping

between strong and weaker edges among functionally-related genes. A similar ap-

proach is used in image segmentation [21] to enhance object detection with reduced

sensitivity to irrelevant features [22]. To promote TF-TF interactions, the λTF pa-

rameter should be greater than λTF. To ensure that any TF involved interaction

is selected first, we should verify that η ≥ λTF ≥ λTF. Additionally, removing all

TF-TF edges amounts to setting their corresponding xi,j to zero. Consequently,

η should exceed the maximum value of the weights ω. Since we address different

data types and input weight distributions, we can easily renormalize them all to

ωi,j ∈ [0, 1], and choose η = 1. When λTF = λTF, no distinction is made on the

type of edges. This is equivalent to using a unique threshold value, as in classical

gene network thresholding. This can be interpreted as if, without further a priori,

all genes were indistinguishable from putative TFs. However, different λTF and λTF

may be beneficial. We indeed show in the Supplementary Materials that for any

fixed value of λTF, smaller values for λTF improve graph inference results. A simple

linear dependence λTF = βλTF, with β ≥ 1 suffices to define a generalized inference

formulation encompassing the classical formulation. We fixed here β as a parameter

based on the gene/TF cardinal ratio: β = |V|
|T | . This choice is consistent when no

a priori is formulated on the TFs (i.e. all genes are considered as putative TFs).

Hence, β = 1 and λTF = λTF. As mentioned above, without knowledge on TFs, we

recover classical gene network thresholding. The λi,j parameter now only depends

on a single free parameter λTF, similarly to the large majority of inference methods

requiring a final thresholding step on their weights.

Finally, the third term of the proposed functional aims to enforce a regulator

coupling property (see Figure 2). If two transcription factors are co-expressed, and
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co-regulate at least one gene, we consider plausible that any gene regulated (respec-

tively non regulated) by one of these TFs is regulated (respectively, non regulated)

by the other TF. We quantitatively translate the co-expression of two TFs j and j′

by ωj,j′ > γ, where γ ∈ R
+ is a threshold reflecting the strength of the co-expression

between j and j′. Similarly, the regulation of a TF k by a TF j (respectively, j′)

is numerically expressed by ωj,k > γ (respectively, ωj′,k > γ). We define γ from

robust statistics [23] as the (G − 1)th quantile of the weights. We thus choose the

coupling parameter as:

ρi,j,j′ = µ

∑

k∈V\(T ∪{i})

1(min{ωj,j′ , ωj,k, ωj′,k} > γ)

|V \ T | − 1
,

where 1 is the characteristic function (equals to 1 when the condition in argument

is satisfied and 0 otherwise) and µ ≥ 0 is a regularization parameter controlling

the impact of the third term on the global cost. The proposed numerator counts

the number of TF genes co-regulated by j and j′. As we exclude the gene i, the

maximal number of TF genes co-regulated by j and j′ equals |V\T | − 1. Hence,

using the latter quantity as the denominator casts the ρi,j,j′/µ parameter as a co-

regulation probability relative to couples of TFs (j, j′). The greater the co-regulation

probability, the stronger the influence of the third term. This penalty requires that at

least two TF target genes exist (hence, the denominator does not vanish). Otherwise,

when |T | = |V|, we set µ = 0.

jj jj′

jk ji

ωj,j′ > γ

ωk,j > γ

ωk,j′ > γ

Figure 2 Regulator coupling property. If the transcription factors j and j′ are co-expressed
(ωj,j′ is high, represented by a solid edge), and there exists at least one gene k that is not a TF,

and is co-regulated by both j and j′, then the presence in the inferred graph of edge ei,j is
coupled with the presence of ei,j′ .

We now turn our attention to the strategy for computing an optimal labeling

vector x
∗ solution to Problem (2).

Optimization strategy

By using elements from graph theory, we now explain how a maximum flow algo-

rithm can solve Problem (2). It relies on the maximum flow/minimum cut duality

[24]: the computation of an optimal edge labeling minimizing (2) can be performed

by maximizing a flow in a network Gf .

A flow (or transportation) network Gf is a directed, weighted graph including two

specific nodes, called source (a node with 0-in degree) and sink (a node with 0-out

degree), respectively denoted by s and t. We recall that the degree of a node is

defined as the number of edges incident to that node.
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We now introduce the concept of flow in the transportation network Gf . A flow

function f assigns a real value to each edge under two main constraints: the capacity

limit and the flow conservation. The capacity limit constraint entails that the flow

in each edge has to be less than or equal to the capacity (i.e. the weight) of this edge.

If the flow equals the capacity, the edge is said saturated. The flow conservation

constraint signifies that, at each node, the entering flow equals the exiting flow.

Subject to these two constraints, the aim is to find the maximal flow from s to t

in the flow network Gf . According to the graph construction rules provided by [25],

the flow network for solving Problem (2) is composed of:

• A set of ǫ nodes ai,j with (i, j) ∈ {1, . . . , G}2, i < j, linked to the source s

with edges of weight ωi,j . Each node is associated with a label xi,j .

• A set of G nodes vk of labels yk with k ∈ {1, . . . , G}. The nodes vk is linked

to the previously defined node ai,j if k = i or k = j. If such an edge exists, a

weight λk is thus assigned. In reference to (3), the weight λk equals η, λTF or

λTF, according to the nature of the node ai,j (corresponding to the edge ei,j

in the initial network G).

• A set of q edges, linking nodes ai,j to ai,j′ for which the regulator coupling

property is satisfied, with weights equal to ρi,j,j′ .

• An additional set of G edges, linking nodes vi, i ∈ {1, . . . , G} to the sink node

t.

Figure 3 illustrates this graph construction on a small-size example. Computing

a maximum flow from the source to the sink in this flow network saturates some

edges, thus splitting the nodes ai,j into two different groups: nodes that are reachable

through a non saturated path from the source, and those that are not. Assuming

that the source node s is labeled with 1, and the sink node t is labeled with 0,

binary values are thus attributed to the edge labels xi,j (secondarily, binary values

are also assigned to the y labels of nodes v in the flow network), and this final

labeling returns the set of selected edges E∗ which minimizes (2). We use the C++

code implementing a max-flow algorithm from [26].

Problem dimension reduction

As explained in the previous section, the optimal solution to the minimization prob-

lem (2) may be obtained via a maximum flow computation in a network generated

from the whole original graph. In practice, many parameters ρi,j,j′ have zero values.

So rather than building 0-valued edges in the flow network, reducing the dimension

of this network is judicious. Indeed, if ρi,j,j′ = 0 for all j′ ∈ T , the optimal label of

xi,j is given by the explicit solution

xi,j =







1 if λi,j ≤ ωi,j

0 otherwise.
(4)

This formula also provides a better insight into the role played by thresholding

parameters λi,j . We now have a fast optimization strategy to generate a solution

to the proposed variational formulation. One of the advantages of employing the

BRANE Cut algorithm is the optimality guaranty of the resulting inferred network

with respect to the proposed criterion. We next describe quantitative gains that can

be achieved using BRANE Cut.
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ω1,2 = 8
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ω2,4 = 5

ω3,4 = 1

(a) Initial complete graph

s

t
node label

t = 0

node label

s = 1

edge label

xi,j ∈ {0, 1}

node label

yk = 0

η = 10

λ
TF

= 1

λTF = 3

x1,2 x1,3 x1,4 x2,3 x2,4 x3,4

y1 y2 y3 y4

8 5 5 10 5 1

∞ ∞ ∞ ∞

3

(b) Intermediate graph construction for the min-cut computation

v1

v2

v3

v4

e1,2

e1,3

e2,3

(c) Inferred graph

Figure 3 Schematic view of the proposed BRANE Cut method. The initial graph (a)
is transformed into an intermediate graph (b) in which a max-flow computation is performed to
return an optimal edge labeling x∗ leading to the inferred graph (c). We choose to present the
method in its full generality with unscaled weights (i.e. wi,j ∈ [0, +∞[, and λ parameters also
belong to [0, +∞[). Nodes v2 and v3 are TFs, λ

TF
= 1 and λTF = 3. Taking γ = 4 implies that

v1, v2, and v3 satisfy the regulator coupling property. Vertices v1 and v4 are thus affected,
leading to the presence of additional edges weighted by ρ1,2,3 = 0 and ρ4,2,3 = 3, when µ is set
to 3. Computing a max-flow in the graph (b) leads to some edge saturation, represented in dashed
lines. The values from the source (value 1) and the sink (value 0) are propagated through non
saturated paths, thus leading to x2,4 = x3,4 = 0.
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Results and Discussion
We compare the BRANE Cut approach to the top performing graph inference meth-

ods on synthetic and real data. The considered state-of-the-art methods are CLR,

which outperforms ARACNE and Relevance Networks on the E. coli dataset, and

GENIE3, winner of the DREAM4 multifactorial challenge [27] on synthetic data

among a large number of competing methods, and also outperforming other ap-

proaches on the real E. coli dataset. For a fair evaluation, all networks are inferred

using the same set of parameters for a given method: CLR results are computed

with the ’plos’ method and the default values for the two quantization parameters.

GENIE3 outcomes are obtained using the Random Forest method and K =
√

|T |.

We also postprocessed both the CLR and GENIE3 weights with ND (network de-

convolution [12]), and applied BRANE Cut on both the deconvolved ND-CLR and

ND-GENIE3 networks.

Validation datasets

The DREAM4 dataset

The Dialogue for Reverse Engineering Assessments and Methods fourth (DREAM4)

[27] multifactorial challenge provides five simulated datasets with real network

topologies from the prokaryote E. coli and the eukaryote S. cerevisiae, and sim-

ulated expression data. At the time of the challenge, the competing approaches did

not have access to a list of putative transcription factors, which is now available

online. As this list is a requirement of our method, we benchmark the best perform-

ing network inference methods using this additional information. The networks are

composed of 100 genes, with a total of 100 expression levels per gene. The evalu-

ation of the inferred networks was performed using the gold standard provided in

the DREAM4 multifactorial challenge.

The Escherichia coli dataset

This dataset was first introduced in [8] and is composed of 4345 gene expression pro-

files, each profile containing 445 gene expression levels. This compendium contains

steady-state and time-course expression profiles. RegulonDB [28] is the primary

database on transcriptional regulation in Escherichia coli K-12 containing manu-

ally curated knowledge from original scientific publications. As in [8], we used the

version 3.9 to evaluate inferred networks. This database offers a set of 1211 genes

for which 3216 regulatory interactions are confirmed.

The DREAM5 dataset

The DREAM5 challenge (Dialogue for Reverse Engineering Assessments and Meth-

ods fifth) [2] provides four networks. The first one contains an in-silico dataset while

the three others correspond to real datasets. For the four networks, the list of pu-

tative transcription factors is known. In this work, we used the three networks (1,

3 and 4) for which a ground truth is provided. The first network is composed of

1643 genes (195 TFs) and expression data in 805 conditions. Network 3 contains

information about 4511 genes (334 TFs) in 805 conditions, while network 4 compiles

5950 genes (333 TFs) and 536 conditions. The evaluation of the inferred networks

was performed using the gold standard provided in the DREAM5 challenge.
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Evaluation measures

Predictive measures, standard in binary classification or machine learning, bench-

mark different network inference methods. For a given network, Precision and Recall

(sensitivity) are defined as

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
, (5)

where TP is the number of true positive, FP is the number of false positive and

FN is the number of false negative. The Precision value indicates the proportion of

correctly inferred edges compared to the total number of inferred edges. The Recall

value reveals the proportion of correctly inferred edges compared to the total number

of expected edges given by the gold standard. In order to evaluate and to rank the

different tested methods, Precision-Recall (PR) curves are commonly used [8]. As

the best results correspond to both high precision and high recall values, the Area

Under the Precision-Recall Curve (AUPR) is an appropriate quantitative criterion

to measure the quality of an inference method (higher is better).

Results on DREAM4

To validate our BRANE Cut approach, we used a variety of different initial weights,

directly obtained from CLR, GENIE3, or after ND postprocessing [12] (ND-CLR

and ND-GENIE3). Similarly to BRANE Cut, ND takes weights given by other

inference approaches as inputs. When necessary, input weights are symmetrized

by retaining the maximal value between ωi,j and ωj,i. The comparison of each

generated graph to the ground truth for each network allows the construction of five

Precision-Recall curves. They are obtained from all the different possible threshold

λTF values and are provided in the Supplementary Materials. All networks are

generated setting µ = 3 and γ takes the (G − 1)th quantile value of the normalized

weights ω. Quantitative results are reported in Table 1. We provide a heuristic to

determine µ and perform its sensitivity analysis in the Supplementary Materials.

Computed AUPR in Table 1 (a) highlight in bold that, globally, first and sec-

ond best performances are always produced with BRANE Cut. Furthermore, each

method tested (CLR, GENIE3, ND-CLR or ND-GENIE3) used as initialization

exhibits an improved AUPR with BRANE Cut post-processing. Indeed, the av-

erage improvement reaches 10.6 % based on the CLR weights, 8.4 % for the GE-

NIE3 weights, 5.9 % with ND-CLR weights and 7.2 % compared to the ND-GENIE3

weights, see Table 1 (b).

We finally compare ND and BRANE Cut as post-processing methods on original

weights. As shown in Table 1 (c), BRANE Cut outperforms network deconvolution

except for a practically unnoticeable degradation on the fifth network for GENIE3

weights. This relative improvement is essentially due to the fact that network de-

convolution degrades results on the first two networks.

In the associated Precision-Recall curves, reported in the Supplementary Materi-

als, we notice that the improvements of our results are mostly obtained in the first

part of the curves, corresponding to a Precision greater than 50 % in the inference.

Thus, such inferred graphs are expected to be more reliable for a biological interpre-

tation. From this observation, looking at the AUPR for different Precision ranges,
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Network index 1 2 3 4 5 Average
CLR 0.256 0.275 0.314 0.313 0.318 0.295

BC-CLR 0.282 0.308 0.343 0.344 0.356 0.327
GENIE3 0.269 0.288 0.331 0.323 0.329 0.308

BC-GENIE3 0.298 0.316 0.357 0.344 0.352 0.333
ND-CLR 0.254 0.250 0.324 0.318 0.331 0.295

BC-ND-CLR 0.271 0.277 0.334 0.335 0.343 0.312
ND-GENIE3 0.263 0.275 0.336 0.328 0.354 0.309

BC-ND-GENIE3 0.275 0.312 0.367 0.346 0.368 0.334

(a) Area Under Precision-Recall for the CLR, ND-CLR, GENIE3, ND-GENIE3 and BRANE Cut
methods on the DREAM4 dataset. For each given network, the two maximal improvements are

reported in bold.

Network index 1 2 3 4 5 Average
BC-CLR vs CLR 10.1 % 11.8 % 9.1 % 9.9 % 11.9 % 10.6 %

BC-GENIE3 vs GENIE3 10.7 % 9.9 % 7.8 % 6.5 % 7.0 % 8.4 %
BC-ND-CLR vs ND-CLR 6.6 % 10.7 % 3.0 % 5.5 % 3.7 % 5.9 %

BC-ND-GENIE3 vs ND-GENIE3 4.4 % 13.4 % 9.2 % 5.4 % 3.8 % 7.2 %

(b) Relative gain obtained using BRANE Cut on different initial weights: CLR, ND-CLR, GENIE3,
ND-GENIE3 on the DREAM4 dataset.

Network index 1 2 3 4 5 Average
BC-CLR vs ND-CLR 11 % 23.2 % 5.9 % 8.2 % 7.5 % 11.2 %

BC-GENIE3 vs ND-GENIE3 13.8 % 14.9 % 6.2 % 4.9 % −0.6 % 7.7 %

(c) Post-processing method comparison on the DREAM4 dataset. Relative gain are given for BRANE
Cut using CLR (resp. GENIE3) weights compared to ND-CLR (resp. ND-GENIE3).

Table 1 BC-X corresponds to the BRANE Cut method initialized with the weights of the method X.

from the whole scale to precisions above 50 %, provides a finer assessment of the

predictive power of inference methods. Thus, Figure 4 highlights relative AUPR im-

provements for given Precision ranges. It illustrates that BRANE Cut improvement

ratios over GENIE3 AUPR are clearly visible at higher Precision ranges, typically

over 65 %.
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Figure 4 AUPR improvements for different parts of the PR curves on the five
networks of DREAM4. In order to show the differential improvement over the Precision,
relative AUPR are computed for different PR curves, truncated at different range of Precision:
[0,100], [10,100],. . . , [90,100]. Here, the improvement is defined as the AUPR ratio of
BC-GENIE3 and GENIE3.

Based on the AUPR criterion, we conclude that BRANE Cut outperforms state-

of-the-art methods. Specifically, single-threshold results are sensibly refined by our

approach, regardless of initial weights.
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Results on the E. coli dataset

We now present the results of the BRANE Cut method on the real E. coli dataset.

Our approach uses the normalized weights ωi,j defined by CLR (with µ = 1000)

and GENIE3 (with µ = 10). A discussion about the choice of the µ parameter is

given in the Supplementary Materials. The parameter γ is set as in the previous

section. The different Precision-Recall curves are reported in Figure 5, to compare

BRANE Cut to GENIE3 and CLR.

Figure 5 Precision-Recall curve comparison on the E. coli dataset. CLR (dashed
purple line) and GENIE3 (dashed green line) are compared to our BRANE Cut method initialized
with the weights CLR (solid purple line) or GENIE3 (solid green line).

Best performance is expected toward the upper right side of Precision-Recall

curves, with both high recall and precision. However, GRN Precision-Recall curves

traditionally exhibit low Precision values over the whole curve on real datasets due

to the difficulty in inferring accurate regulation relationships among large amounts

of genes. For instance with the E. coli dataset, we observe that a recall below 0.05

corresponds to small inferred graphs, with less than 300 edges and a high precision

(more than 75 %). Due to their higher predictive power and their readability, such

small networks are often preferred by biologists. Hence, we focus on the upper-left

part of the Precision-Recall curves in Figure 5, emphasized in a close-up, corre-

sponding only to high precision and small graphs. Here, BRANE Cut initialized

with GENIE3 weights proves to be the best performer on smaller graphs (less than

100 edges corresponding to a recall below 0.02). However, graphs of larger size

(up to a recall of 0.08) are more accurately reconstructed with CLR and BRANE

Cut initialized with CLR weights. Again, the BRANE Cut approach improves the

prediction results of both CLR and GENIE3.

Overall, as reported in Table 2, BRANE Cut produces better results in terms of

AUPR. Specifically, relative gains presented in Table 2 show a significant enhance-

ment of CLR results and a more moderate enhancement of GENIE3 results. Taking

into account that CLR weights are obtained more than seven times faster than

GENIE3 weights, BRANE Cut initialized with CLR weights finally recovers results

comparable to those obtained by GENIE3, but much faster. Initializing BRANE Cut
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with the GENIE3 weights, the results are still improved with negligible additional

times compared to weight computation.

CLR BC-CLR GENIE3 BC-GENIE3
AUPR (×10−2) 7.86 8.79 8.90 9.17

Total comput. time (min) 41.0 41.05 303 303.05
Gain 11.8% AUPR gain over CLR 3.0% AUPR gain over Genie3

7.4 × faster than Genie3 negligible additional computation cost
Table 2 Area Under Precision-Recall, computation times and relative gains on the E. coli dataset
using BRANE Cut with CLR or GENIE3 weights.

Table 3 shows network inference improvements using BRANE Cut in terms of the

number of verified inferred edges for comparable Precision values.

Precision (%) Recall (%)
GENIE3 BRANE Cut

90 0.55 2.00
85 2.31 3.40
80 3.77 3.86
75 4.19 4.55

Precision (%) TP edges
GENIE3 BRANE Cut

90 18 66
85 75 112
80 124 127
75 138 150

Table 3 Comparison of graph inference in terms of number of True Positive edges and Recall at
constant Precision using GENIE3 or BRANE Cut-GENIE3 on the E. coli dataset.

Inferred network example on E. coli

An example of regulatory network on the E. coli dataset obtained with BRANE

Cut, initialized with GENIE3 weights, is displayed in Figure 6. The inferred net-

work obtains a Precision score of 85 %, with a better predictive power than the

network produced by the GENIE3 method alone. The binary network for GENIE3

is obtained by selecting edges having a weight higher than 0.707. This threshold

renders a network with 85 % of Precision. In comparison to the reference, we dis-

cover 20 additional plausible regulatory interactions. Among these 20 predictions,

ten were also predicted by the GENIE3 method, leading to ten predictions specific

to BRANE Cut. By analyzing the predictions using STRING [29] and EcoCyc [30]

databases, we observe that the predicted groups of genes were already identified as

co-expressed and are known to belong to the same functional mechanism.

Influence of the proposed structural a priori

We start to analyze the influence of our first a priori on the E. coli dataset using

CLR weights. Hence, using the first two terms with λTF 6= λTF leads to an AUPR

of 0.0870, which constitutes a relative improvement of 10.7 % over CLR, without

co-regulation a priori. More generally, as λTF and λTF are interpreted as a pair of

thresholds, the higher these parameters, the greater the stringency in the inferred

graph. These results show that allowing a different threshold value in the neighbor-

hood of transcription factors than for other genes does play a positive role by itself.

The regulator coupling term controlled by µ brings further improvements. Indeed,

the addition of the third term results in an AUPR equal to 0.0879, corresponding
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Figure 6 Example of network built using BRANE Cut on the E. coli dataset.
Legend: black nodes: transcription factors, gray nodes: other genes. green edges: inferred
regulations also reported in the gold standard, blue edges: new inferred regulations that are also
inferred by GENIE3, and pink edges: new inferred regulations.

to a relative improvement of 11.8 % over CLR. The corresponding Precision-Recall

curves are displayed in the Supplementary Materials. They show that even if the

gain brought by the co-regulation a priori is shallower than the improvement al-

lowed by the first a priori, it remains valuable despite its localization in the high

Precisions area.

Algorithmic and computational complexity

As previously mentioned in the Optimization strategy section, we used the C++

code implemented by [26]. Using this algorithm, the computational complexity of

BRANE Cut is O(mn2|C|), where m (respectively n) is the number of edges (respec-

tively the number of nodes) in the flow network Gf , and |C| the cost of the minimal

cut. Specifically, in our case (without the dimension reduction trick presented in

the Problem dimension reduction section) the number of nodes in the flow network

is equal to the sum of the number of edges ǫ in the initial network, the number

of genes G plus two additional nodes (source and sink). The number of edges n is

equal to 3
2 G2 + q, where q is the number of edges coding for the co-regulation a

priori. Note that, as mentioned in [26], this complexity is not the best achievable by

a max flow algorithm. Meanwhile, their experiments showed better performance for

several typical computer vision problems. Not being in a computer vision setting,

we could benefit from faster max flow algorithms. However, since the time spent

on max flow computation to infer the large graph of Escherichia coli is small (only

several seconds), the benefit would not be noticeable.

Given pre-computed weights, our algorithm requires 30 additional seconds to infer

the E. coli network, without using the simplification described in the Problem

dimension reduction section. By computing the explicit solution to our problem

on a subset of edges, we improve BRANE Cut computation times by a factor of 10.
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Given CLR weights computed in 41 minutes on a Intel Core i7, 2.70 GHz laptop,

our algorithm thus only requires three additional seconds. We note that the weight

computation duration of GENIE3 are sensibly longer (5 hours), using the list of

transcription factors. If one wished to build a E. coli network that would also

contain TF-TF interactions using GENIE3, it would take 20 minutes per gene, for

a total of two months with a basic rule of three.

Results on DREAM5

We have evaluated BRANE Cut on three DREAM5 networks (1, 3 and 4) for

which a validation exists. BRANE Cut parameters are initialized with the pro-

posed heuristics and results are obtained using the validation procedure previously

detailed. BRANE Cut outperforms CLR and GENIE3 by 7 % and 5 % respectively

on Network 1. The improvement is 2.8 % and 2.1 % for Network 3. For the fourth

network, the maximum Precision only reaches about 35 %. The AUPR computed

with every method is exceptionally low. As such, the relative AUPR differences are

insignificant, within the numerical precision. The detailed AUPR are given in the

Supplementary Materials. Regarding the results in these additional datasets, the

proposed heuristics lead to improvements over state-of-the-art.

Conclusions
By using structural a priori that are often available but rarely used, we managed

to infer networks that recover more true interactions than previous approaches,

on both synthetic and real datasets. We have expressed the graph inference as an

optimization problem, and used the generic Graph cuts approach, very popular

in computer vision, to compute the optimal edge labeling of our inferred graph.

Comparisons are performed with simple regularization parameters based on gene set

cardinality. We obtain better results than both CLR and GENIE3 in terms of Area

Under the Precision-Recall curves, even with ND deconvolved networks. BRANE

Cut yields state-of-the-art results, with a negligible computation time. While the

GENIE3 method needs about five hours to obtain a 4345-gene network, limited

to interactions involving transcription factors, we obtain a network with similar

accuracy with our method in a few seconds, only using CLR weights computed in

about forty minutes. This graph inference acceleration is thus useful to explore large

datasets. Some predictions specifically identified by our method indeed appear as

relevant interactions.

As mentioned in [2], community-based methods represent a promising future for

gene network inference, by aggregating the predictions of existing GRNs approaches.

As our method takes any weights as an input, it has the potential to improve other

GRN approaches providing pairwise weights. Results provided in the Supplementary

Materials illustrate these remarks.

Based on these assessments, a perspective consists of the integration of various

weights, provided by competing GRN methods, to further improve and strengthen

present results. This integration may involve multi-valued graphs or network fusion

[31].
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