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ABSTRACT tion seismology, seismic waves propagate through the subsu

Both random and structured perturbations affect seisnti da face medium. The portion of seismic wave fields recorded at
Their removal, to unveil meaningful geophysical inforroati the surface forms the seismic traces whose reflections at ge-
requires additional priors. Seismic multiples are one fofm ©logical interfaces and propagation-related distortioferm
structured perturbations related to wave-field bouncing. |about the subsurface structure (see Fig. 1). An idealizatio
this paper, we model these undesired signals through a tim@ould consist in inferring the relative distances and vigjoc
varying filtering process accounting for inaccuracies in- amcontrasts between layers through an impulsive seismicsour
plitude, time-shift and average frequency of available-temsSignal traveling first downwards, then upwards, toward the
plates. We recast the problem of jointly estimating thergite Seismic sensors. Many types of unpredicted disturbanees af
and the signal of interest (primary) in a new convex variafect seismic signals. Consequently, geophysics has mattur
tional formulation, allowing the incorporation of knowigel ~ Severaltools central to potent signal processing trendjd-
about the noise statistics. By making some physically plaus ing robust,/;-promoted deconvolution [3], or complex, con-
ble assumptions about the slow time variations of the filterstinuous wavelet transforms [4]. One of the most severe types
and by adopting a potential promoting the sparsity of the priOf interferences, hence still requiring mitigation, areltinu
mary in a wavelet frame, we design a primal-dual aIgorithmO|e reflections, and correspond to seismic waves bouncing be

which yields good performance in the provided simulation ex twixt layers [5]. Such reverberations, from the point ofwie
amples. of geological information interpretation, imitate and evxe-
L dim genuine target reflectors, since they possess similagwa
Index Ter_msf Optlmlzatlon_ met.hods, Wavelgt trans- orm and frequency content. Model-based multiple removal
forms, Adaptive filters, Geophysical signal processingn8l 5 one of the industry standard techniques. It consists of es

restoration. timating a realistic template of the multiples, which is sub
sequently adapted in amplitude, delay and frequency by-time
1. INTRODUCTION varying matched filtering techniques, for instance in a Wetve
or curvelet domain, see [6, 7] and references therein. When
—— highly complicated propagation paths occur (dashed lines i

Fig. 1), several multiple templates are devised and adativ
weighted depending on the time and space location of seismic
traces. Inaccuracies in template modeling as well as the com
plexity of the time-varying adaptation combined with addi-
tional unmodeled disturbances require additional coimta

to obtain geophysically sound solutions. We use prior krowl
edge on seismic data distribution (sparsity in wavelet &am
and assume that the time-varying filters, adapting each tem-
plate, possess a finite impulse response (FIR) that smoothly
varies in time. We assume that a seismic trace is composed as
Fig. 1. Principles of seismic wave propagation, with reflections onfollows:

different layers, and data acquisition. Solid blue: primatashed () — 5 y(n) + b (1)

red and green: multiple reflection disturbances.

wheren € {0,...,N — 1} denotes the time index and
Geophysical signal processing [1, 2] addresses the extrae-= (2(™)y<,,«y corresponds to the observed data (seismic
tion of relevant information present in seismic data. Ine®fl trace) combining: the primary = (y("))og,KN (signal



of interest, unknown) depicted in solid blue (Fig. 1), the N x NP;:
multiples (3™)p<,<n (sum of undesired reflected signals)

depicted in dashed red and green (Fig. 1) and the noise

b= (b'™)g<,<n Which is assumed to be additive zero-mean 0
white Gaussian. The paper improves upon [8] by: taking .
into account several multiple templates, incorporatindi-ad : 0
tional random noise into the generic model, and introducing 0 0
the nuclear norm as a potential multiple selection objectiv

criterion. Section 2 formulates the generic variationahfo Wwhere

of the problem. Section 3 recalls the primal-dual proximal .

(6)

formalution, followed in Section 4 by precisions concenin

the chosen optimization criterion. The performance of ther

proposed method is assessed in Section 5.

2. VARIATIONAL FORMULATION

2.1. Model description

We assume thaf templates(rj(.”))0§n<N70§j<J for the dis-

turbance signal are available, which are relate@t® )<, < x
through an FIR, possibly non-causal, linear model

J—1p'+Pj—1

=3 R

Jj=0  p=p’

np)

()

Whereﬁgn) is an unknown impulse responsg;(tap coeffi-

cients) corresponding to templajeand timen and where
p e {—Pj + 1,...,0} W =
case).

slowly varying in practice. Templates are generated wih-st

dard geophysical modeling based on primaries. The adapti
FIR assumption is common practice. The observation th
adapted filters are ill-behaved, due to the band-pass nafture
seismic data is well known, although rarely documented, mo

tivating the need for filter coefficient control.
Eq. (2) can be expressed more concisely as

J—1

Rjh;
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by appropriately defining vectoss (h;)o<;<s and matrices
(Rj)o<j<.- More precisely,
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0 corresponds to the causal

It must be emphasized that the dependence w.r.t. the
time indexn of the impulse responses implies that the filter-0(y, h) =
ing process is not time invariant, although it can be assumed
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For more conciseness, one can widte= Rh by defining
R = [Ry...R;_1] € RVXQ whereQ = NP with P =
>/ s Pandh =R ...7, " € RQ.

2.2. Problem formulation

We define the following objective function, for eveyy= RY
andh € R?,

M
(2 —y—Rh)+@(Fy) + p(Lh) + > 10m(h)
m=1

()

\)Lgherew RY — ]—00,+00], ¢ : RE — ]—o00,+00],
4 9 — ]-00,+0o0], G is a real Hilbert space that we will

specify later on, and, for eveny. € {1,..., M}, ic,, des-
ignates the indicator functidrof a closed convex sét,,, (M
constraints are considered herd).c RX*Y designates an
analysis frame operator [9] arldis a nonzero bounded lin-
ear operator fronR< to G. For tractability, in the following,
functionsy, ¢ andp are assumed to be convex. Our approach
consists of solving the following optimization problem:

(8)

minimize, 0(s.1)
The minimization of this criterion can be interpreted as an
estimation of(7, h) in the sense of the Maximum A Poste-
riori (MAP), where the first term represents a data fidelity
term accounting for the noisg; represents a regularization
term taking into account the statistical properties of tlaefe
coefficients of the primary, ang models prior, available in-
formation onh. To further account for smooth variations of

1The indicator functionc of a setC'is such thatc (u) = 0if u € C,

Each matrixR; is defined as a block diagonal matrix of size +co otherwise.



filtersh along the time dimension, hard constraints on the filthe norm of each linear operator involved in the criterion or
ters can be added through the convex $€8)1<m<as- at least an upper bound of it. Here, we can derive:
f It can be observed that the data fidelity term defines a 1] = T Rl < VITTRIP+ -+ Ry (12)
unction ¥ £ 4 (z — Q;-) where®); = [I R]. Concerning
the regularization terms, we will introduce a second fworeti where || R;|| = max,ecqo,.. n—1} | R ”)|| for every j €
namely® (), where®: RX xG — |—o0, +o0] : (z,u) —  {0,...,J — 1} and ||Qg|\ = max(||FH IL|). At each
o(x) + p(u) and Qy is the block dlagonal linear operator |terat|onz the stepsizey?! must be chosen so as to sat-
isfy the following rule: letg = pu + /||Q:]|?+ M and
[lyl] — (Fy,Lh). With these notations, (7) can be reex- f€y]07 ﬁ[' then%m e [, 155]_ It rﬁrbmst be| e?rL‘phasized that
pressed as the choice of the stepsize is crucial for the convergencedpe
of the algorithm. If the norms of the matrices are too high,
then the algorithm will converge slowly since the stepsize
0y, h) = \IJ( [h} ) +o QQ [ } Z tom(h (©) will be small. In this case, a preconditioned version of the
algorithm can be employed [16].

3. PRIMAL-DUAL PROXIMAL ALGORITHM Algorithm 1 M+LFBF

[0]
7<)- Set{lyl[o]} e RV+Q [ e RK 419 ¢

To perform the minimization in (8), we propose to employ Setyll € [e,
the Monotone+Lipschitz Forward-Backward-Forward (M+L (0] O\M
FBF) algorithm recently proposed in [10]. This algorithm be g, @Zm)lémﬁM € (R¥)

longs to the class of primal-dual algorithms and avoid some for i = Q’ 1,...do )

matrix inversions necessary in many other approaches [11, Gradient computation S
12]. It requires to compute the proximity operators of each o st ylil . Yl W

the terms in (8) (note that when one term has a Lipschitz con- g { } - V‘I’( {hm] ) L* M*Z“z .
tinuous gradient, the gradient can be computed insteacdeof th

proximity operator). Some relevant information about prox P[ r] oxim{;]y operator computation
imity operators are recalled next. S5 "+ Ayl .
wg] = s[;] AL prox(,y[i])aw((v[z])’15[;])
3.1. Proximity operators t[i]l = ol 4 4Ll
. . [i] _ (1 [i 1]
Let H be a separable real Hilbert space with nofm||. (t2.2.m)1<menr = (uzm + 7" W) 1<mans

I'o(H) denotes the class of proper lower semi-continuous w[gi,]l = t[gi,]l — Al PYOX(W)—15((7[i])’1t[2i}1)
convex functions fromH to ]—oo,+o0c0]. The proximity [4] il &
operator [13] ofp € I'y(H) is defined as (w35 m)1<mens =t =7 e, ( Y1 i<msm

Averaging
[i] [d] [4] o ol4]
1 9 Gy =w +7 Fsy
prox,: H — H: u+— argmin = ||v — ul|” + ¢(v). (10) J i i
¢ UGH2|| | (v) £+1] [] []+q[]1
. [i] _ [ ] [i]
If C'is a nonempty closed convex set#f thenprox, , re- = wyy + 7Lt _
duces to the projectiofi~ onto C. Note that this operator (qg]2 m)1<m<M = (w[2]2 Y e
possesses humerous mathematical properties [14, 15]. [z+1] [1‘] _ t[z] + é]l
, (uéL])lngM Uy =t 0 + @5 h ) 1<mens
3.2. M+LFBF algorithm Update

Fngi]

s[f] ) + M
4] L*w[{]ﬁzw[{]z,m
m=1

For many standard data fidelity terms, e To(RY) is dif- yli+1l Yl .
] = )= 7o
1

ferentiable with gu-Lipschitz continuous gradient for some |pli+1| = ||~
w €10, +o0[. In this case,

end for

VU = —Q Vi(z — Q). (11)

In addition, it can be assumed thiis a possibly nonsmooth 4. A DEEPER LOOK AT THE CRITERION AND

function belonging td’o(R* x G). PROXIMITY OPERATORS
The iterative approach allowing us to solve (8) is de-

scribed in Algorithm 1 wher&* denotes the adjoint operator The noise is usually assumed to be additive, zero-meangwhit
of L. The use of this algorithm requires to be able to computand Gaussian. In this case,asccounts for the noise statis-



LH .|[2. Then, the
202
Lipschitz constant: is equal to]| ;|2 /o2

Concerningp, a separable form can be adopted, where we
canset, forevery € {1,..., K}, op = kil | + kio| - [P*
with pr € 1,400 and (kk1,kk2) € [0,+o00[>. Closed
form expressions of the considered power functions are i
deed available for typical values of the exponent [14].

For simplicity, a similar parametric form can be adopte
for the regularization functiop. However, a more general
framework can be followed by appropriately defining the lin-
ear operatoL.. For our purposes, the regularization applied
on h can be chosen separable with respect to multiplicity in
dicesj and thus, we get:

tics, it can be chosen equal tb =

J—1
p(Lh) = " p;(L; Diag(h;)) (13)
7=0
where, for everyj € {0,...,J — 1}, L; € RN *NFi and

p; € To(RN'*NPi) Of particular interest is the case when
p; is equal to the nuclear nori- ||, up to a multiplicative
positive constant. IV’ = NP; andL; = I, we retrieve the
classica¥; norm penalty orh ;. However, following the work
in [17] on sparse regression, a better choice maywbe- N
andL; = R;. The proximity operator of the nuclear norm
can be computed easily by thresholding the singular valfies o
the matrix in its argument (see [18]).

Concerning the last term in (7), we propose to/set= 2
and to employ

C, = {heRQw(j,p),vn € {o gJ —1},

0 ) = @) < 55 (14)

N-1
02:{heRQ|V(j,p),Vn 6{1{7“

B @) = B V@) < ey} (25)

These constraints prevent strong variations of correspond
ing coefficients of the impulse response, estimated at twe co
secutive time samples. The boundg, € [0, +oco[ may de-

istic seismic signaj and templates; andrs (J = 2), and we

synthetically generated the observations according toemod

(1). For these datd?; = 10, P, = 14 ando = 0.08.

The criterion to be minimized is defined by (7) whetre
and(yr)1<k<x have been chosen as explained in Section 4.
F is a wavelet frame and, for evekye {1,..., K}, pr =2

Mnd subband-adaptive valuesf; andky o are set. The
constraintg”; andCs are chosen according to (14) and (15),

dvvherest = 0.1 ande, , = 0.07 for everyp.

A first restoration result is displayed in Fig. 2 whgn

is the nuclear norm. It can be observed that the multiples

are very well estimated. The primagyis faithfully retrieved

in the first half part where its amplitude takes significart va

ues. It is only partly unveiled on parts where the multiple

energy is higher. Note that actual geophysical signal ®ce
ing proceeds in an iterative manner, allowing estimatedimul
ple subtraction from the noisy data, instead of direct prima
estimation as performed here, or refinements on newly, even
partly detected primary zones. We thus consider the method
of sufficient performance and potential at the present stage
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Fig. 2. Considered seismic signals, from top to bottom: origi-
nal (unknown) signaj, estimated), first template-;, second
templatery, multiple (unknown), estimateds, and observed
signalz (o = 0.08).

Table 1 shows the signal-to-noise ratios (SNR, averaged
over 100 noise realisations) obtained in the estimationyof

pend on the shape of the expected filter. For example, itands. Simulations have been run for three a prigand for
dependence on the coefficient indexnay enable a larger 4 noise levels().

(resp. smaller) difference for filter coefficients takingger
(resp. smaller) values. Note that in each subset, the iedolv
variables are decoupled. The proximity operators of the as-
sociated indicator functions are given by the projectiam® o
these sets, which reduces to projections onto a set of hyper-
slabs ofR?.

5. SIMULATIONS

SNR,

SNR,
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0.01

20.90

21.23

23.57

24.36

24.68

26.74

0.02

20.89

21.16

23.51

22.53

23.02

23.76

0.04

19.00

19.90

20.67

20.15

20.14

19.84

0.08

17.55

16.81

17.34

16.96

16.56

15.96

Table 1. SNR for the estimations af ands considering dif-

To demonstrate the performance of the proposed approadirenta priori functionp and 4 noise levels. Symlet wavelets
we process seismic data represented in Fig. 2. We use a refindecimated) of length 8 over 4 resolution levels are used.
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