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OUTLINE

® Background
® Co-simulation: context & challenges

@ Real-time Co-Simulation: an open problem
® Improving parallelism with the RCosim approach: Refined Co-simulation
® Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
® Mapping real-time constraints for Hil

® Future work
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BACKGROUND

@® Co-simulation: Alternative to monolithic simulation = Simulation of a complex system
using several coupled subsystems

® A subsystem is modeled using the most appropriate tool instead of using a single modeling
software

® Subsystems are modeled and run in a segregated manner = The equations of each model
are integrated using a solver separately

@® During the execution models exchange data = A synchronization mechanism is used
between the models, in such a way that models update their inputs and outputs according to
assigned communication steps

® Easy upgrade, reuse, and exchange of models

)
}I ===

automated chassis components,
cargo door ECU (e.g. ESP)

engine
with ECU with ECU

functional mockup interface for dynamic models
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SUSTAINABLE MOBILITY

BACKGROUND

@® Co-simulation: Alternative to monolithic simulation = Simulation of a complex system
using several coupled subsystems

® A subsystem is modeled using the most appropriate tool instead of using a single modeling
software

® Subsystems are modeled and run in a segregated manner = The equations of each model
are integrated using a solver separately

@® During the execution models exchange data = A synchronization mechanism is used
between the models, in such a way that models update their inputs and outputs according to
assigned communication steps

@® Easy upgrade, reuse, and exchange of models
@® Heterogeneous ODE models = Time consuming simulations

Model 1 Model 2 Model 3 Model 4 Complex model = Time consuming simulation
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BACKGROUND (CONT'D)

® A multi-core co-simulation kernel: Why?

® System-level simulation leads to agglomerate models which are classically disconnected,
increasing the CPU demand at simulation time

® Simulation time becomes more and more a metric for model complexity

® Most 0D/1D simulation tools have mono-core kernel while mono-core computers are
endangered

How long will this CPU power remain unused ?
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OUTLINE

® Background
@ Co-simulation: context & challenges

@ Real-time Co-Simulation: an open problem
® Improving parallelism with the RCosim approach: Refined Co-simulation
® Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
® Mapping real-time constraints for Hil

® Future work
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REAL-TIME SIMULATION
NEEDS FOR CPS VALIDATION

Mil
Physical process Controller
model model
4 .

Code generation
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software

l Implementation
Real physical Controller
process hardware
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REAL-TIME SIMULATION
NEEDS FOR CPS VALIDATION
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Hardware-in-the-Loop = real-time constraints
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REAL-TIME SIMULATION
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REAL-TIME SIMULATION
NEEDS FOR CPS VALIDATION
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SUSTAINABLE MOBILITY

OUTLINE

® Background
® Co-simulation: context & challenges
@ Real-time Co-Simulation: an open problem

® Improving parallelism with the RCosim approach: Refined Co-simulation
® Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
® Mapping real-time constraints for HiL

® Summary and outlook
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RCOSIM: REFINED CO-SIMULATION
DATAFLOW GRAPH OF FMUS

® Inter FMU dependencies specified by the user

FMU A FMU A
® Identify locally if Y is dependent on U or not - - oAl uE
® FMI gives relationships between each Y and U N Yas va2 ;m
® With FMI each I/O is computed with a different FMU functions || _Fus_ = .1 B
@® Build refined dependency graph . - o =
< —— <

@ Vertices: operations, a set of FMU functions

® updateOut, updateln, and updateState

® Directed edges: precedencies between operations

® Ordinary Differential Equations (ODEs)
® No algebraic loops

@® Directed Acyclic Graph (DAG)

® Apply a multi-core scheduling heuristic on the dataflow graph |
(P
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MUO-RCOSIM
EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION

fffffffffffffffffffff [nfegrationCommunicaton
FMU A step ha ~ step H,
' T T T T T T k i T T ! T T . >
: FMU B Integration { Communication |
i step hg step Hg !
l ' i @ . x >
~ €nergies
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MUO-RCOSIM
EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION
TURMUC miegrafien T Communicafion - ® Multi-rate co-simulation

L ‘ ® Update the I/O of each FMU according to its
’ ’ > communication step

® Need for a repeatable pattern of the multi-rate
graph execution

Communication

sTSBbIA step Hy ‘

3 — . — x - x — > | ® Repeat each operation r= HS/H(o,) times, HS=lcm
Ao A A (H(oy), H(0,), .., H(o,)
| muB Integration | Communicaton | ®Eg:H,=2xH,

step hg . step Hg

: : Y Y

: l @ .
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MUO-RCOSIM
EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION
””””””””””””””””””””””””””””” Cb’ﬁw?:’whh;c’éﬁéﬁ"""""""i ® Multi-rate co-simulation
— L ® Update the I/O of each FMU according to its

communication step

® Need for a repeatable pattern of the multi-rate
graph execution

step Hy |
| L L — x — x — > | ® Repeat each operation r= HS/H(o,) times, HS=lcm
A A Ak (Hoy), H(0,), ., H(0,))
| muB Integration | Communicaton | ®Eg:H,=2xH,
| step hg . x step Hg 1
3 : 5 i : : : >
Type of dependency Slow to Fast Fast to Slow
(o) > H(o)  Hlo) <H(o)
Edge creation rule 0; = o}, o] - o,
s€{1,2,..,15} ue {1, 2, ___,rj}
H(o;) H(o))
u=|sx = |y x J
Hp| ° 7 [* " H(o,

15 | © 2017 IFPEN
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MUO-RCOSIM
MULTI-RATE GRAPH TRANSFORMATION (CONT'D)

Multi-Rate Graph Transformation Algorithm

1) Compute the hyper-step HS=lcm (H(o,), H(0,), ..., H(o,)))
2) For each operation o, in the graph

* Compute the repetition factor r,= HS/ H(oi)
3) Repeat each operation o,, r; times
4) Add edges between successive occurrences of each operation
5) For each edge (0,,0)

* IfH(o;) > H(o)) (slow to fast dependency)

Add edges (0;,0;"), s € {1,2,.., i}, u = [s X %

* If H(o) < H(o)) (fast to slow dependency)

Add edges (o7, o}‘), u e {1, 2, r]}, s = |u X
*  IfH(o) = H(o) '
Add edges (o7, 0}‘) between corresponding occurrences

6) For each FMU
 Add edges between the occurrence s of the state operation and all the input and output operations of the
next occurrence s+1
7) Stop when all operations and edges have been visited

H(Oj)
H(o;) |
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I MUO-RCOSIM
MULTI-CORE SCHEDULING

@® Off-line heuristic approach: Similar to SynDEx (INRIA) [Grandpierre et al., 1999]

® N operations, each one:

® Computation time

® Earliest and latest start and end dates = Takes into account the synchronization cost
® Objective: Minimize the makespan (multiprocessor critical path) of the graph

@® Cost function: Schedule pressure is the difference between:

® Flexibility: Freedom degree of an operation: time interval inside which o, may be executed
without increasing the makespan

@® Penalty: Critical path increase by setting an operation on a processor accounting for
synchronization cost
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MUO-RCOSIM
MULTI-CORE SCHEDULING (CONT'D)

Multi-core scheduling heuristic

1) For each operation o,
* Compute S, (resp. E;) the earliest start (resp. end ) time, and S, (resp. E’;) the latest start (resp. end )
time
* Compute the flexibility F,= CP - E;- E’,
2) Set Q) the set of operations without predecessors
3) Repeat
* For each pair (operation o, in Q, core p;)
Compute the increase (cost) of scheduling o; on p,
Select for o, the core p; which minimizes the cost of scheduling o
* Find the operation o, with the maximal cost on its selected core
* Allocate o, to its selected core
* Remove o, from Q
* Add to Q every operation whose predecessors have been scheduled
* Stop when all the operations have been scheduled
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TESTS
@® Case study
o _ AirPath
® Spark Ignition RENAULT F4RT engine 6‘%
® 6 FMUs, more than 100 operations > %TO HD [ —
® Around 300 operations after applying the multi-rate H H'%Wﬁ == o
transformation algorithm ﬁj s e
® Communication steps H— =L %E% = _%%
@® Airpath/control: 100 us - ?Ea H'?E: FT_
® Cylinders: 20 ps _aCﬂi-n ﬂn ‘23 < Aﬁinﬂ
@® Integration step = communication step for all FMUs E -

@® 3 approaches are compared

@® RCosim: Mono-rate, restricted allocations of the operation

@® MU-RCosim: MUIti-rate, restricted allocation of the
operations

® MUO-RCosim: MUIti-rate, uses the acyclic Orientation
heuristic to handle mutual exclusion constraints

19 | © 2017 IFPEN Digicosme GT OVSTR - 26/04/2017
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TESTS
SPEED-UP
Sequential execution time
® Speed-up = 1 — 3 . . . .
Parallel execution time B RCOSIM
, [ MU-RCOSIM —
@ Best speed-up close to 2.9 reached with 5 cores 2.5 | I MUO-RCOSIM B -
(compared to mono-core schedule)
2 B .
@® MUO-RCosim > MU-RCosim > RCosim =)
B 1.5¢ _ |
® Thanks to the mutual exclusion heuristic, an % B
efficient execution order for mutual exclusive 1} -
operations is defined
0.5 .
® This order tends to allow the multi-core
scheduling heuristic to better adapt the potential 0 1 2 4 ]

_ _ Number of cores
parallelism to the execution platform
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RCOSIM APPROACH
ACCURACY: ELIMINATION OF DELAYS

@® Torque is a direct feedthrough output: e.g. Y,

@® Expected delays with Standard Co-simulation (Std-Cosim) due to arbitrary
order execution decision between models

® No delays with RCosim

® The execution order is compliant with initial model

—+— Reference
e Std-Cosim; H=500ps
~ ~* -~ Rcosim; H=500pus

100 - mm e e

Test with variable step

¥ ______________________________ Simulation method
---------------------------------- ' Er(%) with H=100us

Er(%) with H=250us
Er(%) with H=500us

Air path Output: Torque (N.m)

|
0.775
Digicosme GT OVSTR - 26/04/2017
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FMU A
UAl YAl
» ——
YA2
Ua2 YA3
» »-
FMU B
YB1 UB1
U2
<
YB2 UB3
— <

solver: LSODAR

Std-Cosim RCosim
2.95 0.68
9.12 1.1

1.37
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OUTLINE

® Background
@ Co-simulation: context & challenges

@ Real-time Co-Simulation: an open problem
® Improving parallelism with the RCosim approach: Refined Co-simulation
® Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
® Mapping real-time constraints for HiL

® Future work
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CONTEXT-BASED EXTRAPOLATION
IMPROVE AGAIN THE SIMULATION ACCURACY

\\\\\\

® Limitation: with RCosim, errors are reduced but fax10° o Roference
. . — — — RCosim; H=100pus
Stl” exist TR AN T RCosim; H=250ps
1.08 oo RCosim; H=500us

® Reason: Input data is held constant during the £ rosf o AP s =
communication step 5"
3 1.02 |
®Dilemma: 7”7 communication step g , S ,
<< 0.98
® 77 Integration error 0.76 0.765 e (o) 677 0775
® 77 Speed-up 5
o . Integration steph [,.,11]_ Communication step H!Y 21
@® |dea: Extrapolate input signals to it >
® Enlarge intervals el e i
. Red uce Slmulatlon errors Initialization Exchange 1 Exchange 2
Y Y 2
= Integration step h[nzz] » EComlmlunic?tion step |H[2] i
:s! t,, thyn H Lz+1| I ! ! t,.2 >
Special case: H=HP=H <= t, =t toesH =t - t5
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RELATED WORK

@ Difficulties

@ Related work on extrapolations treated the continuous case
@® Successful for non-stiff systems / Encountered problems with stiff systems
® Complex systems with hybrid behavior is even more difficult to predict
® Nonlinearities, discontinuities,...

=»Hard to predict the future behavior (from past observations)
® Polynomial prediction fails due to the discontinuities
® No universal prediction scheme, efficient with every signal

® Challenges: fast, causal and reliable prediction
® Predictor computing cost << extra model computations with small communication steps
@® Accurate predictions for any signal (blocky/smooth; slow/steep onsets)

@® |dea: Borrow the context-based approach from lossless image encoders
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CHOPRED: COMPUTATIONALLY HASTY ONLINE PREDICTION
CHOPoOLY: CAUSAL HOPPING OBLIVIOUS POLYNOMIALS

®P;, ., least squares polynomial predictor
@ 6: prediction degree;
® \: prediction frame length
® w: weighting factor

® u: input signal; t: relative time for prediction
® Weighted moment: i, = S02V (A = )1,
® Weighted sum of integer powers: zZj., = /2 (A — )°HM

® General formula for extrapolation:

@® Use of LUT = fast computation C se e o (<DPzae] .
ur)=[1 7 o P] | e e
_(_1)555;,\@ Zsre
25 | o0 sren i (P
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CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS

META- OR DECISIONAL CONTEXT SELECTION

@ Worst case scenario without extrapolation: Aworst = |uo — -1
@ Best prediction pattern: Ape = 21;3 g —u?y|; @={01, 1112}

: Apes
®Ratio: p = 3 -
worst

®Threshold: 0.7<I'<1 eg I'=90%

®If p>1 then sharp and fast variation = Select the decisional
context: cliff context

| © 2017 IFPEN
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CHOPatt

Decisional context selection

compute ratio p and
compare it to threshold I’

!

Keep zeroth-order
hold or extrapolate?

Extrapolate l

|

Functional context selection

compute differences
d; and compare them
to thresholds y;

|

!

Keep zeroth-order
hold or extrapolate?

Extrapolate l

Select degree J and frame
length 4 for CHOPoly

Continue with
the weighting
factor selection

PIOY Iapio-yjoiay

pP1oy 1aplo-ioay

u Energies
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CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS

FUNCTIONAL CONTEXT SELECTION

d() — Uy — U_
1

Yoo 216[
it |d;| = 0;

@® Differences (variations):
® Thresholds: vy =
® Conditions:

max

(|u; —
if 0<|d;] <

H;‘+1|)

C,f

| © 2017 IFPEN

and d.{=u_1—u_

SUSTAINABLE MOBILITY

vi; C; if |di| >,

[

CHOPatt

compute ratio p and

Decisional context selection
compare it to threshold I’

}

Keep zeroth-order
hold or extrapolate?

Extrapolate l

Functional context selection

compute differences
d; and compare them
to thresholds y;

|

!

Keep zeroth-order
hold or extrapolate?

Extrapolate l

Select degree o and frame
length 4 for CHOPoly

Continue with
the weighting
factor selection

N
o
=]
=1
=
1

=]
=
j=
o
-
=
=
f=H

E':J

<

=

T

=]

=

g

=

2

f="

-—
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CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS
FUNCTIONAL CONTEXT SELECTION

@® Differences (variations):

| © 2017 IFPEN

do — Uy — U_
1

and d_l —U_1 — U

® Thresholds: Yo = v = max  (|u; — ;4 1])
236[ A.....—3]
®Conditions: 0 if |d| =0; C; if 0<|d|<y; C if |d]>7.
mn-m | | °
0 0 ;o 1, ; oo °®. g ‘
1 C C any 2,5,. | | -
' —2 flat : calm : .\4/’6
2 ¢, ¢, any (0,1,.) St R
3 ¢, ¢, any (0,2 A . 2
_ _ | s |
4 ¢, C, >0 (1,3,.) '/ | o e® @
5 ¢, C, <0 (0,1, rest @ O e | jump

Digicosme GT OVSTR - 26/04/2017

CHOPatt

{ Decisional context selection ]

compute ratio p and
compare it to threshold T’

!

Keep zeroth-order
hold or extrapolate?

Extrapolate l
{Funcﬂoml context selection J

compute differences
d; and compare them
to thresholds y;

!

Keep zeroth-order
hold or extrapolate?

PIOY Iapio-yjoiay

Extrapolate l

Select degree d and frame
length 4 for CHOPoly

pP1oy 1aplo-ioay

'

Continue with
the weighting
factor selection
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SUSTAINABLE MOBILITY

SIMULATION RESULTS WITH CHOPtrey
AUTOMATIC DETECTION OF SHARP VARIATION

® Same case study
® 118 states/312 events
@® Solver: LSODAR
@® Communication step: 200us

® Conventional 15t & 2" order
extrapolation

@® Fails on the engine model

® Major causes:
@® Discontinuities
@® Sharp variations

- €nergies
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SIMULATION RESULTS WITH CHOPtrey

AUTOMATIC DETECTION OF SHARP VARIATIO

® Same case study
® 118 states/312 events
@® Solver: LSODAR
@® Communication step: 200us

® Conventional 15t & 2" order
extrapolation

@® Fails on the engine model

® Major causes:
@® Discontinuities
@® Sharp variations

=» Context-based extrapolation?

30 | © 2017 IFPEN

Air path Output: Pressure (Pa)

114+

1.12

111

1.081

1.06F

1.04+

1.02F

. | =™ No split model
5 : : . | = Split model without extrapol
o D s\ |+ Split model with extrapol |

...................................................................................................

[y

Yy - O M

..........................................................................

................................................................................................

i i i i i i i i
0374 0376 0378 038 0382 0384 0386 0.388
time (s)
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SIMULATION RESULTS WITH CHOPtrey
AUTOMATIC DETECTION OF SHARP VARIATIO

——— Split model without extrapol
— = — Split model with extrapol
100 ------- (‘\ ........ :

Mo Split model ‘

® Same case study
® 118 states/312 events
@® Solver: LSODAR
@® Communication step: 200us

® Conventional 15t & 2" order B

4y}
[=]

utput:

Torque (N.m)

........

ylinder

. | =™ No split model

extra polation J | —— Split model without extrapol -10055

L P o R S\ 2| - Split model with extrapol |-

@® Fails on the engine model

| | | AT | 5 |
"].1_ : ] ; " .h .......... ............ ............ _

@® Major causes:

108k ............ ............ ..... . ‘.:". ............ L3 e ............ ............ e
® Discontinuities : ' LET L : :

P HR s e - o
@® Sharp variations | D | : | | :

1171 S — L ok S S S RN S -

Context variation

=» Context-based extrapolation?

Air path Output: Pressure (Pa)

. . . : . i
1.02F----- s ___\.;-_;.' | s L ey C ............ S gt
. : : : : ; i ol

P | | | LIN ﬂ i i i i i
1 g o e o AT %02 003 004 o005 006 00

i i i i i i i i
0374 0376 0378 038 0382 0384 0386 0.388
time (s)
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SIMULATION RESULTS WITH CHOPtrey
AUTOMATIC SELECTION OF THE WEIGHTING FACTOR

(2]
=]
Q
[=]

2500

® No unique best weighting factor w due to
complex coupled systems

2000

=» Dynamic selection of w

® At each communication step, w, . is selected
and used for the current step

- Cumulative integration error is the lowest one

1500

1000

500t g TR G e
[’

Absolute error of enthalpy flow rate of cylinder 1

=]

0.176 0.178 0.8 0.182 0.184 0.186 0.188 u19 0.192 0.194 0.196
time (s)

Air mass fraction of cylinder1 (Kgim’) Fuel mass fraction of cylinder1 (Kgfm3) Burned gas mass fraction of cylinder1 {Kg!m3]

| | 1 I | 1 1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 0.5 1 1.5 2 25 Absolute error

Absolute error x 107 Absolute error x10~°
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CHOPtrey PERFORMANCE
SPEED-UP VERSUS ACCURACY

® The speed-up factor is compared with single-threaded reference

® The model is split into 5 threads integrated in parallel on 5 cores

® Containment of events detection handling = solvers accelerations = overcompensate multi-threading
costs

® The relative error variation is compared with ZOH at 100 ps

Communication step Prediction Speed-up factor Relative error variation (%)
Burned gas density  Fuel density

100 ps |+1z 5% ) X
250 ps ZOH 10.01 7 341

CHOPtrey 10.07 -26 21

( fP €nergies
K ouvelles
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OUTLINE

® Background
@ Co-simulation: context & challenges

@ Real-time Co-Simulation: an open problem
® Improving parallelism with the RCosim approach: Refined Co-simulation
® Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
® Mapping real-time constraints for HilL

® Future work
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REAL TIME SIMULATION
FROM REAL TIME TO SIMULATED TIME

Simulation
Real d-simu
I T N A C
DI << D 4| y1 X; u N u1 X! y <
— Real Time y B U, X, y D F
RO > RU — u , X’ y 7 ’ > u y X, y
- _-- i » U, X,
T Yy E
r-simu
I I
® Relative simulation constraints “Qk Ru ”};k““
@ At each interaction : nNx<T,, =t Tu _____ N u. -
k K+m
® Y« required > deadline d i g
u YK d y,k D d y,k+m
® Yk available> release Lk < y N
® Impact on the underlying computations | Y, l _____ SV l
@® Linked to the nature of the models ti t ! ”
and their interconnection k K+m

® How to propagate when step time (h) are different for models A, BC, ...?

u Energies
Qanauvg’lss
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SUSTAINABLE MOBILITY

I INTRA-MODEL PROPAGATION

AND « DIRECT FEEDTHROUGH » Absolute Simu constraints with offset
R,,D, =(D,T)
offset period
NxT,,=t

O Ju x yl—.1

DF < u, —»> Vv,

 Propagationr-simu R, = Rg
« R, :offset h
- DF =R, =R

u

u Energies
Qanouvg‘lss
N~
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SUSTAINABLE MOBILITY

I INTRA-MODEL PROPAGATION

AND « DIRECT FEEDTHROUGH » Absolute Simu constraints with offset
R,,D, =(D,T)
offset period
NxT,,=t

O Ju x vyl 1
NDF < u, » vy,

 Propagationr-simu R, = Rg
« R, :offset h
. DF =R, =R,
* NDF = R, :offset h

u Energies
Qanouvg‘lss
N~
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SUSTAINABLE MOBILITY

I INTRA-MODEL PROPAGATION

AND « DIRECT FEEDTHROUGH » Absolute Simu constraints with offset
R,,D, =(D,T)
N
offset period
NxT,,=t
O Ju x vyl 1
DF < u, —»> Vv,

* Propagationr-simu R, = Rg * Propagation d-simu D, = D,
* R, :offset h * D, : no offset
- DF = R, =R, - DF =D, =D,
* NDF = R, :offset h g

u Energies
Qanouvg‘lss
N
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I INTRA-MODEL PROPAGATION
AND « DIRECT FEEDTHROUGH »

NxT,,=t

SUSTAINABLE MOBILITY

Absolute Simu constraints with offset

D, = (D, T
B =D

offset period

(@ SN

u

X yl—ul

NDF < u, » vy,

 Propagationr-simu R, = Rg
R, :offset h
. DF =R, =R,
* NDF = R, :offset h

39 | © 2017 IFPEN

* Propagation d-simu D, = D,
* D, : no offset
- DF = D, =D,
« NDF = D,: offset —h
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I EXAMPLE OF PROPAGATION
RELATIVE MESHES

SUSTAINABLE MOBILITY

T, =2 NDF DF
B
O AU A. X Ay B.u_| B.Xx Y |
h,=1 hy =1
(D, T) AU A. X Ay =B.u B.X B.y
R, R, =(0,2) (1,2) (1.2) (2,.2) | (12)
D, (—1,2) (0,2) (0,2) (0,2) D, =(0,2)
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SUSTAINABLE MOBILITY

I EXAMPLE OF PROPAGATION

ABSOLUTE SIMULATION CONSTRAINTS hA — hB =1
A>B 1 To=2
e = 6 ua\ ......
g =23
vD, = (@,T), d,, =| P =P | 7
’ T
VR, = (®,T), r,, = |1 X'T_CD < T

| © 2017 IFPEN




SUSTAINABLE MOBILITY

I EXAMPLE OF PROPAGATION
ABSOLUTE SIMULATION CONSTRAINTS

A—B

VDV:((I),T), dvi — h>xi—® < T B.X
| T R, | (2,2)
VRV = (CI),T), rV,i — h 1= q) XT Dv (012)
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SUSTAINABLE MOBILITY

I EXAMPLE OF PROPAGATION

ABSOLUTE SIMULATION CONSTRAINTS hA — hB =1
A>B To=2
r.u,6 =6 UG\ . ......
g =23
B : - 1<x9—-0
VD, =(®,T), d,; = N>x1=® | B.X dB.x,9=[ > WxZ:lO
; T Rv (2’2)
VRV = (CI),T), rV,i — h 1= q) XT Dv (012)
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SUSTAINABLE MOBILITY

I EXAMPLE OF PROPAGATION
ABSOLUTE SIMULATION CONSTRAINTS

A—B

B : 7 1<x9—-0
VDV:((I)1T)1 dvi — hXI_(D XT B.X dB.X,QZ[ 2 —‘Xzzlo
, T Rv (2’2)
| — 1x9 -2
\V/RV = (CD,T), rV’i — h>i D < T I:)v (012) rB.x,9 = L > JX 2 =06
- T _ k — Qgi ccccc GT OVSTR — 26/04/2017
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I EXAMPLE OF PROPAGATION
ABSOLUTE SIMULATION CONSTRAINTS

SUSTAINABLE MOBILITY

A—>B - T =2

1x8—-2
r-B.x,8 —
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SUSTAINABLE MOBILITY

I FUTURE WORK

® Short term
@® Comparison of RCOSIM heuristics with an exact scheduling algorithm
@® Comparison of RCOSIM offline approach with on-line scheduling

® Mid term
@® Extension of real-time constraints propagation rules to the RCOSIM fine-grained approach
® Real-time multicore scheduling heuristics for an HiL version of the RCOSIM
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SUSTAINABLE MOBILITY
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