RECENT DEVELOPMENTS FOR MONO- OR MULTI-RATE PARALLEL REAL-TIME CO-SIMULATION

EXTRAPOLATION AND SCHEDULING FOR MULTICORE ARCHITECTURES

Abir El Feki, Salah Eddine Saidi, Nicolas Pernet, Laurent Duval, Mongi Ben Gaid (IFPEN)

Yves Sorel, Daniel Simon (INRIA)

Cyril Faure (CEA)

OUTLINE

Background

- Co-simulation: context & challenges
- Real-time Co-Simulation: an open problem
- Improving parallelism with the RCosim approach: Refined Co-simulation
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Mapping real-time constraints for HiL
- Future work

BACKGROUND

- Co-simulation: Alternative to monolithic simulation

 Simulation of a complex system using several coupled subsystems
 - A subsystem is modeled using the most appropriate tool instead of using a single modeling software
 - Subsystems are modeled and run in a segregated manner → The equations of each model are integrated using a solver separately
 - During the execution models exchange data → A synchronization mechanism is used between the models, in such a way that models update their inputs and outputs according to assigned communication steps
 - Easy upgrade, reuse, and exchange of models

BACKGROUND

- Co-simulation: Alternative to monolithic simulation

 Simulation of a complex system using several coupled subsystems
 - A subsystem is modeled using the most appropriate tool instead of using a single modeling software
 - Subsystems are modeled and run in a segregated manner → The equations of each model are integrated using a solver separately
 - During the execution models exchange data → A synchronization mechanism is used between the models, in such a way that models update their inputs and outputs according to assigned communication steps
 - Easy upgrade, reuse, and exchange of models
 - Heterogeneous ODE models → Time consuming simulations

Model 2

Model 1

Model 3

Model 4 Complex model \rightarrow Time consuming simulation

BACKGROUND (CONT'D)

A multi-core co-simulation kernel: Why?

- System-level simulation leads to agglomerate models which are classically disconnected, increasing the CPU demand at simulation time
- Simulation time becomes more and more a metric for model complexity
- Most 0D/1D simulation tools have mono-core kernel while mono-core computers are endangered

How long will this CPU power remain unused?

OUTLINE

Background

- Co-simulation: context & challenges
- Real-time Co-Simulation: an open problem
- Improving parallelism with the RCosim approach: Refined Co-simulation
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Mapping real-time constraints for HiL
- Future work

SUSTAINABLE MOBILITY

REAL-TIME SIMULATION NEEDS FOR CPS VALIDATION

7 © 2017 IFPEN

SUSTAINABLE MOBILITY

REAL-TIME SIMULATION NEEDS FOR CPS VALIDATION

Hardware-in-the-Loop → real-time constraints

8 © 2017 IFPEN

Digicosme GT OVSTR - 26/04/2017

REAL-TIME SIMULATION NEEDS FOR CPS VALIDATION

Hardware-in-the-Loop → real-time constraints

Digicosme GT OVSTR - 26/04/2017

REAL-TIME SIMULATION NEEDS FOR CPS VALIDATION

Hardware-in-the-Loop → real-time constraints

OUTLINE

Background

- Co-simulation: context & challenges
- Real-time Co-Simulation: an open problem
- Improving parallelism with the RCosim approach: Refined Co-simulation
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Mapping real-time constraints for HiL
- Summary and outlook

RCOSIM: REFINED CO-SIMULATION DATAFLOW GRAPH OF FMUS

- Inter FMU dependencies specified by the user
- Identify locally if Y is dependent on U or not
 - FMI gives relationships between each Y and U
 - With FMI each I/O is computed with a different FMU functions
- Build refined dependency graph
 - Vertices: operations, a set of FMU functions
 - updateOut, updateIn, and updateState
 - Directed edges: precedencies between operations
 - Ordinary Differential Equations (ODEs)
 - No algebraic loops
 - Directed Acyclic Graph (DAG)
- Apply a multi-core scheduling heuristic on the dataflow graph

MUO-RCOSIM EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION

MUO-RCOSIM EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION

- Multi-rate co-simulation
 - Update the I/O of each FMU according to its communication step
- Need for a repeatable pattern of the multi-rate graph execution
- Repeat each operation r_i= HS/H(o_i) times, HS=lcm (H(o₁), H(o₂), ..., H(o_n))

• E.g: $H_B = 2 \times H_A$

14

MUO-RCOSIM EXTEND RCOSIM TO HANDLE MULTI-RATE CO-SIMULATION

- Multi-rate co-simulation
 - Update the I/O of each FMU according to its communication step
- Need for a repeatable pattern of the multi-rate graph execution
- Repeat each operation r_i= HS/H(o_i) times, HS=lcm (H(o₁), H(o₂), ..., H(o_n))

• E.g:
$$H_B = 2 \times H_A$$

MUO-RCOSIM MULTI-RATE GRAPH TRANSFORMATION (CONT'D)

Multi-Rate Graph Transformation Algorithm

- 1) Compute the hyper-step HS=lcm $(H(o_1), H(o_2), ..., H(o_n))$
- 2) For each operation o_i in the graph
 - Compute the repetition factor r_i= HS/ H(oi)
- 3) Repeat each operation o_i, r_i times
- 4) Add edges between successive occurrences of each operation
- 5) For each edge (o_i,o_j)
 - If $H(o_i) > H(o_j)$ (slow to fast dependency)

Add edges (o_i^s, o_j^u) , $s \in \{1, 2, ..., r_i\}$, $u = \left[s \times \frac{H(o_i)}{H(o_j)}\right]$

- If $H(o_i) < H(o_j)$ (fast to slow dependency) Add edges $(o_i^s, o_j^u), u \in \{1, 2, ..., r_j\}, s = \left| u \times \frac{H(o_j)}{H(o_j)} \right|$
- If $H(o_i) = H(o_j)$ Add edges (o_i^s, o_j^u) between corresponding occurrences
- 6) For each FMU
 - Add edges between the occurrence s of the state operation and all the input and output operations of the next occurrence s+1
- 7) Stop when all operations and edges have been visited

MUO-RCOSIM MULTI-CORE SCHEDULING

- Off-line heuristic approach: Similar to SynDEx (INRIA) [Grandpierre et al., 1999]
- N operations, each one:
 - Computation time
 - Earliest and latest start and end dates \rightarrow Takes into account the synchronization cost
- Objective: Minimize the makespan (multiprocessor critical path) of the graph
- Cost function: Schedule pressure is the difference between:
 - Flexibility: Freedom degree of an operation: time interval inside which o_i may be executed without increasing the makespan
 - Penalty: Critical path increase by setting an operation on a processor accounting for synchronization cost

MUO-RCOSIM MULTI-CORE SCHEDULING (CONT'D)

Multi-core scheduling heuristic

- 1) For each operation o_i
 - Compute S_i (resp. E_i) the earliest start (resp. end) time, and S'_i (resp. E'_i) the latest start (resp. end) time
 - Compute the flexibility $F_i = CP E_i E'_i$
- 2) Set Ω the set of operations without predecessors
- 3) Repeat
 - For each pair (operation o_i in Ω, core p_j)
 Compute the increase (cost) of scheduling o_i on p_j
 Select for o_i, the core p_i which minimizes the cost of scheduling o_i
 - Find the operation o_i with the maximal cost on its selected core
 - Allocate o_i to its selected core
 - Remove o_i from Ω
 - Add to Ω every operation whose predecessors have been scheduled
 - Stop when all the operations have been scheduled

TESTS

Case study

- Spark Ignition RENAULT F4RT engine
- 6 FMUs, more than 100 operations
- Around 300 operations after applying the multi-rate transformation algorithm
 - Communication steps
 - Airpath/control: 100 μs
 - Cylinders: 20 µs
 - Integration step = communication step for all FMUs
- 3 approaches are compared
 - RCosim: Mono-rate, restricted allocations of the operation
 - MU-RCosim: MUlti-rate, restricted allocation of the operations
 - MUO-RCosim: MUlti-rate, uses the acyclic Orientation heuristic to handle mutual exclusion constraints

TESTS SPEED-UP

• Speed-up = $\frac{Sequential execution time}{Parallel execution time}$

 Best speed-up close to 2.9 reached with 5 cores (compared to mono-core schedule)

- MUO-RCosim > MU-RCosim > RCosim
- Thanks to the mutual exclusion heuristic, an efficient execution order for mutual exclusive operations is defined
- This order tends to allow the multi-core scheduling heuristic to better adapt the potential parallelism to the execution platform

RCOSIM APPROACH ACCURACY: ELIMINATION OF DELAYS

• Torque is a direct feedthrough output: e.g. Y_{A3}

- Expected delays with Standard Co-simulation (Std-Cosim) due to arbitrary order execution decision between models
- No delays with RCosim
 - The execution order is compliant with initial model

OUTLINE

Background

- Co-simulation: context & challenges
- Real-time Co-Simulation: an open problem
- Improving parallelism with the RCosim approach: Refined Co-simulation
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Mapping real-time constraints for HiL
- Future work

CONTEXT-BASED EXTRAPOLATION IMPROVE AGAIN THE SIMULATION ACCURACY

- Limitation: with RCosim, errors are reduced but still exist
- Reason: Input data is held constant during the communication step
- <u>Dilemma</u>: **/** ∕ communication step
 - ✓ Integration error
 - ↗↗ Speed-up
- Idea: Extrapolate input signals to
 - Enlarge intervals
 - Reduce simulation errors

Digicosme GT OVSTR - 26/04/2017

RELATED WORK

Difficulties

Related work on extrapolations treated the continuous case

- Successful for non-stiff systems / Encountered problems with stiff systems
- Complex systems with hybrid behavior is even more difficult to predict
 - Nonlinearities, discontinuities,...
- → Hard to predict the future behavior (from past observations)
 - Polynomial prediction fails due to the discontinuities
 - No universal prediction scheme, efficient with every signal
- Challenges: fast, causal and reliable prediction
 - Predictor computing cost << extra model computations with small communication steps</p>
 - Accurate predictions for any signal (blocky/smooth; slow/steep onsets)
- Idea: Borrow the context-based approach from lossless image encoders

CHOPRED: COMPUTATIONALLY HASTY ONLINE PREDICTION CHOPOLY: CAUSAL HOPPING OBLIVIOUS POLYNOMIALS

• $P_{\delta,\lambda,\omega}$: least squares polynomial predictor

- δ : prediction degree;
- λ : prediction frame length
- $\bullet \omega$: weighting factor
- u: input signal; τ : relative time for prediction
- Weighted moment: $\overline{m}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d u_{-l}$
- Weighted sum of integer powers: $\overline{z}_{d,\lambda,\omega} = \sum_{l=0}^{\lambda-1} (\lambda l)^{\omega} l^d$
- General formula for extrapolation:
 - Use of LUT → fast computation

$$u(\tau) = \begin{bmatrix} 1 & \tau & \cdots & \tau^{\delta} \end{bmatrix} \begin{bmatrix} z_{0,\lambda,\omega} & z_{1,\lambda,\omega} & \cdots & (-1) & z_{0,\lambda,\omega} \\ -\overline{z}_{1,\lambda,\omega} & & \vdots \\ \vdots & & \vdots \\ (-1)^{\delta} \overline{z}_{\delta,\lambda,\omega} & \cdots & \cdots & \overline{z}_{2\delta,\lambda,\omega} \end{bmatrix} \begin{bmatrix} \overline{m}_{0,\lambda,\omega} \\ -\overline{m}_{1,\lambda,\omega} \\ \vdots \\ (-1)^{\delta} \overline{m}_{\delta,\lambda,\omega} \end{bmatrix}$$

 $\begin{bmatrix} \overline{z}_{0}, \alpha & -\overline{z}_{1}, \alpha & \cdots & (-1)^{\delta} \overline{z}_{\delta}, \alpha \end{bmatrix}^{-1}$

CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS META- OR DECISIONAL CONTEXT SELECTION

- Worst case scenario without extrapolation: $\Delta_{\text{worst}} = |u_0 u_{-1}|$
- Best prediction pattern: $\Delta_{\text{best}} = \min_{\omega \in \Omega} |u_0 \hat{u}_{-1}^{\omega}|$; $\Omega = \{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2\}$ • Ratio: $\rho = \frac{\Delta_{\text{best}}}{\Delta_{\text{worst}}}$ • Threshold: $0.7 \leq \Gamma < 1$ e.g. $\Gamma = 90\%$
- If $\rho > \Gamma$ then sharp and fast variation \rightarrow Select the decisional context: cliff context

CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS FUNCTIONAL CONTEXT SELECTION

CHOPATT: CONTEXTUAL AND HIERARCHICAL ONTOLOGY OF PATTERNS FUNCTIONAL CONTEXT SELECTION

n(ame)	#	<i>d</i> ₋₁	<i>d</i> ₀	<i>d</i> ₋₁ . <i>d</i> ₀	(δ, λ, ω)
f(lat)	0	0	0	0	(0, 1, .)
c(alm)	1	<i>C</i> ₁	<i>C</i> ₂	any	(2, 5, .)
m(ove)	2	<i>C</i> ₁	\bar{C}_2	any	(0, 1, .)
r(est)	3	\bar{C}_1	C ₂	any	(0, 2, .)
t(ake)	4	\bar{C}_1	\bar{C}_2	>0	(1, 3, .)
j(ump)	5	\bar{C}_1	\bar{C}_2	< 0	(0, 1, .)

IFPEN Transports Energie

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION

Same case study

- 118 states/312 events
- Solver: LSODAR
- Communication step: 200µs
- Conventional 1st & 2nd order extrapolation
 - Fails on the engine model
 - Major causes:
 - Discontinuities
 - Sharp variations

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION

Same case study

- 118 states/312 events
- Solver: LSODAR
- Communication step: 200µs
- Conventional 1st & 2nd order extrapolation
 - Fails on the engine model
 - Major causes:
 - Discontinuities
 - Sharp variations
- ➔ Context-based extrapolation?

30

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC DETECTION OF SHARP VARIATION

Same case study

- 118 states/312 events
- Solver: LSODAR
- Communication step: 200µs
- Conventional 1st & 2nd order extrapolation
 - Fails on the engine model
 - Major causes:
 - Discontinuities
 - Sharp variations
- ➔ Context-based extrapolation?

IFPEN Transports Energi

SIMULATION RESULTS WITH CHOPtrey AUTOMATIC SELECTION OF THE WEIGHTING FACTOR

- No unique best weighting factor ω due to complex coupled systems
- \rightarrow Dynamic selection of ω
 - At each communication step, ω_{best} is selected and used for the current step
 - \rightarrow Cumulative integration error is the lowest one

CHOPtrey PERFORMANCE SPEED-UP VERSUS ACCURACY

• The speed-up factor is compared with single-threaded reference

- The model is split into 5 threads integrated in parallel on 5 cores
 - Containment of events detection handling → solvers accelerations → overcompensate multi-threading costs
- The relative error variation is compared with ZOH at 100 µs

Communication step	Prediction	Speed-up factor	Relative error variation (%)		
			Burned gas density	Fuel density	
100 µs	ZOH	8.9 +12.5%	-	-	
2 50 μs	ZOH	10.01	7	341	
	CHOPtrey	10.07	-26	21	

OUTLINE

Background

- Co-simulation: context & challenges
- Real-time Co-Simulation: an open problem
- Improving parallelism with the RCosim approach: Refined Co-simulation
- Ensuring co-simulation accuracy with CHOPtrey extrapolation approach
- Mapping real-time constraints for HiL
- Future work

FPEN Transports Energ

REAL TIME SIMULATION FROM REAL TIME TO SIMULATED TIME

Absolute Simu constraints with offset

$$R_v, D_v = (\Phi, T)$$
offset
period

$$n \times T_{IO} = t_k$$

$$O \longrightarrow u \quad x \quad y \longrightarrow I$$

$$DF \Leftrightarrow u_k \rightarrow y_k$$

- Propagation *r-simu* $R_u = R_O$
 - R_x : offset h
 - $DF \Longrightarrow R_y = R_u$
 - •

Absolute Simu constraints with offset

$$R_v, D_v = (\Phi, T)$$
offset
period

$$n \times T_{IO} = t_k$$

$$O \longrightarrow u \quad x \quad y \longrightarrow I$$

$$NDF \Leftrightarrow u_k \not\rightarrow y_k$$

- Propagation *r-simu* $R_u = R_O$
 - R_x : offset h
 - $DF \Longrightarrow R_y = R_u$
 - $NDF \Longrightarrow R_y$: offset h

Absolute Simu constraints with offset

$$R_v, D_v = (\Phi, T)$$
offset
period

$$n \times T_{IO} = t_k$$

$$O \longrightarrow u \quad x \quad y \longrightarrow I$$

$$DF \Leftrightarrow u_k \rightarrow y_k$$

- Propagation *r-simu* $R_u = R_O$
 - R_x : offset h
 - $DF \Longrightarrow R_y = R_u$
 - $NDF \Longrightarrow R_y$: offset h

- Propagation *d-simu* $D_y = D_I$
 - D_x : no offset
 - $DF \Longrightarrow D_u = D_y$
 - ٠

Absolute Simu constraints with offset
$$R_v, D_v = (\Phi, T)$$

offset period

$$n \times T_{IO} = t_k$$

$$O \longrightarrow u \quad x \quad y \longrightarrow I$$

$$NDF \Leftrightarrow u_k \not\rightarrow y_k$$

- Propagation *r-simu* $R_u = R_O$
 - R_x : offset h
 - $DF \Longrightarrow R_y = R_u$
 - $NDF \Longrightarrow R_y$: offset h

- Propagation *d-simu* $D_y = D_I$
 - D_x : no offset
 - $DF \Longrightarrow D_u = D_y$
 - $NDF \Rightarrow D_u$: offset -h

EXAMPLE OF PROPAGATION RELATIVE MESHES

(Φ,T) v	A.u	A.x	A.y = B.u	B.x	B .y
$R_{_{\mathcal{V}}}$	$R_o = (0,2)$	(1,2)	(1,2)	(2,2)	(1,2)
D_v	(-1,2)	(0,2)	(0,2)	(0,2)	$D_I = (0,2)$

$$\forall D_{v} = (\Phi, T), \ d_{v,i} = \left[\frac{h \times i - \Phi}{T}\right] \times T$$

$$\forall R_{v} = (\Phi, T), \ r_{v,i} = \left\lfloor\frac{h \times i - \Phi}{T}\right\rfloor \times T$$

41

Digicosme GT OVSTR - 26/04/2017

43

FUTURE WORK

Short term

- Comparison of RCOSIM heuristics with an exact scheduling algorithm
- Comparison of RCOSIM offline approach with on-line scheduling

Mid term

- Extension of real-time constraints propagation rules to the RCOSIM fine-grained approach
- Real-time multicore scheduling heuristics for an HiL version of the RCOSIM

REFERENCES

 S. Saidi et al., "Automatic Parallelization of Multi-Rate FMI-based Co-Simulation on Multi-Core" Spring Simulation Multiconference (Apr. 2017)

 A. Ben Khaled-El Feki et al., "CHOPtrey: contextual online polynomial extrapolation for enhanced multi-core co-simulation of complex system", Simulation, 2017, vol. 93(3), pp. 185-200. DOI: 10.1177/0037549716684026

 A. Ben Khaled-El Feki et al., "Fast multi-core co-simulation of Cyber-Physical Systems: application to internal combustion engines", *Simulation Modelling Practice and Theory*, 2014, vol. 47, pp. 79-91. <u>DOI : 10.1016/J.SIMPAT.2014.05.002</u>

