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Optimization of Synthesis Oversampled
Complex Filter Banks
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Abstract—An important issue with oversampled FIR analysis
filter banks (FBs) is to determine inverse synthesis FBs, when
they exist. Given any complex oversampled FIR analysis FB, we
first provide an algorithm to determine whether there exists an
inverse FIR synthesis system. We also provide a method to ensure
the Hermitian symmetry property on the synthesis side, which
is serviceable to processing real-valued signals. As an invertible
analysis scheme corresponds to a redundant decomposition, there
is no unique inverse FB. Given a particular solution, we parame-
terize the whole family of inverses through a null space projection.
The resulting reduced parameter set simplifies design procedures,
since the perfect reconstruction constrained optimization problem
is recast as an unconstrained optimization problem. The design of
optimized synthesis FBs based on time or frequency localization
criteria is then investigated, using a simple yet efficient gradient
algorithm.

Index Terms—Filter design, frequency localization, inversion,
lapped transforms, modulated filter banks, optimization, over-
sampled filter banks, time localization.

I. INTRODUCTION

S INCE the 1970s, filter banks (FBs) have become a central
tool in signal/image processing and communications:

lapped or discrete wavelet transforms can be viewed as in-
stances of FB structures. Likewise, oversampled FBs (OFBs)
constitute an extensively studied instance with remaining open
questions. Their development came along under a variety of
different appellations, to name a few: general analysis-synthesis
systems [1], discrete Fourier transform (DFT) with stack-shift
capability, overlap-add or generalized DFT, underdecimated
systems, oversampled harmonic modulated filter banks [2], [3],
complex lapped transforms [4], generalized lapped pseudo-
biorthogonal transform, etc.

In a more generic form, OFBs have received a considerable
attention both theoretically and in many applications, in the
past 10 years, following their association with specific types of
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Fig. 1. Oversampled� -channel filter bank.

frames [2], [5], [6]. Their design flexibility, improved frequency
selectivity and increased robustness to noise and aliasing distor-
tions have made them useful for subband adaptive filtering in
audio processing [7], noise shaping [8], denoising [3], multiple
description coding [9], echo cancellation [10], multiple antenna
code design [11], channel equalization [12]–[14], or channel
coding [15].

Two major problems arise when resorting to OFBs: i) the
existence of an inverse for the analysis OFB achieving perfect
reconstruction (PR) and ii) the determination of an “optimal”
synthesis FB. Since the additional degrees of freedom gained
through redundancy may increase the design complexity, sev-
eral works have focused on FBs modulated with a single [16],
[17] or multiple windows [18]. More general formulations
are based on factorizations of OFB polyphase representations
with additional constraints (restricted oversampling ratios,
symmetry, realness, or filter length) into a lattice [19]–[22] or
a lifting structure [23]. Constructions with near perfect recon-
struction (relaxing the PR property) have also been proposed
[10], [24]–[26]. In [27]–[29], more involved algebraic tools
(such as Gröbner bases) have also been employed. Recently,
Chai et al. have proposed a design based on FB state-space
representations [30]. The design may use different kinds of op-
timization criteria based on filter regularity or more traditional
cost functions based on filter shape (subband attenuation [10],
[21], coding gain [31]). Most of those synthesis FB designs
rely on minimum-norm solutions. An interesting approach
combining the latters with a null space method was success-
fully pursued by Mansour [32] for synthesis window shape
optimization in a modulated DFT FB.

Within the compass of the proposed work is a relatively
generic construction and optimization of oversampled syn-
thesis filter banks with finite impulse response (FIR) properties
at both the analysis and synthesis sides. We can additionally im-
pose a practically useful Hermitian symmetry on the synthesis
side. This work extends the results given in two previous con-
ference papers [33], [34]. A special case has been judiciously
devised in [22], for specific filter length and redundancy factor
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allowing closed form expressions for two design criteria. In
Section II, we recall the polyphase notation used throughout
this paper. Given arbitrary FIR complex oversampled analysis
FB, we first describe in Section III-A a simple algorithm to test
whether it is FIR invertible or not, based on known results on
polynomial matrices [35], [36]. The standard Moore-Penrose
pseudoinverse (PI) solution [37] is studied in Section III-B. In
Section III-C, a method is supplied to enforce an Hermitian
symmetric FB, which is useful for real data analysis, processing
and synthesis. In Section IV, the problem of the optimal design
of the synthesis FB is addressed. Although optimization can be
studied both on the analysis and synthesis sides [38], [39], we
consider here a given analysis FB and work on the synthesis
side. We derive in Section IV-A an efficient parameter set size
reduction for this purpose. Using time or frequency localization
criteria, we then reformulate in Section IV-B the constrained
optimization problem as an unconstrained one for both the
general and Hermitian symmetric cases. After describing the
optimization process, we illustrate, in Section V, the different
methods proposed for the inversion and optimization on three
classical oversampled real and complex FB types.

II. PROBLEM STATEMENT

A. Notations

Lapped transforms [40] were introduced in [41] to avoid
blocking artifacts in audio processing. Similarly for images,
they reduce tiling effects produced by classical block trans-
forms (as can be seen in the JPEG image compression format).
Lapped transforms belong to the class of FBs, such as the one
represented in Fig. 1, with a decimation factor smaller than
the length of each filter. The filters, whose impulse responses
are denoted by , are supposed of finite length
with an integer greater than or equal to 2. We therefore
consider overlapping blocks of size .

A signal is decomposed by filters; since the
decimation factor is , the overall redundancy of the transform
is . In this paper, we investigate the oversampled
case, i.e., . The outputs of the analysis FB are denoted
by . With these notations, the outputs of the anal-
ysis FB are expressed, for all and , as

(1)

B. Polyphase Formulation

Let ,
be the polyphase matrices obtained from the impulse re-

sponses of the analysis filters. We also define: ,

, the polyphase vector from the input signal
, leading to concisely rewriting (1) into a convolutive form

(2)

where is the transpose operator. Thus, (2) can be reexpressed
as: , where is the

polyphase transfer matrix of the analysis FB and
(respectively, ) is the -transform of (respec-
tively, ).

C. Synthesis FB

The polyphase transfer matrix of the synthesis FB:
, satisfies

(3)

where the polyphase vector of the output signal of the synthesis
FB is defined similarly to . We deduce
from (3) that

(4)

where . Expressing (4) with
impulse responses, we can write: for every
and ,

(5)

which, by identifying (4) and (5), allows us to deduce that

(6)

These expressions hold for any oversampled FIR FB.

III. INVERSION

A. Invertibility of an Analysis FB

This work being focused on the construction of FIR synthesis
filters, a preliminary point is the verification of the given anal-
ysis FB FIR invertibility. The polyphase representation of FBs
offers the advantage of relating the perfect reconstruction prop-
erty to the invertibility of the polyphase transfer matrix [42].
The latter matrix belongs to the ring of Laurent
polynomial matrices of dimensions . We emphasize that
we do not look for any inverse MIMO filter, but for an inverse
polynomial matrix in instead. In other words, we
aim at obtaining a (nonnecessarily causal) FIR synthesis FB.

A first answer to this FIR invertibility problem can be con-
veyed through the study of the Smith McMillan form of a poly-
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nomial matrix [42], [43], but unfortunately this decomposition
is quite costly. Park, Kalker, and Vetterli also devised a method
using Gröbner bases [28] to study the invertibility of polynomial
matrices which is applicable to the general multidimensional
case. We describe here an alternative cost-effective method in
the one-dimensional case. The following result gives a neces-
sary and sufficient condition for a matrix to be left invertible,
and, thus, for the existence of such an inverse system: let

be a polynomial matrix with . The fol-
lowing conditions are equivalent:

1) is “coprime,” which means that the determinants of
the maximum minors (sub-matrices of size ) are
mutually relatively prime;

2) is left invertible in the sense that there exists
such that .

A proof of this result can be found in [35] for instance.
The first condition is directly applicable in practice to resolve

the left invertibility of the polyphase transfer matrix. Using the
following procedure, we can check numerically whether this
condition is satisfied.

1) Extract a maximal submatrix of .
2) Compute , and determine its set of roots .
3) Consider another maximal submatrix. Remove from the

elements which are not roots of the determinant of this
submatrix.

4) Repeat step 3) until or all maximal sub-matrices
have been extracted.

5) If then the polyphase transfer matrix is left-invert-
ible; otherwise, it is not.

The corresponding algorithm is easily implemented, leading
to extract the roots of a single polynomial and check the roots
of at most polynomials. If
the polyphase matrix is left invertible, the number of considered
polynomials in practice is usually much smaller than ,
this bound being reached only when the matrix is not invertible.
Note that in the case of causal filters (i.e. both and are
polynomial matrices in ), simpler invertibility con-
ditions exist by invoking the so-called column-reduced property
[44], [45]. Also notice that, one of the advantages of this algo-
rithm over other methods is that it can be fully numerically im-
plemented.

B. Computation of an Inverse FB

The method proposed in Section III-A only guarantees the
existence of a left-inverse, corresponding to an FIR synthesis
FB. Since it does not provide a constructive expression, we now
perform the actual computation of an inverse polyphase transfer
matrix. We assume hereafter that was proven to be FIR left
invertible.

Since the goal is to achieve PR, we search for a matrix
in such that and there exists

such that the polyphase transfer function of the
synthesis FB reads: . The resulting
overlapping factor of the synthesis filters is .
When working with Laurent polynomial matrices, these inte-
gers and are a priori unknown, whereas with polynomial

matrices a bound exists [44]. By rewriting the PR property in
block convolutional form, we get the following linear system:

(7)

where

(8)

and

. . .
. . .

(9)

As aforementioned, and are unknown, but since the
system (7) is supposed invertible, at least a couple of integers

solving the system exists. The values of and are
actually obtained by increasing the value of and looking for
every couple satisfying , starting with .
Hence, for a given , we consider all in

. The first allowing a Moore-Penrose
pseudoinverse [46] solution to (7) provides an inverse polyphase
transfer matrix of minimum order.

C. Hermitian Symmetric Case

1) Symmetry Conditions: It is well known that the Fourier
transform of a real signal is Hermitian Symmetric (HS): its fre-
quency decomposition is symmetric for the real part and an-
tisymmetric for the imaginary part. Conversely, if the coeffi-
cients are HS in the frequency domain, then the reconstructed
signal is real. This property is very useful for real data filtering,
which often consists of removing or thresholding coefficients
in the frequency domain before reconstructing. Securing the re-
construction of real-valued signals from the transformed coeffi-
cients is thus a desirable property. In this section, we study the
HS case and its effects on the methods proposed in the previous
sections.

The HS property in the synthesis filters is satisfied pro-
vided that, considering any symmetric subband indices

and , for any coefficients
such that if or

with and, such that
, a real-valued signal is reconstructed.

The reconstructed signal reads

A necessary and sufficient condition for for all

, is that .
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This condition must be verified for any couple of inte-
gers . The condition on the synthesis filter is then:

and , .
Using (6), we rewrite the condition as

(10)

where is the counter-identity matrix

. .
.

We have supposed here that the transformed coefficients of a real
signal exhibit the HS property. In other words, for any real signal

, and for any couple ,
the output of the analysis FB verifies: .
This condition can be rewritten

Considering a zero input signal except for one sample, we
deduce that , which is equivalent to

(11)

Hence, if the analysis FB verifies Condition (11), then the coef-
ficients after decomposition satisfy the HS property.

Remark 1: Consider an invertible HS analysis FB. By in-
serting (11) in the PR condition we get

It implies that if is a solution
of the linear system (7) then, under the HS hypothesis on the

analysis FB, is also a
solution of the linear system. Finally, it follows that the sum:

is also a solution. Moreover, this solu-
tion verifies Condition (10) by construction.

In other words, we have proved that an invertible HS analysis
FB admits at least one HS synthesis FB.

2) Construction Method: We suppose here that the analysis
FB was proven invertible and that the matrices satisfy
Condition (11). Our objective is to build a synthesis FB pos-
sessing both the PR and HS properties.

a) First case: is even: First, we rewrite (10) and (11)

(10)

(11)

with . Combining these conditions and the PR prop-
erty, we get

Since , the previous equation can be seen as the sum
of a complex matrix with its conjugate, leading to a real matrix.
We deduce that

where is the matrix of the real part of a matrix and is
its imaginary part. We will then define the following matrices:

(12)

and

. . .
. . .

b) Second case: is odd: Similarly to the first case, (10)
and (11) can be rewritten

(10)

(11)

with . Combining these conditions with the
PR equation and following the same reasoning as in the previous
section, we deduce that
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Subsequently, we introduce in this case the following matrices:

(13)

and

. . .
. . .

c) Conclusion: In both even and odd options, we solve
a linear system of the same size as the one of Section III-B,
but with real coefficients in this case. More precisely, with the
introduced notations, we have

The system is then solved, in the same way as in Section III-B.
For increasing values of (starting with ), for each couple

such that we try to invert the
generated system through a Moore-Penrose pseudoinversion.

IV. OPTIMIZATION

A. Dimension Reduction

1) General Case: Before addressing the issue of optimiza-
tion in itself, let us rewrite the linear system expressing the
PR property. The analysis FB is still supposed invertible. Let

be the rank of the matrix . We as-
sumed that (with ). Performing a
singular value decomposition [47] (SVD) on this matrix yields

, where is an invertible diagonal ma-
trix, and are semi-unitary ma-
trices (i.e., and ). Therefore, there exists

and such
that and are unitary matrices. When an
inverse polyphase transfer matrix exists, a particular solution to
(7) is , where is the pseudoinverse
matrix of . Equation (7) is then equivalent to

. Since and is invertible,
we get: . In other words, the columns of

belong to , the null space of . Moreover,
it can be easily seen that is equal to . We then
obtain the following affine form for :

(14)

where .
The construction of a synthesis FB thus amounts to the choice

of . If , then the obtained synthesis FB is the
PI FB. This expression can be further rewritten into a more con-
venient form for optimization purposes. First, we define the ma-
trices by: for all and

, , with
. According to (14) and (8),

we can write for all , and

where represent the impulse responses
of the synthesis FB, correspond to the
PI solution and . For all

, we introduce the matrices defined

by: for all and
. We, thus, obtain

(15)

This equation is used in Section IV-B-1 to simplify the optimiza-
tion problem raised by the design of the synthesis FB.

The above expressions are given in the complex case, but they
naturally remain valid in the real case. This will be illustrated by
the first example of Section V-B-3-a.

2) Symmetric Case: In this section, we adapt the results of
the previous section to the HS FB case. The notations used here
are similar to those introduced in Section III-C-2. It is worth
noticing that we can calculate the matrix directly from ,
as defined in Section III-C-2 when is either even or odd, in
the following way:

(16)

where the matrix is the block diagonal matrix
built with the block:

if (even case, as seen in Section III-C-2-a) and

if (odd case, as seen in Section III-C-2-b). By
applying once again an SVD on , and by following the same
steps as in Section IV-A-1, we end up with an equation similar
to (14):

(17)
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Fig. 2. (a) Impulse. (b) Frequency responses of a GenLOT analysis FB.

Note that, according to the properties of the SVD, the matrix

is now real-valued. By noticing that and setting
, we finally obtain

(18)

We next define the matrices : for all
and :

. Using (18) as in
Section IV-A-1, we get

(19)

B. Optimal Solution

1) General Form for the Cost Functions: Depending on the
desired properties for the synthesis FB, several cost functions

can be employed. We first propose a generic cost function for-
mulation and then provide practical examples based on the filter
time or frequency spread, respectively.

Our goal is to optimize the filter shape given by the coeffi-
cients of the synthesis FB, subject to the perfect reconstruction
property. According to the results in Section IV-A, it is possible
to represent the coefficients in the general case by using (15).
The optimization favorably takes place in the reduced dimen-
sion space the matrix belongs to (compared with the dimen-
sion of the space of the coefficients of ), thus allowing us to
reformulate the optimization under a perfect reconstruction con-
straint as an unconstrained problem. In this context, the generic
cost function form we consider is
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Here, the following notation has been employed:

where and are kernels. Moreover, we
assume here that represents a seminorm over and
it is thus real nonnegative. Let be the matrice defined by

for all
and . Without loss of generality,

this matrix can be taken positive semidefinite, which implies
that and, thus,

. We deduce the following expression:

This relation will be used to simplify some equations in
Section IV-C and Appendix C. We finally notice that is a
positive definite Hermitian matrix if and only if is a norm.

2) Impulse Responses Optimization: A first objective is to
obtain impulse responses for the synthesis filters
well-localized, around some time-indices . We now
explain the link between the cost function form introduced in the
previous section and the previously described dimension reduc-
tion to further simplify the problem.

The considered cost function is the following:

with and weights
such that . If and

, then represents a
weighted sum of the standard temporal dispersions measuring
the time localization of a filter [48]. Combined with (6), we
get

We now introduce the kernels and defined by

(20)

for all , and
. Using (15) we write

and

Here, reduces to the Frobenius norm. Finally, we deduce
that

The constrained minimization of is then reexpressed as the
unconstrained minimization of .

3) Frequency Response Optimization: We proceed similarly
to the previous section, for a different cost function . Our
goal, dual to that in the previous section, is now to regularize
the frequency responses of the synthesis FB by concentrating
the frequency response of each filter around some frequency

. This is achieved by minimizing

(21)

where , with

and, is the frequency response of the th synthesis filter,
defined as

When , the cost

function represents a classical weighted frequency disper-
sion measure for the synthesis filters. We then define the kernel

(22)

with .
Remark 2: The examples provided in Section V-B-3 are ob-

tained with . In this case, the explicit expression of the
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Fig. 3. First example (with the GenLOT FB of Section V-A-1): frequency response of the synthesis FB obtained (a) through the pseudoinverse method. (b) After
optimization with cost function � .

kernel becomes (see the equation at the bottom of the page),
with .

Combining these notations and (15), we have

Invoking Plancherel’s theorem and the kernel defined in
Section IV-B-2, we obtain

Finally, substituting these expressions in (21) yields

if and

otherwise
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Fig. 4. First example: impulse response of the synthesis FB obtained (a) through the pseudoinverse method. (b) After optimization with cost function � .

Once again, the constrained optimization problem has been re-
formulated as an unconstrained one.

C. Gradient Optimization

The constrained optimization problem being turned into an
unconstrained minimization, we now provide more details about
the minimization algorithm we employ. In this paper, we have
used a simple gradient algorithm with an adaptive step . The
algorithm can be summarized as follows:

Initialization: , .

Computation of .

While , set .

.

If then increment and go to step .

The step-size used here remains large as long as the al-
gorithm is getting closer to a local minimum (in other words,
as long as ). It is only adapted (reduced)
to prevent the criterion from increasing. The initialization with

entails that we consider the pseudoinverse synthesis FB
as the starting point for the algorithm. In practice, was set to

.
Other step selection strategies exist: constant or optimal

steps, steps satisfying Wolfe or Armijo conditions [49], [50].
The method used in this work is easy to implement and is well
suited to the different cost functions we have considered, while
keeping a reasonable complexity.
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Fig. 5. Second example (in the MCLT case with window � ): frequency responses of synthesis filters (a) before and (b) after optimization with the cost function
� .

As the cost functions considered in this work are not convex,
there is no theoretical guarantee that the algorithm converges
to a global minimum. Yet, as is shown in Section V, initializing
this method with the PI synthesis FB provides quite good results
and extensive simulations have confirmed this good behavior.

The expression of the gradient for the general cost function
is given in Appendix A and is next applied to and in
Appendix B.

D. Optimal Solution in the Symmetric Case

1) Cost Functions: Using the same notations as in
Section IV-B, in the HS case, the following form of the
cost function is found:

As in the general case, (19) has been used to transform the con-
strained optimization problem on into an unconstrained min-
imization problem on .

2) Examples of Cost Functions: Equation (19) is very similar
to (15). We consequently define the cost functions in the HS case
following the same approach as in Sections IV-B-2 and IV-B-3.
Thus, the following functions are considered:

to concentrate the time localization of impulse responses, and

Authorized licensed use limited to: Laurent Duval. Downloaded on September 22, 2009 at 03:17 from IEEE Xplore.  Restrictions apply. 



GAUTHIER et al.: SYNTHESIS OVERSAMPLED COMPLEX FILTER BANKS 3837

Fig. 6. Modulus of the impulse responses of the synthesis FBs (in the MCLT case with � window). (a) Pseudoinverse. (b) Symmetric version with the method
of Section III-C-2.

TABLE I
COMPUTATION TIME TO OPTIMIZE A SYNTHESIS FB WITH DIFFERENT METHODS USING MATLAB

to enhance the frequency selectivity of the filters. Their gradi-
ents are provided in Appendix C.

V. EXAMPLES

As emphasized earlier, a wide variety of filter banks and de-
sign choices can be made. In this section, we have chosen to
work with three different examples exhibiting interesting prop-
erties and allowing us to show the benefits incurred in the pro-
posed inversion and optimization methods.

A. Considered Filter Banks

1) Real Lapped Transforms: The study, developed for the
general complex case, remains fully applicable to the design
of real filter banks. As an illustration, we first consider real
lapped transforms introduced in the middle of the 1990s under
the name of GenLOT (generalized linear-phase lapped orthog-
onal transform) [51]. Those transforms generalize the discrete
cosine transform (DCT) and the lapped orthogonal transform
(LOT).
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Fig. 7. Frequency responses of the synthesis FBs (in the MCLT case with � window): (a) pseudoinverse and (b) symmetric version with the method of
Section III-C-2.

To illustrate the inversion method, we have chosen a GenLOT
with filters of 32 coefficients. This FB is invertible,
in a nonstandard oversampled use, with parameters ,

and . Its impulse and frequency responses are
represented in Fig. 2. This FB is real and does not satisfy the
HS condition. By using the method described in Section III-B,
we find and (hence, ). The frequency
and impulse responses of the synthesis FB computed with the
pseudoinverse are shown on Figs. 3(a) and 4(a).

2) Modulated Complex Lapped Transform: We now con-
sider another analysis FB based on a windowed generalized
Fourier transform, corresponding to a modulated complex
lapped transform (MCLT). This family of FB has been used
by Kingsbury [4] or Malvar [7] for applications in video as
well as audio processing. The analysis impulse responses are:

, where

and is an analysis window. In this paper, we
consider two analysis windows. The first, defined by

is a standard sine window, employed for example in [4] and
[7]. The second , corresponds to a zero-phase
low-pass filter with cutoff frequency , built from a
Kaiser window. This window, with better tapering than , was
used for instance in [32]. It is interesting to note that this anal-
ysis FB family, with both analysis windows, satisfies Condition
(11). In other words, it can be used to illustrate our approach in
the HS case. The method from Section III-A was employed to
verify the invertibility on this FB, with both analysis windows
and parameters , and . We then compute
a first synthesis FB with the PI method of Section III-B. For the
analysis FB with window, the minimal parameters
and were obtained. The frequency response of this syn-
thesis FB is represented in Fig. 5(a). In the case, the minimal
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Fig. 8. Third example (in the MCLT case with window � ): modulus of the impulse responses of synthesis filters (a) before and after optimization (b) with the
cost function � and (c) with � .

TABLE II
FREQUENCY DISPERSION OF THE SYNTHESIS FILTERS

OPTIMIZED WITH COST FUNCTION �

parameters and were, once again, found when ap-
plying the method of Section III-B. An HS synthesis FB is then
derived from this filter bank using the method of Section III-C-2
to directly build an HS synthesis FB. The frequency and impulse
responses of the resulting synthesis FBs, in the case, are

shown in Figs. 6 and 7, respectively. Fig. 6(a) shows that syn-
thesis filters present a symmetric behavior for their coefficients
(in other words, they have a linear phase) while the synthesis FB
in itself is not HS. We also notice that the frequency selectivity
or time-frequency localization of the filters obtained through the
pseudoinverse methods is not satisfactory.

B. Optimization Examples

1) Kernel Parameters:
a) Temporal kernel : It is defined by (20). The param-

eters define the (temporal) positions around which the im-
pulse responses of the th filter should be concentrated. To ob-
tain well tapered filters, we need to concentrate the impulse re-
sponses around the middle of the filter support. Therefore, the
same parameter was used for all filters. The support of the filters
being , we have chosen as

In our design example, has been set to 2.
b) Frequency kernel : It is defined by (22). The parame-

ters represent the reduced frequencies around which we want
to concentrate the frequency responses of the synthesis filters.
More precisely, we chose such that it is centered inside the
bandwidth of the analysis filter . The exponent has been set
to 2.

c) Weight parameters: In the proposed cost functions, the
parameters and control the relative importance of the
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Fig. 9. Third example (in the MCLT case with window � ): frequency responses of synthesis filters (a) before and after optimization (b) with the cost function
� and (c) with � .

different filters in the optimization process. For the following
examples we have chosen equal weights:

In other words, we aim at obtaining synthesis filters with similar
behavior.

2) Computation Time: In Section IV-A, we have seen how to
parameterize the system and thus how to reduce the dimension
of the optimization problem. To evaluate the gain resulting
from this parameterization, Matlab programs were written
to compare the solutions of the constrained problem, using
function , with the solutions of the unconstrained
problem, using function and using the gradient
method explained in Section IV-C. The two functions
and were chosen as examples of optimization imple-
mentation, while the gradient procedure can be easily applied in
different languages without requiring Matlab. These programs
were tested with the analysis FB introduced in Section V-A-2
with the window and the following parameters: overlap
factor , redundancy and downsampling

. The cost function used was (as defined in
Section IV-B-2). Table I shows the computation time for the
different methods on a computer with 2.16 GHz Intel Core2
T7400 CPU and 2Gb of RAM.

A first interesting result is that all three methods, starting from
the same FB, converge to almost identical synthesis FBs. The
computation times are however very different: more than two
hours (with ) for the constrained optimization against a

few seconds for the unconstrained optimizations. We can also
notice that the gradient algorithm is as fast as the
Matlab function. This shows that the optimization method can
be easily implemented, through a gradient algorithm, with no
performance loss and without having to resort to the
Matlab function.1 In other words, this last result indicates that
in some applicative contexts in which Matlab is not available
the optimization method can still be easily and efficiently im-
plemented.

3) Examples of Optimized FBs: In this section, we present
optimization results2 obtained with the different FBs introduced
in Section V-A and using the different proposed cost functions.

a) General case: We have applied the optimization
method on the real FB introduced in Section V-A-1 with
parameters: , and . The employed cost
function is . The result is shown in Fig. 4(b), the coefficients
before optimization (obtained with the pseudoinverse method)
are also displayed. It is clear that the impulse responses of
optimized filters are better concentrated around the middle of
the support. Fig. 3 illustrates that the gain in time localization
does not entail a too severe loss in frequency selectivity of the
optimized filters.

A second optimization example is given using an MCLT FB
with analysis window and parameters , and

. The resulting frequency responses after optimization
with cost function are represented in Fig. 5(b). We observe

1This fairly sophisticated function uses an interior-reflective Newton method
[52].

2A Matlab toolbox for FB optimization is available here: http://www.laurent-
duval.eu/misc-research-codes.html.
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TABLE III
TIME DISPERSION OF THE SYNTHESIS FILTERS

OPTIMIZED WITH COST FUNCTION �

that the frequency responses after optimization exhibit more
regularity and an improved selectivity. The proposed cost func-
tions take into account all synthesis filters at once. It is therefore
interesting to look more closely at each filter independently and
determine whether the optimization leads to better results. In
Table II, the frequency dispersion of each filter is reported be-
fore and after optimization with cost function . In this case,
the overall frequency dispersion of the optimized filters has been
noticeably improved and spread variability has been drastically
reduced.

b) Results in the symmetric case: The optimization proce-
dure was next applied in the HS case to the FB of Section V-A-2
(with analysis window ). In this case, the cost functions
and were employed. Once again, the following parameters
were used: , and . Figs. 8 and 9 show
the optimization results. We observe that the optimizations with
these two cost functions lead to FBs with different characteris-
tics: as expected, with the impulse responses are better con-
centrated than with and, conversely, with the frequency
selectivity is better than with .

4) Comparison: To conclude this example section, we pro-
pose a comparison with an existing filter bank design. We have
chosen to compare our design methodology with the filter banks
used in [4] and [7]. In these works, the considered FBs corre-
spond to a modulated complex lapped transform with overlap
factor and redundancy . For this application, our
choice of results in the filters shown in [4]. The synthesis
filter bank is then built with a method equivalent to the weighted
overlap-add technique. We have applied the methods proposed
in this work to compute an optimized synthesis filter bank using
the cost function . In Table III, the time dispersion of each
synthesis filter computed as explained in [4] and
after optimization are reported as well as the

value of the cost function . The time dispersion was clearly
reduced with the proposed method.

VI. CONCLUSION

In this paper, we have proposed a method to test that a given
oversampled FIR analysis FB is FIR invertible and a method to

compute an optimized inverse FB. The optimization was per-
formed for a class of cost functions allowing either to empha-
size the time localization or the frequency selectivity of the fil-
ters. By rewriting the system defining the synthesis FB, we were
able to parameterize the synthesis filters for a given filter length.
This parameterization was then used to convert the constrained
optimal synthesis problem into an unconstrained one, which can
be solved with a simple gradient algorithm.

The FB considered here are one-dimensional; it would be in-
teresting to study how the proposed methods could be extended
to the multidimensional case. Another perspective could be to
study the case of FBs admitting an IIR left inverse that can be
approximated using a FIR FB with very long support.

APPENDIX A
EXPRESSION OF THE GRADIENT

In this first appendix, we study the gradient of (as defined
in Section IV-B-1) with respect to . We first need to calculate

the gradient of . The matrix being
complex, we have

From this result, we deduce that

(23)

with and .

APPENDIX B
EXAMPLES OF GRADIENTS

A first example is the calculation of the gradient of the cost
function . Applying (23) to the kernels , we get:

Authorized licensed use limited to: Laurent Duval. Downloaded on September 22, 2009 at 03:17 from IEEE Xplore.  Restrictions apply. 



3842 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

where for all and
. The symbol represents the Hadamard product

(or pointwise matrix product). Finally we obtain:

where for all and .
The same study can be carried out for the cost function ,

with kernels . Rewriting the result under a matrix
form does not simplify the final expression in this case. Hence,
the gradient reads:

APPENDIX C
GRADIENT FUNCTIONS IN THE HS CASE

Similarly to Appendix A, we first compute the gradient of

with respect to the matrix , the only
difference being that the matrix is now real:

By using this expression and the relation
, we deduce the gradient of the cost function :

(24)

with and , for all

. Using (24), the calculation of the gradient of
yields

where is defined as in Appendix B. For the second cost func-
tion we find
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