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ABSTRACT
When an oversampled FIR filter bank structure is used for
signal analysis, a main problem is to guarantee its invertibil-
ity and to be able to determine an inverse synthesis filter bank.
As the analysis scheme corresponds to a redundant decompo-
sition, there is no unique inverse filter bank and some of the
solutions can lead to artifacts in textured image filtering ap-
plications. In this paper, the flexibility in the choice of the in-
verse filter bank is exploited to find the best-localized impulse
responses. The design is performed by solving a constrained
optimization problem which is reformulated in a smaller di-
mensional space. Application to seismic data clearly shows
the improvements brought by the optimization process.

Index Terms— FIR digital filters, Transforms, Redun-
dancy, Optimization methods, Seismic signal processing,

1. INTRODUCTION

Concepts of sparsity and redundancy have emerged as fun-
damental notions in the signal processing community. They
are grounded on a redundant dictionary (instead of a basis)
which is generally able to approximate a class of signals by
the sum of a “small” number of atoms. One interesting subset
of these overcomplete linear transforms consists of oversam-
pled multirate filter banks (FBs). The latter possess advan-
tages over classical critically sampled FBs. The first one is
their improved robustness to noise and quantization. The sec-
ond advantage lies in their more flexible design: on the anal-
ysis side, perfect reconstruction (PR) properties are less strin-
gent in the oversampled case [1]; on the other side, synthesis
filters, when they exist, are not unique in general. However,
the appropriate design of inverse FIR filters remains com-
plex. Recently, closed-form optimal expressions were ob-
tained with 50% oversampled window DFT [2]. Filter banks
appear under different names in image processing. Their early
use was often limited to block transforms, such as the Hadamard
or the Discrete Cosine Transform (DCT), popularized by the
JPEG compression format. Its blocking or checkerboard arti-
facts at low bit-rates result from a relatively independent pro-
cessing of adjacent blocks. These annoying effects have pro-

moted the advent of lapped transforms (LTs) [3] and wavelets,
which generally overlap. While wavelets are still popular (re-
placing DCT in the JPEG 2000 standard), LTs regain favour in
signal processing [4], with for instance aliasing reduction us-
ing complex transforms, or the recent announcement of the H.
D. Photo format based on a biorthogonal LT. In [5], we have
proposed a method to guarantee that a given FIR analysis FB
can be associated with an FIR synthesis FB with PR property
and we have devised an algorithm to compute such inverse
filters. Its application to DFT based FBs was utilized for 3D
seismic data directional filtering. While generally providing
nice visual results, blocking artifacts, interfering with auto-
mated interpretation, could result from an inaccurate choice
of filtering parameters. This work contributes to an optimized
design of the inverse filters of an oversampled FB, based on
their time/space-localization. The solutions obtained by this
originally constrained minimization problem, re-formulated
as an unconstrained one, drastically reduce the filtering sensi-
tivity to shrinkage operations in the transform domain.

In Section 2, we first recall the polyphase representation
of FBs and we express the calculation of an inverse synthesis
FB through the solutions of an underdetermined linear sys-
tem. In Section 3, we address the optimal design problem and
reformulate it as an unconstrained minimization problem. In
Section 4, the proposed optimization is applied to DFT FBs,
and the practical sensitivity reduction of transformed domain
processing is demonstrated for seismic data filtering.

2. NOTATIONS AND PROBLEM

2.1. Notations

We first recall polyphase representation notations. Figure 1
represents a 1D M -band filter bank structure. The signal
(x(n))n∈Z is decomposed using M filters with impulse re-
sponses: (hi)0≤i<M , each one having finite length kN with
k ∈ N∗. A decimation by an integer N is then performed.
From the LT viewpoint, we therefore have k − 1 overlapping
blocks of size N . The M outputs of the analysis FB are de-
noted by (yi(n))0≤i<M . The overall redundancy of the trans-
form is thus M/N = k′. We are interested in the oversampled
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Fig. 1. Oversampled M -channel filter banks.

case, i.e. k′ > 1.
With these notations, the outputs of the analysis FB are

expressed, for all i ∈ {0, . . . ,M − 1} and n ∈ Z, as

yi(n) =
∑

p

hi(p)x(Nn− p)

=
∑

`

N−1∑
j=0

hi(N` + j)x(N(n− `)− j). (1)

Let H(`) = (hi(N` + j))0≤i<M,0≤j<N , ` ∈ {0, · · · , k − 1}
be the k matrices obtained from the impulse responses of the
filters. We also define the polyphase vector signal from the
input signal x(n): ∀n ∈ Z, x(n) = (x(Nn− j))0≤j<N . A
more concise form for Eq. (1) is:

y(n) = (y0(n), . . . , yM−1(n))>

=
∑

`

H(`)x(n− `) = (H ∗ x) (n),

or, equivalently, y[z] = H[z]x[z], where H[z] =
∑k−1

`=0 H(`)z−`

is the M × N polyphase transfer matrix of the analysis filter
bank and x[z] and y[z] are the z-transforms of (x(n))n∈Z and
(y(n))n∈Z, respectively. Similarly, we define the polyphase
transfer matrix of the synthesis filter bank: H̃[z] =

∑
` H̃(`)z−`

which is such that

x̃[z] = H̃[z]y[z].

The polyphase vector of (x̃(n))n∈Z is defined similarly as
(x(n))n∈Z and

H̃(`) =
(
h̃j(N`− i)

)
0≤i<N,0≤j<M

, ` ∈ Z.

These expressions hold for any oversampled FB.

2.2. Problem statement

The goal is to achieve PR. In other words, we search a matrix
H̃[z] in C[z, z−1]N×M such that H̃[z] H[z] = IN . In our pre-
vious work [5], we have proposed a method to check whether
a given FIR analysis FB can be inverted by an FIR synthe-
sis FB: if H[z] is proven to be left invertible then there exists

an integer p such that the polyphase transfer function of the
synthesis FB reads: H̃[z] =

∑0
`=1−p H̃(`)z−`.

We obviously have

H̃[z]H[z] =
0∑

`=1−p

H̃(`)z−`
k−1∑
`=0

H(`)z−` =
k−1∑

`=1−p

U(`)z−`,

where

U(`) =
min(0,`)∑

s=1+max(`−k,−p)

H̃(s)H(`− s).

The PR property is then equivalent to U(`) = δ`IN , which
leads to the following linear equation:

HH̃ = U (2)

where

H̃> =
[
H̃(1− p), · · · , H̃(0)

]
,

U> =
[
0N,(p−1)N IN 0N,(k−1)N

]
,

and

H> =

 H(0) · · · H(k − 1) 0
. . . . . .

0 H(0) · · · H(k − 1)

 .

We have to solve the above system for increasing values of p
in order to find the minimum order for an inverse polyphase
transfer matrix.

3. OPTIMIZATION OF THE SYNTHESIS FB

We have provided conditions for a polyphase matrix to be as-
sociated to a PR synthesis FB. Since this system is underde-
termined, we can exploit the remaining degrees of freedom to
optimize the characteristics of the synthesis FB, namely their
time/space localization.

3.1. Dimension reduction

Let r denote the rank of H and assume that r < Mp. We per-
form a Singular Value Decomposition (SVD) on this matrix:

H = U0Σ0V∗0 ,

where Σ0 ∈ Cr×r is an invertible diagonal matrix, U0 ∈
CN(k+p−1)×r and V0 ∈ CMp×r are semi-unitary matrices.
There exists therefore U1 ∈ CN(k+p−1)×(N(k+p−1)−r) and
V1 ∈ CMp×(Mp−r) such that [U0 U1] and [V0 V1] are unitary
matrices. When an inverse polyphase transfer matrix exists, a
particular solution to (2) is:

H̃0 = H]U ,



where H] = V0Σ−1
0 U∗0 is the pseudo-inverse of H. Eq. (2) is

then equivalent to:

U0Σ0V∗0 (H̃ − H̃0) = 0(N+k−1)×N .

Since U∗0U0 = Ir and Σ0 is invertible, we get

V∗0 (H̃ − H̃0) = 0r×N ,

which is equivalent to say that the columns of H̃−H̃0 belong
to the nullspace of V∗0 , Ker(V∗0 ). Since Ker(V∗0 ) is equal to
Span(V1), one can write:

H̃ = V1C + H̃0 (3)

where C ∈ C(Mp−r)×N . The design of the synthesis filter
bank therefore reduces to the choice of C. In our previous
work, we took C = 0(Mp−r)×N . However, as illustrated by
Fig. 2-(a), this choice may result in synthesis filters with poor
time-localization properties.

3.2. Optimal solution

To obtain impulse responses (h̃j)0≤j<M (for the synthesis
FB) well-localized around some time-indices (mj)0≤j<M ,
we propose to minimize the following cost function:

J(h̃) =
M−1∑
j=0

∑
m(m−mj)2

∣∣∣h̃j(m)
∣∣∣2∑

m

∣∣∣h̃j(m)
∣∣∣2

=
M−1∑
j=0

∑0
`=1−p

∑N−1
i=0 (`N − i−mj)2

∣∣∣H̃i,j(`)
∣∣∣2∑0

`=1−p

∑N−1
i=0

∣∣∣H̃i,j(`)
∣∣∣2 .

Let us define, for all ` ∈ {1− p, . . . , 0}, j ∈ {0, . . . ,M − 1}
and n ∈ {0, . . . ,Mp− r − 1}

Vj(`, n) = V1

(
(` + p− 1)M + j, n

)
where V1 = [V1(s, n)]0≤s<Mp,0≤n<Mp−r. According to (3),
we have:

H̃i,j(`) =
Mp−r−1∑

n=0

Vj(`, n)C(n, i) + H̃0
i,j(`)

where C = [C(n, i)]0≤n<Mp−r,i≤r0<N . Let us introduce the
matrices: H0

j = [H̃0
i,j(`)]1−p≤`≤0,0≤i≤N−1 and Λj defined

by: Λj = [(`N − i−mj)2]1−p≤`≤0,0≤i≤N−1. Then we can
write:

H̃i,j(`) = (VjC + H0
j )`,i.

Using the Frobenius norm:

0∑
`=1−p

N−1∑
i=0

∣∣∣H̃i,j(`)
∣∣∣2 =

∥∥VjC + H0
j

∥∥2

and the weighted Frobenius norm:

0∑
`=1−p

N−1∑
i=0

(`N − i−mj)2
∣∣∣H̃i,j(`)

∣∣∣2 =
∥∥VjC + H0

j

∥∥2

Λj
,

we deduce that:

J(h̃) = J̃(C) =
M−1∑
j=0

∥∥VjC + H0
j

∥∥2

Λj∥∥VjC + H0
j

∥∥2 .

The constrained minimization problem is now re-expressed
as the unconstrained minimization of J̃ .

4. APPLICATION AND RESULTS

4.1. Seismic data filtering

In [6] we showed complex-valued modulated filters were well-
suited to texture-like seismic data. Indeed, these data present
highly anisotropic features that are well captured by complex-
valued transforms, and their oscillatory behaviour, due to the
layered underground structure, is well described by an har-
monic transform. The analysis filters we used are derived
from [7] and expressed as: hi(n) = E(i, n)ha(n), where

E(i, n) =
1√
k′N

e−ı(i− k′N
2 + 1

2 )(n− kN
2 + 1

2 ) 2π
k′N ,

and (ha(n))1≤n≤kN is a non vanishing analysis window such
as:

ha(n) = sin
( nπ

kN + 1

)
.

Seismic data are typically two or three dimensional. By ap-
plying the above monodimensional transform separably in all
directions we define a multi-dimensional transform.

Unwanted directional structures, due to pre-processing or
physical perturbations during data acquisition for instance,
may corrupt seismic data and hinder subsequent automated
interpretation. In a nutshell, to perform a directional filter-
ing retaining features of interest, we first compute the locally
dominant direction, then filter out coefficients not correspond-
ing to orientations close to the dominant one, and finally use
thresholding to remove small coefficients likely to represent
noise. The appropriate choice of the threshold may constitute
an issue to the filtering robustness.

4.2. Optimal Synthesis Filter Bank

In Section 3 we have reduced the dimension of the problem
from MpN to (Mp − r)N . In practice, the rank r is large;
the dimension reduction is therefore significant to the compu-
tational burden of the synthesis. As an illustration we have
tested both the constrained and the unconstrained optimiza-
tions, with N = 8, k = 3 and k′ = 7/4, on a 3GHz Pen-
tium 4 processor. The computation of the optimal inverse



took 247 seconds for the constrained problem, compared to 5
seconds with unconstrained optimization, including both the
SVD and the minimization; the re-formulation of the problem
thus leads to a significant computational gain.

Figure 2 represents the magnitude of the impulse responses
for 4 of the M = k′N = 14 synthesis filters in the pseudo
inverse and the optimal case. Coefficients in the first case
are quite scattered with large border coefficients (potentially
causing blocking artifacts), while in the second case the co-
efficient distribution seems more window shaped, better clus-
tered around the center of the impulse responses.

4.3. Results on real data

For this application, the parameters are set N = 16, k′ = 7/4
and k = 3. Using the method described in Subsection 2.2, it
is found that p = 3. We have chosen processing parameters
(the tolerance on the retained directions and the threshold) to
target a situation in which the reconstruction leads to poor
visual results. Figure 3 presents real seismic data which are
filtered and then reconstructed using both the pseudo-inverse
FB and the optimal one. On Fig. 3-(c), a grid pattern appears
in the pseudo-inverse case, due to high value of the thresh-
old and the poor impulse responses of the inverse filters. The
second filtered image (d) and the difference image (b) show
clearly that this pattern, without any geological meaning, is
strongly attenuated with the optimal FB, leading to better vi-
sual results.

(a) (b)

Fig. 2. Examples of the magnitude of the impulse responses
in (a) the pseudo-inverse case and (b) after optimization.

5. CONCLUSIONS

By taking advantage of the degrees of freedom offered by
oversampled FBs, we have proposed a method to design opti-
mally spatially-localized synthesis FBs. Our study allows us
to reduce the design problem to an unconstrained optimiza-
tion which can be solved quite efficiently by numerical meth-
ods. The resulting optimized FBs have been shown to be ap-
propriate for seismic data filtering. In our future work, we
plan to consider more general forms of cost functions.

(a) (b)

(c) (d)

Fig. 3. (a) Seismic image, (b) Difference between the two fil-
tered results, (c) Filtered with pseudo inverse FB (d) Filtered
using optimal FB.
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