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Summary

Seismic data are subject to different kinds of unwanted perturbations. These random or organised noises,
which can be acquisition or processing related for instance, may disturb geophysical interpretations and
thwart attempts at automated processing methods. Since the relative features (e.g. amplitude, spectrum) of
the signals of interest and the noises may vary locally, signal and noise separation is obtained by a local
data-driven filtering with two or three-dimensional oversampled complex filter banks.
Filter banks in general decompose the noisy data onto frequency bands and directions on restricted sub-
regions (sub-images or sub-volumes), acting like a local FK with improved properties. The transforms
studied in this work present sub-regions smooth overlapping, to avoid tiling effects while allowing signal
reconstruction from the transformed domain. The proposed methodology uses limited redundancy filtering
that both yield enhanced noise robustness (due to oversampling) and tractable 2D or 3D processing, since
they are optimized to limit the redundancy cost.
Coupling those redundant transforms with a processing method designed to detect and compute locally
dominant directions, and to remove unwanted directions and random noise, leads to good visual results.
Tests were performed on 2D and 3D seismic data.
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Introduction

Due to the oscillatory nature of seismic data, the Fourier transform (FT) and its avatars (e.g. the f −k filter)
are common tools [Yi01] in geosciences for noise removal, data interpolation [ZwGi07], deconvolution,
attribute estimation, migration... Basically, the monodimensional discrete FT consists in selecting a number
of frequency bins, which may be attenuated or enhanced. In two dimensions or more, dips are converted
into peaks or lines in the frequency domain. Recently, other tools such as the wavelet transform (WT) have
been proposed to alleviate the lack of local representativeness of the FT. The discrete WT is traditionally im-
plemented using a bank of a low-pass and an high-pass filter, followed by a two-fold subsampling operator,
to keep a number of coefficients equal to the number of data samples in the transformed domain. It is now
perceived that in strong noise cases, such no-redundant transforms suffer from reconstruction artifacts. Con-
sequently, redundant and oversampled representations generally improve seismic processing. Moreover, the
dyadic structure of the WT sometimes lacks in frequency selectivity. Due to their discrete implementation
with filters and subsampling operators, FT and WT are special instances of a wider class of signal processing
tools called filter banks, which may be designed in general with relatively precise frequency separation, lo-
cal analysis properties and a certain amount of redundancy. Since seismic data represent huge volumes, we
propose a novel use ofM-band oversampled complex filter banks (FBs) for local directional and incoherent
noise filtering. They possess both the local frequency selectivity desired for local direction estimation and a
controllable redundancy to increase their noise robustness. Their results are illustrated on a synthetic image
combining different directional features in Figure 2.

In the following, we recall basics of the filter bank theory and provide examples of 2D and 3D noise removal
in actual seismic data.

1 Oversampled filter banks

1.1 Polyphase representation

We first recall what a filter bank is and explain briefly the associated mathematical issues. Figure 1 represents
a 1D M-band filter bank structure. A 1D signal(x(n))n∈Z is decomposed usingM filters with impulse
responses:(hi)0≤i<M, each one having finite lengthkN with k ∈ N∗. A decimation by an integerN is then
performed. From the lapped transform (LT) viewpoint, we therefore havek−1 overlapping blocks of size
N, meaning that for a given data block of lengthN we considerk−1 neighbouring blocks. The purpose of
a LT is to avoid the blocking or tiling effects that block transforms can produce.
TheM outputs of the analysis FB are denoted by(yi(n))0≤i<M. The overall redundancy of the transform is
thusM/N = k′. We are interested in the oversampled case,i.e. k′ > 1. Redundancy is very useful to get
more robust processing, but an increased redundancy is tantamount to increased computational burden. So
the choice ofk′ will be the result of a trade off between robustness and computation cost.

The outputs of the analysis FB can then be expressed, for alli ∈ {0, . . . ,M−1} andn∈ Z, as

yi(n) = ∑
p

hi(p)x(Nn− p) = ∑̀
N−1

∑
j=0

hi(N`+ j)x(N(n− `)− j). (1)

Let H(`) = (hi(N`+ j))0≤i<M,0≤ j<N, ` ∈ {0, · · · ,k−1} be thek matrices obtained from the impulse re-
sponses of the filters. We also define the polyphase vector signal from the input signalx(n): ∀n∈ Z, x(n) =
(x(Nn− j))0≤ j<N. A more concise form for Eq. 1 is:

y(n) = (y0(n), . . . ,yM−1(n))> = ∑̀H(`)x(n− `) = (H ∗x)(n),

or, equivalently,y[z] = H[z]x[z], whereH[z] = ∑k−1
`=0 H(`)z−` is theM×N polyphase transfer matrix of the

analysis filter bank andx[z] andy[z] are thez-transforms of(x(n))n∈Z and(y(n))n∈Z, respectively. Similarly,
we define the polyphase transfer matrix of the synthesis filter bank:H̃[z] = ∑` H̃(`)z−` which is such that
x̃[z] = H̃[z]y[z].
The polyphase vector of(x̃(n))n∈Z is defined similarly as(x(n))n∈Z andH̃(`) =

(
h̃ j(N`− i)

)
0≤i<N,0≤ j<M

,
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` ∈ Z. In other words, if we know the polyphase matrixH̃[z], then the synthesis FB is well defined.

1.2 Synthesis filter bank

Usually, when working with filter banks, an analysis filter bank is chosen because of some desirable prop-
erties (frequency selection for instance) and then the problem is to build a synthesis filter bank achieving
perfect reconstruction property (i.e. the output of the synthesis FB is exactly the same as the input of the
analysis FB). With the previous notations, it is necessary and sufficient to prove that a polyphase matrixH̃[z]
such that:H̃[z]H[z] = I N exists, to prove that the problem is invertible.

In a previous work [GaDu06], we have proposed an algorithm to check whether an analysis FB is invertible.
We also described a method, based on solving linear system, to computeonesynthesis FB denoted̃H0.
The fact that we are considering a redundant filter bank implies that the problem is underdetermined,i.e. a
whole class of inverse FB exists. An optimization step [GaDu07] can then be used to exploit those degrees of
freedom by choosing a synthesis FB with good time/space localization. For instance the following function:

J(h̃) =
M−1

∑
j=0

∑m(m−mj)2
∣∣∣h̃ j(m)

∣∣∣2
∑m

∣∣∣h̃ j(m)
∣∣∣2

could be optimized under the linear constraint defining the inverse filter bankH̃0.

2 Directional filtering

2.1 Direction and disorder estimation

It is a well known fact that the vector(a,b) represents the orthogonal direction to the visually dominant
one in a synthetic image, such as sin(ax+by) in 2D. The locally stratified structure of seismic data induces
layered and highly anisotropic images close to those synthetic images. In order to estimate an orientation,
it is sufficient to evaluate the vector:(a,b). By studying the magnitude of the multidimensional Fourier
Transform, two symmetric peaks appear, thus defining an orientation. This direction is supported by a vector
approximating(a,b). It is interesting to note that a real frequency transform (such as the Discrete Cosine
Transform) does not catch the orientation information in a clear enough method, making it impossible to
separate features oriented with an angleθ from features with an angle−θ .

Let p1 be the value of the maximum magnitude peaks.p1 represents theweightof the dominant orientation.
If there exists a second direction with a lesser importance than the first, it is clear that the magnitude image
of the Fourier Transform will present secondary symmetric peaks, representing the secondary orientation.
The valuep2 of those peaks will be called the weight of the secondary orientation.

In this paper, an area will be calleddisordered, if it possesses several orientations of similar weight. With
the previous notations, we define adisorder estimationas:

Dest = 1− p2

p1
.

It is clear that if the two directions have similar weights,p1 andp2 will be close and thenDest will be near
0. Whereas if the two weights are very different (and since, by definition,p2 < p1) thenDest will be close
to 1. Other functions based on the valuesp1 and p2 could also be used. The previous explanations were
proposed in the 2D case, easier to formulate, but it can be extended naturally to 3D.

To illustrate this direction detection method, we show on Figure 2 several examples of synthetic images
and their associated transform in the frequency domain. When only one direction is displayed, we see two
symmetric peaks (with respect to the center of the image), and if two orientations are present, then there are
two couples of peaks with weights linked to the relative importance of each direction.

2.2 Filtering

Our purpose is to perform directional filtering on seismic data. The filtering method used in this work is
based on the identification of the dominant direction and then removal of all other unwanted orientations.
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To avoid over-filtering of disordered areas, where several directions of interest can be found, we propose to
evaluateDest and adapt our filtering strategy according to its value. It is clear that, if there are two different
directions with similar importance then any result regarding the dominant orientation will be very doubtful.
In this sense, the disorder attribute can also be viewed as a confidence level in the computation of the primary
direction.
The processing takes place in the Fourier domain after each local transform and presents the following steps:

① Computation of the primary orientation: symmetric maximum peaks are searched in the magnitude
image obtained from the transform, and their direction is computed. The valuep1 is also kept.

② Computation of the secondary orientation: with the primary direction known, the secondary one can
be found by searching the magnitude image (in parts not corresponding to the primary direction) for
symmetric maximum peaks, giving the valuep2 and the secondary orientation.

③ Computation ofDest. If Dest is close to 1, then we keep only the primary direction, but if the attribute
is smaller then we keep a mixture of the two dominant directions.

④ Hard-thresholding to remove small coefficients likely to represent noise. The threshold is computed
by taking a fraction ofp1.

The third step of this method proposes to use a mixture of primary and secondary orientations ifDest is
not close enough to 1. The mixture that was used in this work was to give a 1 weight to the coefficient
corresponding to the primary direction and 1−Datt for the secondary.

2.3 Transform used in this work

The analysis filters used here are a windowed generalized Fourier transform derived from [YoKi93] and
expressed as:hi(n) = E(i,n)ha(n), where

E(i,n) =
1√
k′N

e−ı(i− k′N
2 + 1

2)(n− kN
2 + 1

2) 2π

k′N ,

and (ha(n))1≤n≤kN is a non vanishing analysis window such as:ha(n) = sin
(

nπ

kN+1

)
. This transform is

complex, in accordance with our remark in section 2.1. By applying the above monodimensional transform
separably in all directions we define the multi-dimensional transform we practically use on seismic data.

3 Results

We have applied the filtering method on 2D and 3D seismic data using the following parameters:N = 16
(decimation factor),k = 3 (overlapping factor) andk′ = 7/4 (redundancy).
On Figure 3, a sample of 3D seismic data and the result of the filtering are proposed. We can see that impor-
tant underlying structures are enhanced by this filtering. To see better the direction selection, we propose to
look, on figure 4, at some local 2D samples before and after filtering. We can see that the unwanted direc-
tions were completely removed, while significant structures were well preserved and smoother (leading to
easier detection or horizon picking).

Conclusion

In this paper we have presented filter banks and elements about their choices and construction. We have
explained how to perform directional filtering on 2D or 3D seismic data using oversampled and overlapping
filter banks, and applied them on real seismic data leading to good visual results.
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Figure 1: OversampledM-channel filter banks.

Figure 2: Synthetic images and their associated transform.
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Figure 3: A sample of 3D seismic data before and after using the filtering method.

Figure 4: A sample of 2D seismic data before and after using the filtering method.
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