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de sources assistée (BEADS : positivité,
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Old peaks cast long shadows

Chromatography: the traditional 2D way.
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Old peaks cast long shadows

Chromatography: individual 1D peaks for single compounds
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Old peaks cast long shadows

Chromatography: ternary sources separated
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Old peaks cast long shadows

Chromatography: observed signal
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Old peaks cast long shadows

Chromatography: wrapping it up
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The quick version
I Issue: how to accurately & repeatably quantize peaks?

I avoiding separate baseline and noise removal
I Question: where is the string behind the bead?

I without too accurate models for: peak, noise, baseline

I Answer: use main measurement properties + optimization
I sparsity+symmetry, stationarity, smoothness

I BEADS: Baseline Estimation And Denoising w/ Sparsity
I other properties + optimization for further processing

(BARCHAN)
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Outline

INTRODUCTION
FOREWORD
OUTLINE*
BACKGROUND

BEADS MODEL AND ALGORITHM
NOTATIONS
COMPOUND SPARSE DERIVATIVE MODELING
MAJORIZE-MINIMIZE TYPE OPTIMIZATION

EVALUATION AND RESULTS
GC: SIMULATED BASELINE AND GAUSSIAN NOISE
GC: SIMULATED POISSON NOISE
GC: REAL DATA
GC×GC: REAL DATA

ONGOING, EXTENSIONS, CONCLUSION
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Background on background

Image processing: varying illumination

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background

Econometrics: trends and seasonality

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background

Biomedical: ECG isoelectric line or baseline wander

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background

Gas chromatography: baseline

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background
Analytical chemistry, biological data

I Signal separation into three main morphological
components
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Notations and assumptions

Morphological decomposition: y = x + f + w, signals in RN

I y: observation (spectrum, analytical data)
I x: clean series of peaks (no baseline, no noise)
I f: baseline
I w: noise

Assumption: without peaks, the baseline can be (approx.)
recovered from noise-corrupted data by low-pass filtering

I f̂ = L(y− x̂): L: low-pass filter; H = I− L: high-pass filter
I formulated as ‖y− x̂− f̂‖2

2 = ‖H(y− x̂)‖2
2

I Going further with Di: differentiation operators

7 / 33



INTRODUCTION BEADS MODEL AND ALGORITHM EVALUATION AND RESULTS ONGOING, EXTENSIONS, CONCLUSION

Compound sparse derivative modeling

An estimate x̂ can be obtained via:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2 +

M∑
i=0

λiRi (Dix)
}
.
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Compound sparse derivative modeling

Examples of (smooth) sparsity promoting functions for Ri
I φA

i = |x|
I φB

i =
√
|x|2 + ε

I φC
i = |x| − ε log (|x|+ ε)
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

Start from:

θ(x; r) =

{
x, x > 0
−rx, x < 0
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

and majorize it

−5 0 5
0

2

4

6

8

10

The majorizer g(x, v) for the penalty function θ(x; r), r = 3

x

 

 

(s, θ
r
(s))

(v, θ
r
(v))

g(x,v)

θ
r
(x)

9 / 33



INTRODUCTION BEADS MODEL AND ALGORITHM EVALUATION AND RESULTS ONGOING, EXTENSIONS, CONCLUSION

Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +
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i=1

λi

Ni−1∑
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then smooth it:
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

then majorize it:

g0(x, v) =


1+r
4|v| x

2 + 1−r
2 x + |v|1+r

4 , |v| > ε

1+r
4ε x2 + 1−r

2 x + ε1+r
4 , |v| 6 ε.
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Overall principle for Majoration-Minimization

x

G(x, xk)

xkxk+1

G(x, xk+1)

xk+2

F(x)

MM principles.

10 / 33



INTRODUCTION BEADS MODEL AND ALGORITHM EVALUATION AND RESULTS ONGOING, EXTENSIONS, CONCLUSION

BEADS Algorithm (short)

Input: y, A, B, λi, i = 0, . . . ,M

1. b = BTBA−1y
2. x = y (Initialization)

Repeat

3. [Λi]n,n =
φ′([Dix]n)

[Dix]n
, i = 0, . . . ,M,

4. M =

M∑
i=0

λiDT
i ΛiDi

5. Q = BTB + ATMA

6. x = AQ−1b
Until converged

8. f = y− x− BA−1(y− x)

Output: x, f
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Evaluation 1
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Simulated chromatograms w/ polynomial+sine baseline
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Evaluation 1 with Gaussian noise
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Evaluation 2

1 2000
0

20

40

60

80

Time (sample)

1 2000
0

20

40

60

80

Time (sample)

1 2000
0

10

20

30

40

50

Time (sample)

1 2000
0

10

20

30

40

Time (sample)

Simulated chromatograms w/ limited power spectrum noise
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Evaluation 2 with Gaussian noise
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Evaluation 3 with Poisson noise

Simulated chromatograms w/ Poisson noise
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Results: mono-dimensional chromatography (data 1)

Original, superimposed, clean, noise

17 / 33



INTRODUCTION BEADS MODEL AND ALGORITHM EVALUATION AND RESULTS ONGOING, EXTENSIONS, CONCLUSION

Results: two-dimensional chromatography (data 2)

Original data
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Results: two-dimensional chromatography (data 2)

2D background (estimated)
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Results: two-dimensional chromatography (data 2)

Noise (estimated)
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Results: two-dimensional chromatography (data 2)

BEADS corrected data
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Results: two-dimensional chromatography (data 2)

Original data (again!)
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Results: two-dimensional chromatography (data 3)

Original data
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Results: two-dimensional chromatography (data 3)
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Results: two-dimensional chromatography (data 3)

Original data (again!)
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Results: computing scalability

Linear cost per sample (almost)
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Ongoing work
I Tests on analytical chemistry data: NIR, NMR, XPS
I Novel filtering: improved Savitzky-Golay filters
I Novel deconvolution: sparse & positive with norm ratios

SOOT: Non-convex `0 count index approximation

I Novel metrics: errors related to peak quantities
I Baseline and noise use: uncertainty, trace products
I 2D chromatography comparisons: BARCHAN warping
I Improved usability: parameter estimation
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BARCHAN: 2D chromatography warping

No transformation Rigid

Non-rigid BARCHAN

Semi-rigid morphing of two different 2D chromatograms.
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BARCHAN: 2D chromatography warping
Ingredients of a GMM plus EM optimization:

I Point sets X = {X1, . . . ,XN} and Y = {Y1, . . . ,YM}
I p(Xn) = w

N +
∑M

m=1
1−w

2Mπσ2 exp
(
−‖Xn−T(Ym)‖2

2σ2

)
I minσ,W,s,t E = E1(σ,W, s, t) + λ

2 Tr(W>GW)

Calculated deformation of a 2D chromatogram with BARCHAN.
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Improved usability: parameter estimation
I Cut-off frequency estimation
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Improved usability: parameter estimation
I Noise, asymmetry (r) and regularization (λ)
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Extended applications
I Lidar application
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Extended applications
I Engine knocking application
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Other known uses
I A fairly generic model (sparsity, positivity/negativity),

reused by other authors
I gas chromatography: mono-dimensional and

comprehensive/two-dimensional
I Raman spectra: biological and biomedical
I MUSE (Multi Unit Spectroscopic Explorer): astronomical

hyperspectral galaxy spectrum
I X-ray absorption spectroscopy (XAS), X-ray diffraction

(XRD), and combined XAS/XRD
I high-resolution mass spectrometry
I postprandial Plasma Glucose (PPG), multichannel

electroencephalogram (EEG) and single-channel
electrocardiogram (ECG)

I arabic characters
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Conclusions
I Joint baseline/background and noise estimation

I Interaction between “separative science” and “source
separation”

I Little ”hard” modeling
I Easy to tune, scalable
I Codes in Matlab, R and C++1

I A wide range of applications to unveil
1
http://www.laurent-duval.eu/

siva-beads-baseline-background-removal-filtering-sparsity.html
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BEADS Algorithm
We now have a majorizer for F

G(x,v) =
1
2
‖H(y− x)‖2

2 + λ0xT[Γ(v)]x

+ λ0bTx +

M∑
i=1

[
λi

2
(Dix)T [Λ(Div)] (Dix)

]
+ c(v).

Minimizing G(x,v) with respect to x yields

x =
[
HTH + 2λ0 Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di

]−1 (
HTHy− λ0b

)
.

with notations

c(v) =
∑

n

[
φ(vn)− vn

2
φ′(vn)

]
.
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BEADS Algorithm

Writing filter H = A−1B ≈ BA−1 (banded matrices) we have

x = AQ−1
(

BTBA−1y− λ0ATb
)

where Q is the banded matrix,

Q = BTB + ATMA,

and M is the banded matrix,

M = 2λ0Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di.
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BEADS Algorithm

Using previous equations, the MM iteration takes the form:

M(k) = 2λ0Γ(x(k)) +

M∑
i=1

λiDT
i
[
Λ(Dix(k))

]
Di.

Q(k) = BTB + ATM(k)A

x(k+1) = A[Q(k)]−1
(

BTBA−1y− λ0ATb
)
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