Pics, ligne de base, bruit : séparation ternaire de sources assistée (BEADS : positivité, parcimonie), spectres chimiques & miscellanées

> L. DUVAL, A. PIRAYRE IFP Energies nouvelles X. NING, I. W. SELESNICK Polytechnic School of Engineering, New York University

> > 23 mars 2018

1/33

- 3 - 1

Chromatography: the traditional 2D way.

Chromatography: individual 1D peaks for single compounds

(ロ) (部) (語) (語) (2 / 33
)
)
)
 (
)
 (
)
)
 (
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
)
 (
)
)
 (
)
)
 (
)
)
 (
)
)
)
)
)
 (
)
)
 (
)
)
)
)
)
 (
)
)
 (
)
)
)
)
)
)
)
 //
)
 //
)
 //
)
 //
)
 //
)
 //
)
 //
)
 //
)
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 ///
 //
 //
 //
 //
 //
 //
 //
 //
 //
 //
 ///

Chromatography: ternary sources separated

Chromatography: observed signal

< □ > < @ > < E > < E > E の Q @ 2/33

Chromatography: wrapping it up

(日)

The quick version

- ► *Issue*: how to accurately & repeatably quantize peaks?
 - avoiding separate baseline and noise removal
- *Question*: where is the string behind the bead?
 - ▶ without too accurate models for: peak, noise, baseline

- ► Answer: use main measurement properties + optimization
 - sparsity+symmetry, stationarity, smoothness
- ► BEADS: Baseline Estimation And Denoising w/ Sparsity
 - other properties + optimization for further processing (BARCHAN)

Outline

INTRODUCTION FOREWORD OUTLINE* BACKGROUND

BEADS MODEL AND ALGORITHM NOTATIONS COMPOUND SPARSE DERIVATIVE MODELING MAJORIZE-MINIMIZE TYPE OPTIMIZATION

Evaluation and results GC: simulated baseline and Gaussian noise GC: simulated Poisson noise GC: real data $GC \times GC$: real data

ONGOING, EXTENSIONS, CONCLUSION

Background on background

Image processing: varying illumination

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Background on background

Econometrics: trends and seasonality

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

INTRODUCTION BEADS MODEL AND ALGOR

EVALUATION AND RESULTS

Background on background

Biomedical: ECG isoelectric line or baseline wander

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

EVALUATION AND RESULTS

Background on background

Gas chromatography: baseline

- Background affects quantitative evaluation/comparison
- ► In other domains: (instrumental) bias, (seasonal) trend
- ► In analytical chemistry: drift, continuum, wander, baseline
- Very rare cases of parametric modeling (piecewise linear, polynomial, spline)

Background on background

Analytical chemistry, biological data

 Signal separation into three main morphological components

6/33

Notations and assumptions

Morphological decomposition: $\mathbf{y} = \mathbf{x} + \mathbf{f} + \mathbf{w}$, signals in \mathbb{R}^N

- y: observation (spectrum, analytical data)
- x: clean series of peaks (no baseline, no noise)
- ► **f**: baseline
- ► w: noise

Assumption: without peaks, the baseline can be (approx.) recovered from noise-corrupted data by low-pass filtering

- ▶ $\hat{\mathbf{f}} = \mathbf{L}(\mathbf{y} \hat{\mathbf{x}})$: L: low-pass filter; $\mathbf{H} = \mathbf{I} \mathbf{L}$: high-pass filter
- formulated as $\|\mathbf{y} \hat{\mathbf{x}} \hat{\mathbf{f}}\|_2^2 = \|\mathbf{H}(\mathbf{y} \hat{\mathbf{x}})\|_2^2$
- ► Going further with **D**_{*i*}: differentiation operators

Compound sparse derivative modeling

An estimate $\hat{\mathbf{x}}$ can be obtained via:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_{2}^{2} + \sum_{i=0}^{M} \lambda_{i} R_{i} \left(\mathbf{D}_{i} \mathbf{x} \right) \right\}.$$

Compound sparse derivative modeling

Examples of (smooth) sparsity promoting functions for R_i

$$\begin{array}{l} \bullet \ \phi_i^A = |x| \\ \bullet \ \phi_i^B = \sqrt{|x|^2 + \epsilon} \\ \bullet \ \phi_i^C = |x| - \epsilon \log \left(|x| + \epsilon\right) \end{array} \end{array}$$

8/33

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 + \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i-1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \right\}.$$

Start from:

$$\theta(x; r) = \begin{cases} x, & x \ge 0\\ -rx, & x < 0 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

9/33

$$\begin{split} \hat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \Big\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 \\ &+ \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i - 1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \Big\}. \end{split}$$

and majorize it

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 P < ○ Q (0) 9/33

$$\begin{split} \hat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \Big\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 \\ &+ \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i - 1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \Big\}. \end{split}$$

then smooth it:

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 り < ⊙ 9/33

$$\begin{split} \hat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \Big\{ F(\mathbf{x}) = \frac{1}{2} \| \mathbf{H}(\mathbf{y} - \mathbf{x}) \|_2^2 \\ &+ \lambda_0 \sum_{n=0}^{N-1} \theta_\epsilon(x_n; r) + \sum_{i=1}^M \lambda_i \sum_{n=0}^{N_i - 1} \phi\left([\mathbf{D}_i \mathbf{x}]_n \right) \Big\}. \end{split}$$

then majorize it:

$$g_0(x,v) = \begin{cases} \frac{1+r}{4|v|}x^2 + \frac{1-r}{2}x + |v|\frac{1+r}{4}, & |v| > \epsilon\\ \frac{1+r}{4\epsilon}x^2 + \frac{1-r}{2}x + \epsilon\frac{1+r}{4}, & |v| \le \epsilon. \end{cases}$$

Overall principle for Majoration-Minimization

MM principles.

<ロ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 10/33

BEADS Algorithm (short)

Input: **y**, **A**, **B**,
$$\lambda_i$$
, $i = 0, ..., M$

1.
$$\mathbf{b} = \mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{A}^{-1} \mathbf{y}$$

2.
$$\mathbf{x} = \mathbf{y}$$
 (Initialization)
Repeat

3.
$$[\mathbf{\Lambda}_i]_{n,n} = \frac{\phi'([\mathbf{D}_i \mathbf{x}]_n)}{[\mathbf{D}_i \mathbf{x}]_n}, \quad i = 0, \dots, M,$$

4.
$$\mathbf{M} = \sum_{i=0}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \mathbf{\Lambda}_i \mathbf{D}_i$$

5.
$$\mathbf{Q} = \mathbf{B}^{\mathsf{T}}\mathbf{B} + \mathbf{A}^{\mathsf{T}}\mathbf{M}\mathbf{A}$$

$$\mathbf{6.} \qquad \mathbf{x} = \mathbf{A}\mathbf{Q}^{-1}\mathbf{b}$$

Until converged

8.
$$\mathbf{f} = \mathbf{y} - \mathbf{x} - \mathbf{B}\mathbf{A}^{-1}(\mathbf{y} - \mathbf{x})$$

Output: \mathbf{x} , \mathbf{f}

・ロト・日本・モート ヨー うくぐ

Evaluation 1

Simulated chromatograms w/ polynomial+sine baseline

うくで 12/33

Ξ

(日)

Evaluation 1 with Gaussian noise

	0 dB		10 dB		20 dB	
	Mean	Std	Mean	Std	Mean	Std
BEADS backcor airLPS	28.1 24.91 20.26	8.52 9.75 9.65	32.64 31.27 22.54	8.02 8.33 10.15	38.33 36.47 26.71	6.74 6.53 7.76

・ロト・日本・日本・日本・日本・日本

13 / 33

Evaluation 2

Simulated chromatograms w/ limited power spectrum noise

∃ ∽ < <> 14 / 33

Evaluation 2 with Gaussian noise

Evaluation 3 with Poisson noise

Simulated chromatograms w/ Poisson noise

Original, superimposed, clean, noise

0000000000

Results: two-dimensional chromatography (data 2)

Original data

(日) 18/33

2D background (estimated)

INTRODUCTION B 00000 0

BEADS MODEL AND ALGORITHN 00000 EVALUATION AND RESULTS

Results: two-dimensional chromatography (data 2)

Noise (estimated)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BEADS corrected data

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 少 9 ()
18 / 33

0000000000

Original data (again!)

Original data

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 4 (*) 19 / 33

2D background (estimated)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

000000000

Noise (estimated)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BEADS corrected data

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 少 9 (* 19 / 33

Original data (again!)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results: computing scalability

Linear cost per sample (almost)

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 9 ()
20 / 33

Ongoing work

- ► Tests on analytical chemistry data: NIR, NMR, XPS
- ► Novel filtering: improved Savitzky-Golay filters
- ► Novel deconvolution: sparse & positive with norm ratios

SOOT: Non-convex ℓ_0 count index approximation

- ► Novel metrics: errors related to peak quantities
- ► Baseline and noise use: uncertainty, trace products
- ► 2D chromatography comparisons: BARCHAN warping
- Improved usability: parameter estimation

BARCHAN: 2D chromatography warping

Semi-rigid morphing of two different 2D chromatograms.

INTRODUCTION

BARCHAN: 2D chromatography warping Ingredients of a GMM plus EM optimization:

• Point sets $X = \{X_1, \ldots, X_N\}$ and $Y = \{Y_1, \ldots, Y_M\}$

$$\blacktriangleright p(X_n) = \frac{w}{N} + \sum_{m=1}^{M} \frac{1-w}{2M\pi\sigma^2} \exp\left(-\frac{\|X_n - T(Y_m)\|^2}{2\sigma^2}\right)$$

• $\min_{\sigma, W, s, t} E = E_1(\sigma, W, s, t) + \frac{\lambda}{2} \operatorname{Tr}(W^{\top} G W)$

Calculated deformation of a 2D chromatogram with BARCHAN.

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 語 の 4 で
23 / 33

INTRODUCTION

BARCHAN: 2D chromatography warping Ingredients of a GMM plus EM optimization:

• Point sets $X = \{X_1, \ldots, X_N\}$ and $Y = \{Y_1, \ldots, Y_M\}$

$$\blacktriangleright p(X_n) = \frac{w}{N} + \sum_{m=1}^{M} \frac{1-w}{2M\pi\sigma^2} \exp\left(-\frac{\|X_n - T(Y_m)\|^2}{2\sigma^2}\right)$$

• $\min_{\sigma, W, s, t} E = E_1(\sigma, W, s, t) + \frac{\lambda}{2} \operatorname{Tr}(W^{\top} G W)$

Calculated deformation of a 2D chromatogram with BARCHAN.

INTRODUCTION

BARCHAN: 2D chromatography warping Ingredients of a GMM plus EM optimization:

• Point sets $X = \{X_1, \ldots, X_N\}$ and $Y = \{Y_1, \ldots, Y_M\}$

•
$$p(X_n) = \frac{w}{N} + \sum_{m=1}^{M} \frac{1-w}{2M\pi\sigma^2} \exp\left(-\frac{\|X_n - T(Y_m)\|^2}{2\sigma^2}\right)$$

• $\min_{\sigma,W,s,t} E = E_1(\sigma,W,s,t) + \frac{\lambda}{2} \operatorname{Tr}(W^{\top} G W)$

Calculated deformation of a 2D chromatogram with BARCHAN.

Improved usability: parameter estimation

Cut-off frequency estimation

Improved usability: parameter estimation

• Noise, asymmetry (*r*) and regularization (λ)

25 / 33

Extended applications

Lidar application

ର ୯ 26 / 33

Extended applications

Other known uses

- A fairly generic model (sparsity, positivity/negativity), reused by other authors
 - gas chromatography: mono-dimensional and comprehensive/two-dimensional
 - Raman spectra: biological and biomedical
 - MUSE (Multi Unit Spectroscopic Explorer): astronomical hyperspectral galaxy spectrum
 - X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD
 - high-resolution mass spectrometry
 - postprandial Plasma Glucose (PPG), multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG)
 - arabic characters

Other known uses

- A fairly generic model (sparsity, positivity/negativity), reused by other authors
 - gas chromatography: mono-dimensional and comprehensive/two-dimensional
 - Raman spectra: biological and biomedical
 - MUSE (Multi Unit Spectroscopic Explorer): astronomical hyperspectral galaxy spectrum
 - X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD
 - high-resolution mass spectrometry
 - postprandial Plasma Glucose (PPG), multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG)
 - arabic characters

Vielas Lasi

لللله المعدى

∃ ▶ ∃ ∽ Q (~ 28 / 33

Conclusions

- Joint baseline/background and noise estimation
 - Interaction between "separative science" and "source separation"
 - Little "hard" modeling
 - Easy to tune, scalable
 - ► Codes in Matlab, R and C++¹

• A wide range of applications to unveil

```
<sup>I</sup>http://www.laurent-duval.eu/
siva-beads-baseline-background-removal-filtering-sparsity.html (බි> ( 言> ( 言> ) ද ව) දි ෙිටුරුල
```

A little more: additional references

C. Vendeuvre, F. Bertoncini, L. Duval, J.-L. Duplan, D. Thiébaut, and M.-C. Hennion. Comparison of conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples, . [. *Chrom. A.*, 2004, http://dx.doi.org/10.1016/j.chroma.2004.05.071

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, and M.-C. Hennion.

Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC \times GC): A powerful alternative for performing various standard analysis of middle-distillates. 1. *Clrom. A*, 2005, http://dx.doi.org/10.1016/j.chroma.2005.05.106

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, and D. Thiébaut. Comprehensive two-dimensional gas chromatography for detailed characterisation of petroleum products. *Oil Gas Sci. Tech.*, 2007, http://dx.doi.org/10.2516/ogst:2007004

X. Ning, I. W. Selesnick, and L. Duval.

Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometr. Intell. Lab. Syst., 2014, http://dx.doi.org/10.1016/j.chemolab.2014.09.014

A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet. Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ_1/ℓ_2 regularization. IEEE Signal Process. Lett., 2015, http://dx.doi.org/10.1109/LSP.2014.2362861

C. Couprie, L. Duval, M. Moreaud, S. Hénon, M. Tebib, V. Souchon. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis. *Journal of Chromatography A.*, 2017, http://dx.doi.org/10.1016/j.chroma.2017.01.003

L. Duval, A. Pirayre and I. W. Selesnick.

Peaks, baseline and noise separation.

Chapter in preparation for *Source Separation in Physical-Chemical Sensing*, 2018.

= ↔) Q (< 30 / 33

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$c(\mathbf{v}) = \sum_{n} \left[\phi(v_n) - \frac{v_n}{2} \phi'(v_n) \right].$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$[\mathbf{\Gamma}(\mathbf{v})]_{n,n} = \begin{cases} \frac{1+r}{4|v_n|}, & |v_n| \ge \epsilon\\ \\ \frac{1+r}{4\epsilon}, & |v_n| \leqslant \epsilon\\ \frac{1+r}{4\epsilon}, & |v_n| \leqslant \epsilon \end{cases}$$

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$[\Lambda(\mathbf{v})]_{n,n} = \frac{\phi'(v_n)}{v_n}$$

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (や 31 / 33

We now have a majorizer for *F*

$$G(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \|\mathbf{H}(\mathbf{y} - \mathbf{x})\|_{2}^{2} + \lambda_{0} \mathbf{x}^{\mathsf{T}} [\mathbf{\Gamma}(\mathbf{v})] \mathbf{x} + \lambda_{0} \mathbf{b}^{\mathsf{T}} \mathbf{x} + \sum_{i=1}^{M} \left[\frac{\lambda_{i}}{2} (\mathbf{D}_{i} \mathbf{x})^{\mathsf{T}} [\Lambda(\mathbf{D}_{i} \mathbf{v})] (\mathbf{D}_{i} \mathbf{x}) \right] + c(\mathbf{v}).$$

Minimizing $G(\mathbf{x}, \mathbf{v})$ with respect to \mathbf{x} yields

$$\mathbf{x} = \left[\mathbf{H}^{\mathsf{T}}\mathbf{H} + 2\lambda_0 \mathbf{\Gamma}(\mathbf{v}) + \sum_{i=1}^{M} \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\Lambda(\mathbf{D}_i \mathbf{v})\right] \mathbf{D}_i\right]^{-1} \left(\mathbf{H}^{\mathsf{T}}\mathbf{H}\mathbf{y} - \lambda_0 \mathbf{b}\right).$$

with notations

$$[\mathbf{b}]_n = \frac{1-r}{2}$$

Writing filter $\mathbf{H} = \mathbf{A}^{-1}\mathbf{B} \approx \mathbf{B}\mathbf{A}^{-1}$ (banded matrices) we have

$$\mathbf{x} = \mathbf{A}\mathbf{Q}^{-1} \left(\mathbf{B}^{\mathsf{T}}\mathbf{B}\mathbf{A}^{-1}\mathbf{y} - \lambda_0 \mathbf{A}^{\mathsf{T}}\mathbf{b} \right)$$

where **Q** is the banded matrix,

$$\mathbf{Q} = \mathbf{B}^\mathsf{T}\mathbf{B} + \mathbf{A}^\mathsf{T}\mathbf{M}\mathbf{A},$$

and **M** is the banded matrix,

$$\mathbf{M} = 2\lambda_0 \boldsymbol{\Gamma}(\mathbf{v}) + \sum_{i=1}^M \lambda_i \mathbf{D}_i^{\mathsf{T}} \left[\boldsymbol{\Lambda}(\mathbf{D}_i \mathbf{v}) \right] \mathbf{D}_i$$

4 ロ ト 4 部 ト 4 語 ト 4 語 ト 語 の 4 で
32 / 33

Using previous equations, the MM iteration takes the form:

$$\mathbf{M}^{(k)} = 2\lambda_0 \mathbf{\Gamma}(\mathbf{x}^{(k)}) + \sum_{i=1}^M \lambda_i \mathbf{D}_i^{\mathsf{T}} [\Lambda(\mathbf{D}_i \mathbf{x}^{(k)})] \mathbf{D}_i.$$
$$\mathbf{Q}^{(k)} = \mathbf{B}^{\mathsf{T}} \mathbf{B} + \mathbf{A}^{\mathsf{T}} \mathbf{M}^{(k)} \mathbf{A}$$
$$\mathbf{x}^{(k+1)} = \mathbf{A} [\mathbf{Q}^{(k)}]^{-1} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{A}^{-1} \mathbf{y} - \lambda_0 \mathbf{A}^{\mathsf{T}} \mathbf{b} \right)$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 夕 Q ()
33 / 33