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The quick version
I Issue: how to accurately & repeatably quantize peaks?

I avoiding separate baseline and noise removal
I Question: where is the string behind the bead?

I without precise models for: peak, noise, baseline

I Answer: use main measurement properties + optimization
I sparsity+symmetry, stationarity, smoothness

I BEADS: Baseline Estimation And Denoising w/ Sparsity
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Background on background

Figure: Image processing: varying illumination

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background

Figure: Econometrics: trends and seasonality

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background

Figure: Biomedical: ECG isoelectric line or baseline wander

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)

5 / 27



INTRODUCTION BEADS MODEL AND ALGORITHM EVALUATION AND RESULTS CONCLUSIONS

Background on background

Figure: Gas chromatography: baseline

I Background affects quantitative evaluation/comparison
I In other domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Very rare cases of parametric modeling (piecewise linear,

polynomial, spline)
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Background on background
Analytical chemistry, biological data

I Signal separation into three main morphological
components
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Notations and assumptions

Morphological decomposition: y = x + f + w, signals in RN

I y: observation (spectrum, analytical data)
I x: clean series of peaks (no baseline, no noise)
I f: baseline
I w: noise

Assumption: without peaks, the baseline can be (approx.)
recovered from noise-corrupted data by low-pass filtering

I f̂ = L(y− x̂): L: low-pass filter; H = I− L: high-pass filter
I formulated as ‖y− x̂− f̂‖2

2 = ‖H(y− x̂)‖2
2

I Going further with Di: differentiation operators
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Compound sparse derivative modeling

An estimate x̂ can be obtained via:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2 +

M∑
i=0

λiRi (Dix)
}
.
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Compound sparse derivative modeling

Examples of (smooth) sparsity promoting functions for Ri
I φA

i = |x|
I φB

i =
√
|x|2 + ε

I φC
i = |x| − ε log (|x|+ ε)
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

Start from:

θ(x; r) =

{
x, x > 0
−rx, x < 0
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

then majorize it:

g0(x, v) =


1+r
4|v| x

2 + 1−r
2 x + |v|1+r

4 , |v| > ε

1+r
4ε x2 + 1−r

2 x + ε1+r
4 , |v| 6 ε.
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Overall principle for
Majoration-Minimization-Maximization

Figure: Courtesy Peng Wang1

1
https://commons.wikimedia.org/w/index.php?curid=17689902
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BEADS Algorithm (short)

Input: y, A, B, λi, i = 0, . . . ,M

1. b = BTBA−1y
2. x = y (Initialization)

Repeat

3. [Λi]n,n =
φ′([Dix]n)

[Dix]n
, i = 0, . . . ,M,

4. M =

M∑
i=0

λiDT
i ΛiDi

5. Q = BTB + ATMA

6. x = AQ−1b
Until converged

8. f = y− x− BA−1(y− x)

Output: x, f
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Evaluation 1
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Figure: Simulated chromatograms w/ polynomial+sine baseline
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Evaluation 1 with Gaussian noise
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Evaluation 2
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Figure: Simulated chromatograms w/ limited power spectrum noise
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Evaluation 2 with Gaussian noise
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Evaluation 3 with Poisson noise

Figure: Simulated chromatograms w/ Poisson noise
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Results: mono-dimensional chromatography (data 1)

Figure: Original, superimposed, clean, noise
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Results: two-dimensional chromatography (data 2)

Figure: Original data
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Results: two-dimensional chromatography (data 2)

Figure: 2D background (estimated)
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Results: two-dimensional chromatography (data 2)

Figure: Noise (estimated)
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Results: two-dimensional chromatography (data 2)

Figure: BEADS corrected data
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Results: two-dimensional chromatography (data 2)

Figure: Original data (again!)
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Results: two-dimensional chromatography (data 3)

Figure: Original data
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Results: two-dimensional chromatography (data 3)

Figure: 2D background (estimated)
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Results: two-dimensional chromatography (data 3)

Figure: Noise (estimated)
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Results: two-dimensional chromatography (data 3)

Figure: BEADS corrected data
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Results: two-dimensional chromatography (data 3)

Figure: Original data (again!)
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Results: performance

Figure: Linear cost per sample (almost)
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Other known uses
I A fairly generic model (sparsity, positivity/negativity)

I gas chromatography: mono-dimensional and
comprehensive/two-dimensional

I Raman spectra: biological and biomedical
I MUSE (Multi Unit Spectroscopic Explorer): astronomical

hyperspectral galaxy spectrum
I X-ray absorption spectroscopy (XAS), X-ray diffraction

(XRD), and combined XAS/XRD
I high-resolution mass spectrometry
I postprandial Plasma Glucose (PPG), multichannel

electroencephalogram (EEG) and single-channel
electrocardiogram (ECG)

I arabic characters
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Conclusions

I Joint Baseline Estimation and Denoising
I Little ”hard” modeling
I Codes available in Matlab2 and R3

I Interaction between “separative science” and “source
separation”

2
http://lc.cx/beads

3
http://www.laurent-duval.eu/lcd-publications.html#beads-r-code
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Work in progress
I Ongoing tests on analytical chemistry data: NIR, NMR, MS
I Better documentation and usability
I Estimated baseline and noise use?
I Novel metrics: errors related to peak quantities
I Novel filtering: an update on Savitzky-Golay filters
I Novel deconvolution: sparse & positive with norm ratios
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More for free: additional references

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, and M.-C. Hennion.
Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC × GC):
A powerful alternative for performing various standard analysis of middle-distillates.
J. Chrom. A, Sep. 2005.

C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, and D. Thiébaut.
Comprehensive two-dimensional gas chromatography for detailed characterisation of petroleum products.
Oil Gas Sci. Tech., Jan.-Feb. 2007.

X. Ning, I. W. Selesnick, and L. Duval.
Chromatogram baseline estimation and denoising using sparsity (BEADS).
Chemometr. Intell. Lab. Syst., Dec. 2014.

A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet.
Euclid in a taxicab: Sparse blind deconvolution with smoothed `1/`2 regularization.
IEEE Signal Process. Lett., May 2015.

C. Couprie, L. Duval, M. Moreaud, S. Hénon, M. Tebib, V. Souchon.
BARCHAN: Blob Alignment for Robust CHromatographic ANalysis.
Journal of Chromatography A., Feb. 2017.

L. Duval, A. Pirayre and I. W. Selesnick.
Peaks, baseline and noise separation.
Chapter in Source Separation in Physical-Chemical Sensing, 2018.
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BEADS Algorithm
We now have a majorizer for F

G(x,v) =
1
2
‖H(y− x)‖2

2 + λ0xT[Γ(v)]x

+ λ0bTx +

M∑
i=1

[
λi

2
(Dix)T [Λ(Div)] (Dix)

]
+ c(v).

Minimizing G(x,v) with respect to x yields

x =
[
HTH + 2λ0 Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di

]−1 (
HTHy− λ0b

)
.

with notations

c(v) =
∑

n

[
φ(vn)− vn

2
φ′(vn)

]
.
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BEADS Algorithm

Writing filter H = A−1B ≈ BA−1 (banded matrices) we have

x = AQ−1
(

BTBA−1y− λ0ATb
)

where Q is the banded matrix,

Q = BTB + ATMA,

and M is the banded matrix,

M = 2λ0Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di.
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BEADS Algorithm

Using previous equations, the MM iteration takes the form:

M(k) = 2λ0Γ(x(k)) +

M∑
i=1

λiDT
i
[
Λ(Dix(k))

]
Di.

Q(k) = BTB + ATM(k)A

x(k+1) = A[Q(k)]−1
(

BTBA−1y− λ0ATb
)
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