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ABSTRACT

This introductory paper aims at summarizing some problems
and state-of-the-art techniques encountered in image process-
ing for material analysis and design. Developing generic meth-
ods for this purpose is a complex task given the variability of
the different image acquisition modalities (optical, scanning or
transmission electron microscopy; surface analysis instrumen-
tation, electron tomography, micro-tomography. . . ), and ma-
terial composition (porous, fibrous, granular, hard materials,
membranes, surfaces and interfaces. . . ). This paper presents
an overview of techniques that have been and are currently
developed to address this diversity of problems, such as seg-
mentation, texture analysis, multiscale and directional features
extraction, stochastic models and rendering, among others. Fi-
nally, it provides references to enter the issues, challenges and
opportunities in materials characterization.

Index Terms— Image Processing, Image-based Analysis,
Materials science, Stochastic modeling, Surface Science, Tex-
ture Analysis, Work-flow

1. INTRODUCTION

1.1. Context

Periods in mankind’s history are often named after specific ma-
terials [1]. The classic ages are termed after Stone, Bronze
or Iron. More recently, industrial breakthroughs remain inti-
mately related to particular materials. Steam and electricity,
as drivers of the first and second industrial revolutions, were
intimately associated with steel [2]. Silicon partly shaped the
information and communication area. The initial choice of a
material is nowadays crucial for the development of innovative
technologies. First, large investments are required to make it
pervasive. Also, tensions relating to the availability of natural
resources exist, as well as pressing needs in fast technological
cycles.

Materials technology is evolving from materials discovered
in nature by chance to predicted and designed materials [3, 4],
that repair themselves, adapt to their environment, capture and
store energy or information, help enable new devices and sen-
sors, etc. Materials are now designed from scratch with initial
blueprints, starting from atoms and molecules. Materials [1]
impacted include ceramics, composites [5], carbon, glass, met-
als and alloys, polymers, etc. This evolution, at the confluence
of science, technology, and engineering [6], is driven by the

synergy of materials science and physics, mechanics, chem-
istry, biology and engineering. J. W. Gibbs (1839–1903), who
was awarded the first American doctorate in engineering, may
personify this synergy. He is better known in the signal/image
processing community for the characterization of oscillatory
behaviors in Fourier series. He also demonstrated crucial re-
lationships between properties of materials in different phases
and their thermodynamics at the atomic structure level [7].

Materials pervade many areas: energy production, trans-
portation, construction, textiles and packaging, biology, to
name a few. Materials engineering, or materials science,
stemmed from metallurgy to a fast-growing, specific field of
science. Although not its main application, image processing is
progressively taking part in this challenge [8]. Moreover, with
the increasing precision of instrumentation, down to the direct
observation of atomic processes at the sub-Ångström scale,
evolving over picoseconds [9], the data flow is likely to require
a tremendous effort from the image processing community,
involving various topics from compression [10] to restoration
[11], to the standardization of processing work-flows on dif-
ferent image channels or modalities [12]. This possibility is
backed in [13]:

It is my strong belief that all branches of mate-
rials science, including ”materials” such as snow,
ice and biological tissue, form a very important,
perhaps the most important, field of application of
the methods of stochastic-geometry based image
analysis and spatial statistics, which aims to de-
scribe irregular structures statistically by numeri-
cal or functional summary characteristics.

Indeed, the possibility of designing, analyzing and mod-
eling materials from images (or generally two- or three-
dimensional modalities) reveals important contributions to this
field. The appearance of materials changes significantly with
imaging techniques, depending on the scale of analysis, imag-
ing settings, physical properties and preparation of materials.
Understanding these aspects turns out to be crucial for mate-
rial analysis and modeling. In particular, we face challenges
regarding the characterization of the physical assembly pro-
cess of materials, the formation process of images, of imaging
techniques interacting with materials (geometry, transmission,
illumination, reflection, scattering).

Answering these questions is important to separate the ma-
terial appearance from its intrinsic morphology and properties.



Complemented with invited researchers of complementary ex-
pertise, from image feature extraction to image simulation, this
paper aims to report on issues, challenges and emerging trends
in material analysis and modeling that are likely to pose chal-
lenges to image processing, through the diversity of types of
materials, acquisition techniques and applications. Indeed, in
many cases, the traditional, human, vision-based interpretation
of materials image is misleading, as illustrated in the serendipi-
tous face and crescent moon appearance in Fig. 1. Fully taking
into account physical properties and laws is at the heart of suc-
cessful image analysis in material science.

Fig. 1. Scanning electron microscopy: Polymer-charged con-
crete ( c©Florent Moreau, IFPEN).

1.2. Scope

This introductory paper aims at showing some relevant prob-
lems in material characterization that can be addressed with
classical or advanced methods from signal and image process-
ing. It provides a large overview of some of the issues that may
be addressed in this application domain, such as dealing with
different modalities and applications such as clean energy and
information storage; chemistry and catalysts; geology; foren-
sics; bio-inspired materials and biomedical [14]). For illustrat-
ing and to widen the points of view, some of these challenges
can be undertaken by employing active sub-fields of image pro-
cessing, e.g. restoration and inverse problems [15]; segmenta-
tion [16, 17, 18]; texture analysis [19, 20]; multiscale and direc-
tional features extraction methods [21]; color and multispectral
processing [12]; stochastic models [22, 23].

The paper is organized as follows: Section 2 provides in-
troductory examples, to illustrate a part of the variety of ma-
terials data. It also details goals assigned to image processing
tasks. Section 3 details traditional as well as complementary
approaches, with selected references. Some conclusions on the
main challenges are given in Section 4.

2. AIMS AND MOTIVATIONS

2.1. Introductory examples

Figures 2-7 represent a sample of images acquired and prob-
lems for material analysis. Fig. 2 illustrates the cracks (black),
partially filled pores (rounded dark gray shapes with white
spots) and zeolite inclusions (scattered or aggregated white
dots) in a neutral substrate (alumin). Its characteristics relate
to the efficiency of a spherical catalyst used in refining for
the conversion of hydrocarbons into chemical products. Such

images raise different problems at different scales of obser-
vations, from isolated objects to scattered phases, requiring
different segmentation tools. Fig. 3 results from optical mi-
croscopy. The thickness of the crusts may be measured by
electron probe microanalysis. It directly correlates with cata-
lyst activity. Resorting to image processing techniques [24] to
automate the measurement of crust thickness avoids invasive
probe techniques, and hastens the conception of new catalysts
[24]. In Fig. 4, one can use local orientation estimates for 2D
and 3D texture segmentation. In Fig. 5, the goal is to infer
bounds on the effective properties of materials by dealing with
three-dimensional, computational microstructure simulations.
It combines a multiscale approach with homogenization tech-
niques [25]. The same goal is pursued in Fig. 6, here at the
nanometric scale. Fig. 7 illustrates a mixture of a crystalline
and an amorphous material. The periodicity of the first one,
and the lack of long-term regularity of the second one, drives
the use of local Fourier attributes [26].

Fig. 2. Scanning electron microscopy: catalyst section
( c©IFPEN).

Fig. 3. Catalysts with metallic palladium crust ( c©IFPEN).

Fig. 4. Cellulose whisker observed in transmission electron
microscopy. ( c©J.-L. Putaux, Cermav, CNRS).



Fig. 5. Filled rubber’s microstructures ( c©Michelin).

Fig. 6. Composite material with elastomer matrix ( c©EADS).

2.2. Ultimate goals

Image processing should ultimately allow:

• a refined understanding of structured two-dimensional or
volumetric data to improve the extraction of truly useful
material characteristics,

• an efficient analysis of larger data volume through pro-
cessing automation.

Several goals are together of interest in material design:

• to improve existing materials with specific properties:
global structure (morphology, porosity), microstructure
(grains, fibers, pores [8]), mechanical or thermal resis-
tance, electrical or magnetic traits, diffusion. . .

• to enhance a production process (cost, resources, flow)
maintaining determined physical properties,

Fig. 7. Atomic structure of a ceria nanoparticle ( c©Rhodia).

• to monitor quality, with material comparison, defect and
rare events detection and characterization, stress or cor-
rosion resistance.

These aspects may be directly linked to the microstructure. In
this case, images provide precise and quantitative information
and allow the computation of (often geometric) criteria. Al-
ternatively, these aspects are related to both the microstruc-
ture and specific properties of the material components. Im-
age processing then serves as a pre-processing permitting the
estimation of physical properties and parameters through ho-
mogenization. Such methods require as an input a description
of the microstructure as fine as possible, as well as intrinsic
properties of material components. Image processing enables
better understanding of properties or behaviors of materials, re-
ducing the resort to physical testings, the latter being generally
more involved, slower or more expensive, and destructive. In
certain cases, specific information can be obtained only though
image processing methods, for instance for 3D connexity at
the nanometer scale in electronic tomography. These outputs
should permit to adapt or rectify manufacturing settings toward
optimal physical properties. In this context, image-processing-
tuned stochastic models play a crucial role.

The ultimate goals of image processing for materials char-
acterization concentrate to form a strong link in a chained ex-
perimental process striving to predict and improve materials, in
a fast and more accurate manner.

3. IMAGE PROCESSING: ISSUES AND
CHALLENGES

3.1. Classical approaches and techniques

One may define a relatively standard work-flow for image pro-
cessing in materials science. It includes the following steps:

Image acquisition or reconstruction Depending on the reso-
lution of interest, different equipments may be used, for
instance optical microscopes (mm-µm), scanning elec-
tron microscopes or SEM (µm, [27]) and transmission
electron microscopes or TEM (nm-Å, [28]) for 2D ac-
quisitions. Turning to 3D acquisitions [29], one observes
a frequent use of X-ray tomography (mm-µm) and elec-
tronic tomography (nm) based on TEM projections [30].
Some techniques deal with the reconstruction of surface
topography [20].

Enhancement and filtering This step (Fig. 2, with bilateral
filtering) relates to image improvement from a noise
level or homogeneity point-of-view. One is primarily
interested in noise filtering techniques permitting only
minimal modifications in the structures of interest (e.g.
bilateral filters [31], morphological filtering [32, 33]), or
drift or background correction. Techniques for artifact
corrections, specific to the acquisition process, include
for instance ring artifact suppression (X-ray tomogra-
phy), sample impregnation or encasement in colorless
resin (causing effects akin to cast shadows), mechanical
or ionic surface polishing.



Segmentation This step (Fig. 3, with watershed), encompass-
ing dimensionality reduction, classification and model
fitting, simplifies rich images into a few meaningful
intensities or components. It aims at the recovery of
the border of the objects of interest. When the color-
intensity level is directly related to object properties
(topography, like in secondary electron SEM, or chemi-
cal structure, like in back-scattered electron SEM [34]),
global histogram segmentation methods (inter-class vari-
ance maximization, entropy, Expectation-Maximization)
are complemented by criterion-based segmentation (ob-
ject length, surface, tortuosity). This combination per-
mits the elimination of non conform or non interesting
elements, sometimes mere residuals of a previous pro-
cessing sequence. For images whose intensity is less
directly related to properties, extraction of local mor-
phology or contours may be performed using global
optimization approaches such as geodesic active con-
tours and regions [35], maximum flows approaches [36]
and/or mathematical morphology operations [37, 38]
such as top-hat filtering or watershed transformations
[39, 40, 41].

Analysis Image structures (Fig. 6) can be described without
an explicit segmentation of the objects of interest using
multiscale image representations based on morphologi-
cal decompositions [42] or wavelet-based multiscale rep-
resentations [43, 44]. Once simplified, objects of inter-
est may be characterized by numbers, shapes and spatial
distribution among others. Stereology [45], stochastic
modeling [46] (spatial moments, such as the covariance,
and spatial distributions) and the use of distance func-
tions (inter-object, geodesic length, tortuosity) provide
the main sources of algorithms.

Multi-modality It involves image regularization and segmen-
tation of multi-modal/multichannel/multiscale images
acquired from the same samples. In order to deal with
this kind of data, some pre-processing steps such as
registration [47], denoising [48] and image fusion are
required. In addition to extract relevant information
from complex data sets integrating various acquisition
techniques, it is useful to use dimensionally reduction
techniques, from classical PCA to modern nonlinear
manifold learning [49, 50].

Microstructure stochastic modeling This step (Fig. 5, with
3D modeling from 2D images) may use input charac-
teristic data either from segmentation or analysis. It
consists in estimating a stochastic, geometric model
(Boolean random functions, reaction-diffusion or dilu-
tion models, dead leaves tessellations), representing the
microstructure of the observed material. It serves the
purposes of inferring the potential 3D structure from 2D
cuts, or of obtaining structure variations through model
parameter modifications, hence of “numerical material
by design”. Finally, this step may even replace the seg-
mentation step, when individual objects can not, or need
not, be individualized [51].

3.2. Advanced and complementary approaches

Aside from the main topics exposed above, complementary ap-
proaches are listed below.

Segmentation and analysis are sometimes merged. Loosely
termed “texture approaches”, those methods aim at extracting
image characteristics without resorting to individual or exces-
sively precise object separation. Local orientations (Fig. 4 and
Fig. 7), meaningful alignments in microstructures, morpholog-
ical metrics are extracted, with the help of 2D/3D models. Ma-
chine learning techniques are also emerging, typically to auto-
mate supervised/unsupervised classification problems [52].

Meaningful characteristics may be enriched by combin-
ing or merging different acquisition techniques. Acquisitions
may consider different scales of observation (multiscale fu-
sion approaches), or different modalities (multi-modal fu-
sion approaches), or both. Such techniques, very common
in medical or satellite imaging, are increasingly being used
in materials design, combining for instance topographic and
physico-chemical information (via secondary electron and
back-scattered SEM or Energy-Dispersive Spectroscopy).

With 3D or 3D+time imaging [9], an important effort
is dedicated to processing performance, especially algorithm
acceleration. Materials science processing work-flows are
increasingly carried out, with reduced cost, with CPU/GPU
optimization [53]. For instance, tomographic reconstruction
is typically now faster than acquisition. Similar performance
increases are being pursued with filtering or segmentation
techniques, toward integrated high-throughput materials sci-
ence and engineering.

4. CONCLUSIONS

Among the challenges proposed before, and the ones recently
exposed in [9], we retain the attention on the following four:

• multi-step: to produce a complete pipe-line or work-flow
of image analyses and simulations, from sample acquisi-
tion to the estimation of physical properties;

• data-flow: to manage raw and simulated data and ac-
celeration of the aforementioned work-flows from high
throughput screening of materials with ever increasing
amounts of numerical information;

• multi-modality (or synergy): to employ as much as pos-
sible the potentialities to retrieve information on mate-
rials from different acquisition sources, with novel fu-
sion/combination techniques improving characterization
or providing access to novel properties;

• reverse engineering: to help in computational material
design [54], by orienting the synthesis or manufacturing
process of novel materials, desired or predicted [55] (e.g.
graphene, silicene).

A successful application of more standard image processing
thus requires a better integration of known techniques, as well
as the deployment of image analysis not used in materials sci-
ence yet, with the new challenges raised by its variety of data
and physical models.
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