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In just one slide: on echoes and morphing
Wavelet frame coefficients: data and model
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Figure 1: Morphing and adaptive subtraction required
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Agenda

1. Issues in geophysical signal processing

2. Problem: multiple reflections (echoes)
• adaptive filtering with approximate templates

3. (complex) wavelet frames
• how they (may) simplify adaptive filtering
• and how they are discretized (back to the discrete world)

4. Adaptive filtering (morphing)
• without constraint: unary filters (on analytic signals)
• with constraints: proximal tools

5. Conclusions
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Issues in geophysical signal processing

Figure 2: Seismic data acquisition and wave fields
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Issues in geophysical signal processing
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Figure 3: Seismic data: aspect & dimensions (time, offset)
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Issues in geophysical signal processing
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Figure 4: Seismic data: aspect & dimensions (time, receiver)
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Issues in geophysical signal processing

Reflection seismology:

• seismic waves propagate through the subsurface medium

• seismic traces: seismic wave fields recorded at the surface
• primary reflections: geological interfaces
• many types of distortions/disturbances

• processing goal: extract relevant information for seismic data

• led to important signal processing tools:
• ℓ1-promoted deconvolution (Claerbout, 1973)
• wavelets (Morlet, 1975)

• exabytes (106 gigabytes) of incoming data

• need for fast, scalable (and robust) algorithms
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Multiple reflections and templates

Figure 5: Seismic data acquisition: focus on multiple reflections
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Multiple reflections and templates
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Figure 5: Reflection data: shot gather and template
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Multiple reflections and templates

Multiple reflections:

• seismic waves bouncing between layers

• one of the most severe types of interferences

• obscure deep reflection layers

• high cross-correlation between primaries (p) and multiples (m)

• additional incoherent noise (n)

• dptq “ pptq`mptq`nptq
• with approximate templates: r1ptq, r2ptq,. . . rJptq

• Issue: how to adapt and subtract approximate templates?
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Multiple reflections and templates
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Figure 6: Multiple reflections: data trace d and template r1
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Multiple reflections and templates
Multiple filtering:

• multiple prediction (correlation, wave equation) has limitations

• templates are not accurate
• mptq « ř

j hj ˙ rj?
• standard: identify, apply a matching filer, subtract

hopt “ argmin
hPRl

}d´ h ˙ r}2

• primaries and multiples are not (fully) uncorrelated
• same (seismic) source
• similarities/dissimilarities in time/frequency

• variations in amplitude, waveform, delay

• issues in matching filter length:
• short filters and windows: local details
• long filters and windows: large scale effects

11/48



Context Multiple filtering Wavelets Discretization, unary filters Results Going proximal Conclusions

12/48

Multiple reflections and templates
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Figure 7: Multiple reflections: data trace, template and adaptation
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Multiple reflections and templates
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Figure 8: Multiple reflections: data trace and templates, 2D version
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Multiple reflections and templates

• A long history of multiple filtering methods
• general idea: combine adaptive filtering and transforms

• data transforms: Fourier, Radon
• enhance the differences between primaries, multiples and noise
• reinforce the adaptive filtering capacity

• intrication with adaptive filtering?

• might be complicated (think about inverse transform)

• First simple approach:
• exploit the non-stationary in the data
• naturally allow both large scale & local detail matching

ñ Redundant complex wavelet frames

• intermediate complexity in the transform

• simplicity in the (unary/FIR) adaptive filtering
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Hilbert transform and pairs
Reminders [Gabor-1946][Ville-1948]

{Htfupωq “ ´ı signpωq pfpωq
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Figure 9: Hilbert pair 1
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Continuous & complex wavelets
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Figure 10: Complex wavelets at two different scales — 1
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Continuous & complex wavelets
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Figure 11: Complex wavelets at two different scales — 2
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Continuous wavelets

• Transformation group:

affine = translation (τ) + dilation (a)

• Basis functions:

ψτ,aptq “ 1?
a
ψ

ˆ
t´ τ

a

˙

• a ą 1: dilation
• a ă 1: contraction
• 1{?

a: energy normalization
• multiresolution (vs monoresolution in STFT/Gabor)

ψτ,aptq FTÝÑ
?
aΨpafqe´ı2πfτ
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Continuous wavelets

• Definition

Cspτ, aq “
ż
sptqψ˚

τ,aptqdt

• Vector interpretation

Cspτ, aq “ xsptq, ψτ,aptqy

projection onto time-scale atoms (vs STFT time-frequency)

• Redundant transform: τ Ñ τ ˆ a “samples”

• Parseval-like formula

Cspτ, aq “ xSpfq,Ψτ,apfqy

ñ sounder time-scale domain operations! (cf. Fourier)
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Continuous wavelets
Introductory example

Data Real part

Imaginary partModulus

Figure 12: Noisy chirp mixture in time-scale & sampling
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Continuous wavelets
Noise spread & feature simplification (signal vs wiggle)
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Figure 13: Noisy chirp mixture in time-scale: zoomed scaled wiggles
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Continuous wavelets
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Figure 14: Which morphing is easier: time or time-scale?
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Continuous wavelets

• Inversion with another wavelet φ

sptq “
ĳ

Cspu, aqφu,aptqduda
a2

ñ time-scale domain processing! (back to the trace signal)

• Scalogram
|Cspt, aq|2

• Energy conversation

E “
ĳ

|Cspt, aq|2dtda
a2

• Parseval-like formula

xs1, s2y “
ĳ

Cs1pt, aqC˚
s2

pt, aqdtda
a2
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Continuous wavelets

• Wavelet existence: admissibility criterion

0 ă Ah “
ż `8

0

pΦ˚pνqΨpνq
ν

dν “
ż 0

´8

pΦ˚pνqΨpνq
ν

dν ă 8

generally normalized to 1

• Easy to satisfy (common freq. support midway 0 & 8)

• With ψ “ φ, induces band-pass property:
• necessary condition: |Φp0q| “ 0, or zero-average shape
• amplitude spectrum neglectable w.r.t. |ν| at infinity

• Example: Morlet-Gabor (not truly admissible)

ψptq “ 1?
2πσ2

e
´ t2

2σ2 e´ı2πf0t
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Discretization and redundancy

Being practical again: dealing with discrete signals

• Can one sample in time-scale (CWT) domain:

Cspτ, aq “
ż
sptqψ˚

τ,aptqdt, ψτ,aptq “ 1?
a
ψ

ˆ
t´ τ

a

˙

with cj,k “ Cspkb0aj0, a
j
0q, pj, kq P Z and still be able to

recover sptq?
• Result 1 (Daubechies, 1984): there exists a wavelet frame if
a0b0 ă C, (depending on ψ). A frame is generally redundant

• Result 2 (Meyer, 1985): there exist an orthonormal basis for a
specific ψ (non trivial, Meyer wavelet) and a0 “ 2 b0 “ 1

Now: how to choose the practical level of redundancy?
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Discretization and redundancy

0 20 40 60 80 100 120
1

2

3

4

5

6

7

8

Figure 15: Wavelet frame sampling: J “ 21, b0 “ 1, a0 “ 1.1
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Discretization and redundancy
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Discretization and redundancy
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Figure 15: Wavelet frame sampling: J “ 3, b0 “ 1, a0 “ 2
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Discretization and redundancy
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Discretization and redundancy

• Complex Morlet wavelet:

ψptq “ π´1{4e´iω0te´t2{2, ω0: central frequency

• Discretized time r, octave j, voice v:

ψv
r,jrns “ 1?

2j`v{V
ψ

ˆ
nT ´ r2jb0

2j`v{V

˙
, b0: sampling at scale zero

• Time-scale analysis:

d “ dvr,j “
@
drns, ψv

r,jrns
D

“
ÿ

n

drnsψv
r,jrns
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Discretization and redundancy
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Figure 17: Morlet wavelet scalograms, data and templates

Take advantage from the closest similarity/dissimilarity:

• remember wiggles: on sliding windows, at each scale, a single
complex coefficient compensates amplitude and phase
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Unary filters

• Windowed unary adaptation: complex unary filter h (aopt)
compensates delay/amplitude mismatches:

aopt “ argmin
tajupjPJq

›››››d ´
ÿ

j

ajrk

›››››

2

• Vector Wiener equations for complex signals:

xd, rmy “
ÿ

j

aj xrj , rmy

• Time-scale synthesis:

d̂rns “
ÿ

r

ÿ

j,v

d̂vr,j
rψv
r,jrns
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Results
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Figure 18: Wavelet scalograms, data and templates, after unary adaptation
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Results (reminders)
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Figure 19: Wavelet scalograms, data and templates
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Results
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Figure 20: Original data
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Figure 21: Filtered data, “best” template
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Figure 22: Filtered data, three templates
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Going a little further
Impose geophysical data related assumptions: e.g. sparsity
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Figure 23: Generalized Gaussian modeling of seismic data wavelet frame

decomposition with different power laws.
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Variational approach

minimize
xPH

Jÿ

j“1

fjpLjxq

with lower-semicontinuous proper convex functions fj and bounded linear

operators Lj .
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operators Lj .

• fj can be related to noise (e.g. a quadratic term when the
noise is Gaussian),

• fj can be related to some a priori on the target solution (e.g.
an a priori on the wavelet coefficient distribution),

• fj can be related to a constraint (e.g. a support constraint),

• Lj can model a blur operator,

• Lj can model a gradient operator (e.g. total variation),

• Lj can model a frame operator.
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Problem re-formulation

dpkqloomoon
observed signal

“ p̄pkqloomoon
primary

` m̄pkqloomoon
multiple

` npkqloomoon
noise

Assumption: templates linked to m̄pkq throughout time-varying
(FIR) filters:

m̄pkq “
J´1ÿ

j“0

ÿ

p

h̄
ppq
j pkqrpk´pq

j

where
• h̄

pkq
j : unknown impulse response of the filter corresponding to

template j and time k, then:

dloomoon
observed signal

“ p̄loomoon
primary

`R h̄loomoon
filter

` nloomoon
noise
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Results: synthetics (noise: σ “ 0.08)
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Assumptions

• F is a frame, p̄ is a realization of a random vector P :

fP ppq9 expp´ϕpFpqq,

• h̄ is a realization of a random vector H:

fHphq9 expp´ρphqq,

• n is a realization of a random vector N , of probability density:

fN pnq9 expp´ψpnqq,

• slow variations along time and concentration of the filters

|hpn`1q
j ppq ´ h

pnq
j ppq| ď εj,p ;

J´1ÿ

j“0

rρjphjq ď τ
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Results: synthetics

minimize
yPRN ,hPRNP

ψ
`
z ´ Rh ´ y

˘
loooooooomoooooooon
fidelity: noise-realted

` ϕpFyqloomoon
a priori on signal

` ρphqloomoon
a priori on filters

• ϕk “ κk| ¨ | (ℓ1-norm) where κk ą 0

• rρjphjq: }hj}ℓ1 , }hj}2ℓ2 or }hj}ℓ1,2
• ψ

`
z ´ Rh ´ y

˘
: quadratic (Gaussian noise)

350 400 450 500 550 600 650 700 350 400 450 500 550 600 650 700

540 560 580 600

Figure 24: Simulated results with heavy noise.41/48
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Results: synthetics

SNRy SNRs

σ \ rρ ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2
0.01 20.90 21.23 23.57 24.36 24.68 26.74

0.02 20.89 21.16 23.51 22.53 23.02 23.76

0.04 19.00 19.90 20.67 20.15 20.14 19.84

0.08 17.55 16.81 17.34 16.96 16.56 15.96

Signal-to-noise ratios (SNR, averaged over 100 noise realizations)
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Results: synthetics, w/ a significance index
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Results: synthetics, w/ a significance index

tf{b for primaries

Haar Daubechies Symmlet
rρ ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2 ℓ1 ℓ2 ℓ1,2

σ L f{b f{b f{b f{b f{b f{b f{b f{b f{b
0.01 3 7.3 4.3 7.7 2.6 3.0 4.9 5.6 2.6 7.2

4 4.2 2.8 5.1 4.2 1.9 3.3 5.3 1.3 5.1

0.02 3 3.0 2.7 3.4 1.5 2.1 1.6 2.8 2.1 3.1

4 2.6 2.3 2.5 3.0 2.9 2.7 3.0 1.7 4.3

0.04 3 3.4 3.5 3.2 3.0 3.9 2.7 3.2 3.8 3.2

4 3.5 3.7 3.3 3.2 3.8 2.8 3.3 3.7 3.3

0.08 3 3.5 3.5 3.5 3.5 3.9 3.3 3.8 4.2 3.7

4 3.8 3.8 3.7 3.4 3.6 3.2 3.8 4.1 4.2
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Results: potential on real data

Figure 25: Portion of a receiver gather: recorded data.
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Results: potential on real data

Figure 25: Low noise: (a) Unary filters (b) Proximal FIR filters.
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Results: potential on real data

Figure 25: High noise: (a) Unary filters (b) Proximal FIR filters.
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Conclusions

Take-away messages:

• Practical side
• Competitive with more standard 2D processing
• Very fast (unary part): industrial integration

• Technical side
• Non-stationary, wavelet-based, adaptive multiple filtering
• Take good care in cascaded processing

• Present work
• Other applications: (image) pattern matching, (voice) echo

cancellation, (speech) exemplar search, ultrasonic/acoustic
emissions

• Going 2D: crucial choices on *-lets: redundancy, directionality
• Better “sparsity” penalizations: ℓ1 or ℓ1

ℓ2
?
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Conclusions

Now what’s next: curvelets, shearlets, dual-tree complex wavelets?

Figure 26: From T. Lee (TPAMI-1996): 2D Gabor filters (odd and even)

or Weyl-Heisenberg coherent states
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