Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré

UCL, IFPEN, AMU, Dauphine

21/11/2013

Séminaire Cristolien d'Analyse Multifractale

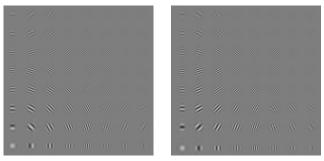
Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

Wavelets for the eye

Artlets: painting wavelets (Hokusai/A. Unser)

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ > < 合 > < 言 > < c > < 合 > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c > < c

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0


Wavelets for 1D signals

1D scaling functions and wavelets

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

Wavelets for 2D images

2D scaling functions and wavelets

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

1D signals

1D and 2D data appear quite different, even under simple:

- time shift
- scale change
- amplitude drift

Motivations 00	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End o

1D signals

Figure : 1D and 2D \rightarrow 1D related signals

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

2D images

Figure : 1D \rightarrow 2D and 2D related images

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

1D signals & 2D images

Only time shift/scale change/amplitude drift between:

- John F. Kennedy Moon Speech (Rice Stadium, 12/09/1962)
- ► A Man on the Moon: Buzz Aldrin (Apollo 11, 21/07/196)

Two motivations: JFK + a Rice wavelet toolbox

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•O	000000	0	00000000	0	0
9/28					

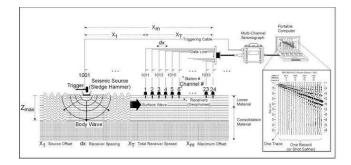


Figure : Geophysics: seismic data recording (surface and body waves)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•o	000000	0	00000000	0	0
9/28					

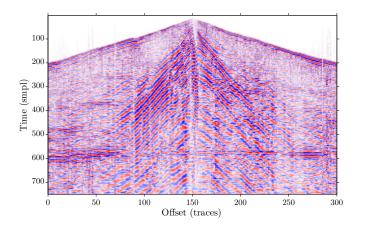


Figure : Geophysics: surface wave removal (before)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•o	000000	0	00000000	0	0
9/28					

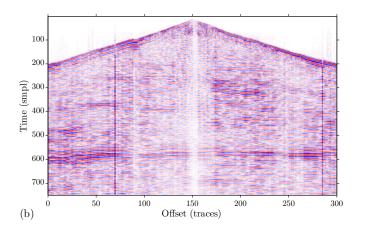


Figure : Geophysics: surface wave removal (after)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
● 0	000000	0	00000000	0	0
9/28					

Issues in geophysics:

- different types of waves on seismic "images"
 - appear hyperbolic [layers], linear [noise] (and parabolic)
- not the standard "mid-amplitude random noise problem"
- no contours enclosing textures, more the converse
- ▶ kind of halfway between signals and images (1.5D)
- yet local, directional, frequency-limited, scale-dependent structures to separate

Motivations ○●	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End o
10/28					

Agenda

- ► To survey 15 years of improvements in 2D wavelets
 - spatial, directional, frequency selectivity increased
 - sparser representations of contours and textures
 - from fixed to adaptive, from low to high redundancy
 - generally fast, practical, compact (or sparse?), informative
 - ▶ 1D/2D, discrete/continuous hybridization
- Outline
 - introduction + early days (≤ 1998)
 - fixed: oriented & geometrical (selected):
 - \pm separable (Hilbert/dual-tree wavelet)
 - isotropic non-separable (Morlet-Gabor)
 - anisotropic scaling (ridgelet, curvelet, contourlet, shearlet)
 - (hidden bonuses):
 - adaptive, lifting, meshes, spheres, manifolds, graphs
 - conclusions

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ > < ⊕ > < \exists > < < □ > < < ⊕ > < \exists > < < □ > < < ⊕ > < < \exists > < < \e

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	●00000	0	00000000	0	0
11/28					

In just one slide

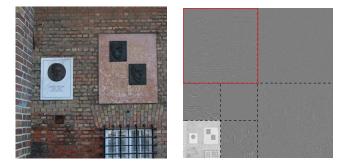


Figure : A standard, "dyadic", separable wavelet decomposition

Where do we go from here? 15 years, 300+ refs in 30 minutes

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels (but...):

$$\widetilde{\boldsymbol{X}} = \begin{pmatrix} 67 & 93 & 129 & 155 \\ 52 & 97 & 161 & 207 \\ 33 & 78 & 143 & 188 \\ 22 & 48 & 84 & 110 \end{pmatrix}$$

Figure : Image block as a (canonical) linear combination of pixels

suffices for (simple) data and (basic) manipulation

- counting, enhancement, filtering
- very limited in higher level understanding tasks
 - looking for other (meaningful) linear combinations
 - what about

Laurent Jacques, Laurent Duval[†], Caroline Chaux, Gabriel Peyré:

67 + 93 + 52 + 97, 67 + 93 - 52 - 9767 - 93 + 52 - 97, 67 - 93 - 52 + 97?

UCL, IFPEN, AMU, Dauphine

Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images (\Box > ($\overline{\Box}$ > ($\overline{\Xi}$ > (

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels (but...):

A review in an active research field:

- (partly) inspired by:
 - early vision observations [Marr et al.]
 - sparse coding: wavelet-like oriented filters and receptive fields of simple cells (visual cortex) [Olshausen *et al.*]
 - a widespread belief in sparsity
- motivated by first successes (JPEG 2000 compression)
- aimed either at pragmatic or heuristic purposes:
 - known formation model or unknown information content
- developed through a legion of *-lets (and relatives)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels, wavelets are legion

Room(let) for improvement:

Activelet, AMlet, Armlet, Bandlet, Barlet, Bathlet, Beamlet, Binlet, Bumplet, Brushlet, Caplet, Camplet, Chirplet, Chordlet, Circlet, Coiflet, Contourlet, Cooklet, Craplet, Cubelet, CURElet, Curvelet, Daublet, Directionlet, Dreamlet, Edgelet, FAMlet, FLaglet, Flatlet, Fourierlet, Framelet, Fresnelet, Gaborlet, GAMlet, Gausslet, Graphlet, Grouplet, Haarlet, Haardlet, Heatlet, Hutlet, Hyperbolet, Icalet (Icalette), Interpolet, Loglet, Marrlet, MiMOlet, Monowavelet, Morelet, Morphlet, Multiselectivelet, Multiwavelet, Needlet, Noiselet, Ondelette, Ondulette, Prewavelet, Phaselet, Planelet, Platelet, Purelet, QVlet, Radonlet, RAMlet, Randlet, Ranklet, Ridgelet, Riezlet, Ripplet (original, type-1 and II), Scalet, S2let, Seamlet, Seislet, Shadelet, Spikelet, Spinelet, Starlet, Sterlet, Storkeslet, SURE-let (SURElet), Surfacelet, Surflet, Symmlet, S2let, Tetrolet, Treelet, Vaguelette, Wavelet-Vaguelette, Wavelet, Warblet, Warplet, Wedgelet, Xlet, not mentioning all those not in -let!

Now, some reasons behind this quantity

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ > < ⊕ > < \overline{\overline{D}} > < < \overline{

Motivations	Intro. 0●0000	Early days 0	Oriented & geometrical	Far away from the plane 0	End o
12/28					

Images are pixels, but altogether different

Figure : Different kinds of images

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels, but altogether different

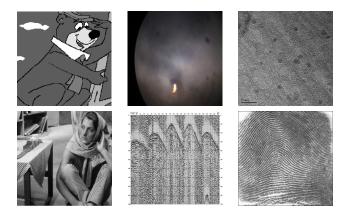


Figure : Different kinds of images

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels, but might be described by models

"Template" image decomposition models:

edge cartoon + texture [Meyer-2001]:

$$\inf_{u} E(u) = \int_{\Omega} |\nabla u| + \lambda ||v||_{*}, f = u + v$$

edge cartoon + texture + noise [Aujol-Chambolle-2005]:

$$\inf_{u,v,w} F(u,v,w) = J(u) + J^*\left(\frac{v}{\mu}\right) + B^*\left(\frac{w}{\lambda}\right) + \frac{1}{2\alpha} \|f-u-v-w\|_{L^2}$$

heuristically: piecewise-smooth + contours + geometrical textures + noise (or unmodeled)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels, but resolution/scale helps with models

Coarse-to-fine and fine-to-coarse relationships

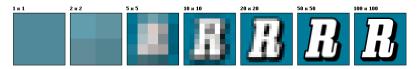


Figure : Notion of sufficient resolution [Chabat et al., 2004]

- discrete 80's wavelets were "not bad" for: piecewise-smooth (moments) + contours (gradient-behavior) + geometrical textures (oscillations) + noise (orthogonality)
- yet, not enough with noise, complicated images (poor sparsity decay)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/28					

Images are pixels, but decay with regularity

Compressibility vs regularity: MSE with M-term approximation

- ▶ 1D
 - piecewise $C^{\alpha} \rightarrow O(M^{-2\alpha})$
- ► 2D
 - $C^{lpha}
 ightarrow O(M^{-lpha})$ (standard wavelets)
 - piecewise $C^{\alpha}/C^{\alpha} \rightarrow O(M^{-1})$ (standard wavelets)
 - piecewise $C^2/C^2 \rightarrow O(M^{-2})$ (triangulations)
- Notes:
 - very imprecise statements, many deeper results
 - ▶ piecewise $C^2/C^2 \rightarrow O(M^{-2}f(M))$ w/ directional wavelets?
 - do much better with other regularities ($\alpha \neq 2$, BV)?

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
13/28					

Images are pixels, but sometimes deceiving

Figure : Real world image and illusions

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
13/28					

Images are pixels, but sometimes deceiving

Figure : Real world image and illusions

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ ▷ < ⑦ ▷ < 恴 ▷ < ⑦ ▷ < 恴 ▷ < ○ ▷ < 恴 ▷ < ○ ▷ < 恴 ▷ < ○ ▷ < □ ▷ < ○ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
13/28					

Images are pixels, but sometimes deceiving

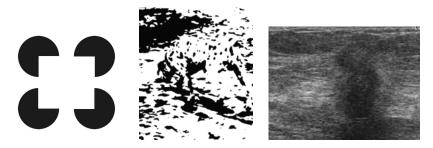


Figure : Real world image and illusions

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
14/28					

Images are pixels, but resolution/scale helps

To catch important "objects" in their context

- use scales, pyramidal or multiresolution schemes,
- combine w/ different description/detection/modeling:
 - smooth curve or polynomial fit, oriented regularized derivatives (Sobel, structure tensor), discrete (lines) geometry, parametric curve detectors (e.g. Hough transform), mathematical morphology, empirical mode decomposition, local *frequency estimators*, Hilbert and Riesz (analytic and monogenic), quaternions, Clifford algebras, optical flow, smoothed random models, generalized Gaussian mixtures, warping operators, etc.

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
15/28					

Images are pixels, and need efficient descriptions

Depend on application, with sparsity priors:

compression, denoising, enhancement, inpainting, restoration, contour detection, texture analysis, fusion, super-resolution, registration, segmentation, reconstruction, source separation, image decomposition, MDC, learning, etc.

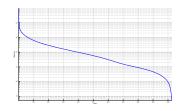


Figure : Image (contours/textures) and decaying singular values

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
16/28					

Images are pixels: a guiding thread (GT)

Figure : Memorial plaque in honor of A. Haar and F. Riesz: A szegedi matematikai iskola világhírű megalapítói, courtesy Prof. K. Szatmáry

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Fourier approach: critical, orthogonal

Figure : GT luminance component amplitude spectrum (log-scale)

Fast, compact, practical but not quite informative (not local)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Scale-space approach: (highly)-redundant, more local

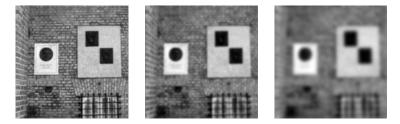


Figure : GT with Gaussian scale-space decomposition

Gaussian filters and heat diffusion interpretation Varying persistence of features across scales \Rightarrow redundancy

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Pyramid-like approach: (less)-redundant, more local

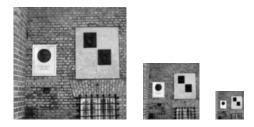


Figure : GT with Gaussian pyramid decomposition

Varying persistence of features across scales + subsampling

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Differences in scale-space with subsampling

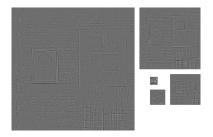


Figure : GT with Laplacian pyramid decomposition

Laplacian pyramid: complete, reduced redundancy, enhances image singularities, low-activity regions/small coefficients, algorithmic

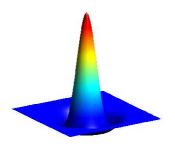
Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Isotropic wavelets (more axiomatic)

Consider

Wavelet $\psi \in \mathbb{L}^2(\mathbb{R}^2)$ such that $\psi(\mathbf{x}) = \psi_{rad}(||\mathbf{x}||)$, with $\mathbf{x} = (x_1, x_2)$, for some radial function $\psi_{rad} : \mathbb{R}_+ \to \mathbb{R}$ (with adm. conditions).

Decomposition and reconstruction


For $\psi_{(\boldsymbol{b},\boldsymbol{a})}(\boldsymbol{x}) = \frac{1}{a}\psi(\frac{\boldsymbol{x}-\boldsymbol{b}}{a})$, $W_f(\boldsymbol{b},\boldsymbol{a}) = \langle \psi_{(\boldsymbol{b},\boldsymbol{a})}, f \rangle$ with reconstruction:

$$f(\mathbf{x}) = \frac{2\pi}{c_{\psi}} \int_{0}^{+\infty} \int_{\mathbb{R}^{2}} W_{f}(\mathbf{b}, \mathbf{a}) \psi_{(\mathbf{b}, \mathbf{a})}(\mathbf{x}) d^{2}\mathbf{b} \frac{d\mathbf{a}}{\mathbf{a}^{3}}$$

if $c_{\psi} = (2\pi)^2 \int_{\mathbb{R}^2} |\hat{\psi}(\boldsymbol{k})|^2 / \|\boldsymbol{k}\|^2 \, \mathrm{d}^2 \boldsymbol{k} < \infty.$

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Wavelets as multiscale edge detectors: many more potential wavelet shapes (difference of Gaussians, Cauchy, etc.)

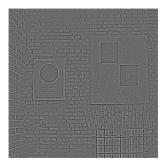


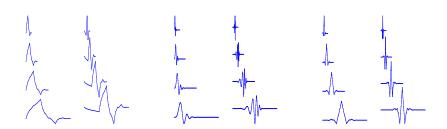
Figure : Example: Marr wavelet as a singularity detector

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Definition

The family \mathcal{B} is a frame if there exist two constants $0 < \mu_{\flat} \leqslant \mu_{\sharp} < \infty$ such that for all f

$$\mu_{\flat} \|f\|^2 \leqslant \sum_{\boldsymbol{m}} |\langle \psi_{\boldsymbol{m}}, f \rangle|^2 \leqslant \mu_{\sharp} \|f\|^2$$


Possibility of discrete orthogonal bases with O(N) speed. In 2D:

Definition

Separable orthogonal wavelets: dyadic scalings and translations $\psi_m(x) = 2^{-j} \psi^k (2^{-j}x - n)$ of three tensor-product 2-D wavelets

$$\psi^{V}(\boldsymbol{x}) = \psi(x_1)\varphi(x_2), \ \psi^{H}(\boldsymbol{x}) = \varphi(x_1)\psi(x_2), \ \psi^{D}(\boldsymbol{x}) = \psi(x_1)\psi(x_2)$$

00 000000 • 0000000 0	End
	0
17/28	

1D scaling functions $\psi(x_1)$ and wavelets $\varphi(x_2)$

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
17/28					

Guiding thread (GT): early days

So, back to orthogonality with the discrete wavelet transform: fast, compact and informative, but... is it sufficient (singularities, noise, shifts, rotations)?

Figure : Discrete wavelet transform of GT

Motivations	Intro. 000000	Early days 0	Oriented & geometrical ●00000000	Far away from the plane 0	End 0
18/28					

To tackle orthogonal DWT limitations

► 1D, orthogonality, realness, symmetry, finite support (Haar) Approaches used for simple designs (& more involved as well)

- relaxing properties: IIR, biorthogonal, complex
- *M*-adic MRAs with *M* integer > 2 or M = p/q
- hyperbolic, alternative tilings, less isotropic decompositions
- with pyramidal-scheme: steerable Marr-like pyramids
- relaxing critical sampling with oversampled filter banks
- complexity: (fractional/directional) Hilbert, Riesz, phaselets, monogenic, hypercomplex, quaternions, Clifford algebras

	0	0
19/28		

${\sf Oriented,\,\pm\,separable}$

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

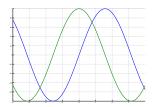


Figure : Hilbert pair 1

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images 4 D > 4 D

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
	000000	0	00000000	○	o
19/28					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

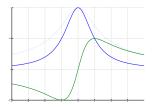


Figure : Hilbert pair 2

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images 4 \square > 4 \square

	0	0
19/28		

${\sf Oriented,\,\pm\,separable}$

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$



Figure : Hilbert pair 3

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images 4 D > 4 D

	0	0
19/28		

${\sf Oriented,\,\pm\,separable}$

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

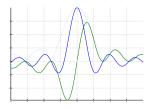


Figure : Hilbert pair 4

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images 4 \square > 4

	0	0
19/28		

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Compute two wavelet trees in parallel, wavelets forming Hilbert pairs, and combine, either with standard 2-band or 4-band

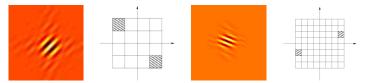
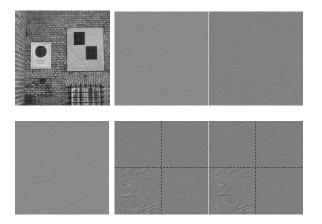



Figure : Dual-tree wavelet atoms and frequency partinioning

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
20/28					

Figure : GT for horizontal subband(s): dyadic, 2-band and 4-band DTT

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
	000000	0	00●000000	0	o
20/28					

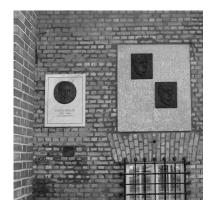


Figure : GT (reminder)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
	000000	o	00●000000	0	0
20/28					

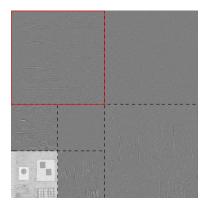
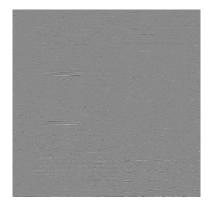



Figure : GT for horizontal subband(s) (reminder)

Motivations	Intro .	Early days	Oriented & geometrical	Far away from the plane	End
	000000	0	00●000000	0	0
20/28					

Figure : GT for horizontal subband(s): 2-band, real-valued wavelet

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
20/28					

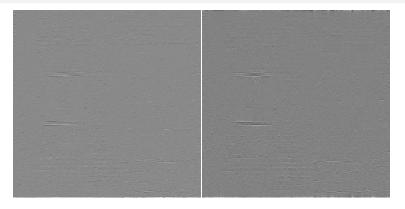


Figure : GT for horizontal subband(s): 2-band dual-tree wavelet

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
20/28					

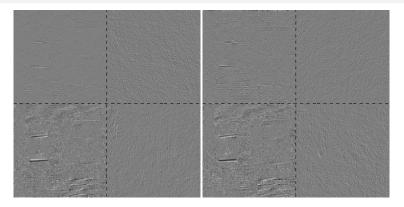


Figure : GT for horizontal subband(s): 4-band dual-tree wavelet

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
21/28					

Directional, non-separable

Non-separable decomposition schemes, directly n-D

- non-diagonal subsampling operators & windows
- non-rectangular lattices (quincunx, skewed)
- non-MRA directional filter banks
- steerable pyramids
- M-band non-redundant directional discrete wavelets
- served as building blocks for:
 - contourlets, surfacelets
 - first generation curvelets with (pseudo-)polar FFT, loglets, directionlets, digital ridgelets, tetrolets

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
21/28					

Directional, non-separable

Directional wavelets and frames with actions of rotation or similitude groups

$$\psi_{(\boldsymbol{b},\boldsymbol{a},\boldsymbol{\theta})}(\boldsymbol{x}) = \frac{1}{\boldsymbol{a}} \psi(\frac{1}{\boldsymbol{a}} R_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x} - \boldsymbol{b})),$$

where R_{θ} stands for the 2 \times 2 rotation matrix

$$W_f(\boldsymbol{b}, \boldsymbol{a}, \theta) = \langle \psi_{(\boldsymbol{b}, \boldsymbol{a}, \theta)}, f \rangle$$

inverted through

$$f(\boldsymbol{x}) = c_{\psi}^{-1} \int_{0}^{\infty} \frac{\mathrm{d}\boldsymbol{a}}{\boldsymbol{a}^{3}} \int_{0}^{2\pi} \mathrm{d}\theta \int_{\mathbb{R}^{2}} \mathrm{d}^{2}\boldsymbol{b} \quad W_{f}(\boldsymbol{b}, \boldsymbol{a}, \theta) \ \psi_{(\boldsymbol{b}, \boldsymbol{a}, \theta)}(\boldsymbol{x})$$

Motivations	Intro . 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End o
21/28					

Directional, non-separable

Directional wavelets and frames:

▶ examples: Conical-Cauchy wavelet, Morlet-Gabor frames

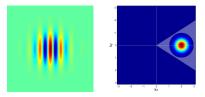


Figure : Morlet Wavelet (real part) and Fourier representation

 possibility to decompose and reconstruct an image from a discretized set of parameters; often (too) isotropic

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
22/28					

Ridgelets: 1-D wavelet and Radon transform $\mathfrak{R}_{f}(\theta, t)$

$$\mathcal{R}_{f}(b, a, \theta) = \int \psi_{(b, a, \theta)}(\mathbf{x}) f(\mathbf{x}) d^{2}\mathbf{x} = \int \mathfrak{R}_{f}(\theta, t) a^{-1/2} \psi((t-b)/a) dt$$

Figure : Ridgelet atom and GT decomposition

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
22/28					

Curvelet transform: continuous and frame

• curvelet atom: scale *s*, orient. $\theta \in [0, \pi)$, pos. $\mathbf{y} \in [0, 1]^2$:

$$\psi_{s, \mathbf{y}, \theta}(\mathbf{x}) = \psi_s(R_{\theta}^{-1}(\mathbf{x} - \mathbf{y}))$$

 $\psi_s(\mathbf{x}) \approx s^{-3/4} \psi(s^{-1/2}x_1, s^{-1}x_2)$ parabolic stretch; $(w \simeq \sqrt{l})$ Near-optimal decay: C^2 in C^2 : $O(n^{-2}\log^3 n)$

► tight frame: $\psi_m(\mathbf{x}) = \psi_{2^j,\theta_\ell,\mathbf{x}_n}(\mathbf{x})$ where $m = (j, n, \ell)$ with sampling locations:

$$heta_\ell = \ell \pi 2^{\lfloor j/2
floor -1} \in [0,\pi) \quad ext{and} \quad oldsymbol{x}_n = R_{ heta_\ell} (2^{j/2} n_1, 2^j n_2) \in [0,1]^2$$

related transforms: shearlets, type-I ripplets

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
22/28					

Curvelet transform: continuous and frame

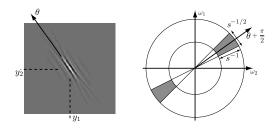
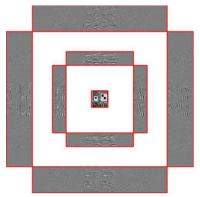



Figure : A curvelet atom and the wegde-like frequency support

Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ ▷ < ⑦ ▷ < 恴 ▷ < ⑦ ▷ < 恴 ▷ < ○ ▷ < 恴 ▷ < ○ ▷ < 恴 ▷ < ○ ▷ < □ ▷ < ○ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
22/28					

Curvelet transform: continuous and frame

Figure : GT curvelet decomposition

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
22/28					

Contourlets: Laplacian pyramid + directional filter banks

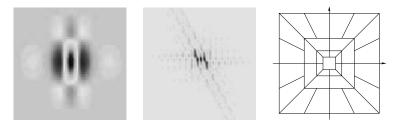
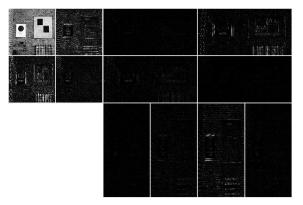



Figure : Contourlet atom and frequency tiling

from close to critical to highly oversampled

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
22/28					

Contourlets: Laplacian pyramid + directional filter banks

Figure : Contourlet GT (flexible) decomposition

Motivations	Intro. 000000	Early days o	Oriented & geometrical	Far away from the plane 0	End 0
22/28					

Shearlets

Figure : Shearlet atom in space and frequency, and frequency tiling

Do they have it all?

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
22/28					

Additional transforms

- previously mentioned transforms are better suited for edge representation
- oscillating textures may require more appropriate transforms
- examples:
 - wavelet and local cosine packets
 - best packets in Gabor frames
 - brushlets [Meyer, 1997; Borup, 2005]
 - wave atoms [Demanet, 2007]

Motivations	Intro. 000000	Early days o	Oriented & geometrical	Far away from the plane 0	End 0
23/28					

Lifting representations

Lifting scheme is an unifying framework

- to design adaptive biorthogonal wavelets
- use of spatially varying local interpolations
- at each scale j, a_{j-1} are split into a_i^o and d_i^o
- wavelet coefficients d_j and coarse scale coefficients a_j: apply (linear) operators P^{λ_j}_j and U^{λ_j}_j parameterized by λ_j

$$d_j = d_j^o - \mathcal{P}_j^{\lambda_j} a_j^o$$
 and $a_j = a_j^o + U_j^{\lambda_j} d_j$

lt also

- guarantees perfect reconstruction for arbitrary filters
- adapts to non-linear filters, morphological operations
- can be used on non-translation invariant grids to build wavelets on surfaces

Motivations	Intro . 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End o
23/28					

Lifting representations

$$d_j = d_j^o - P_j^{\lambda_j} a_j^o$$
 and $a_j = a_j^o + U_j^{\lambda_j} d_j$

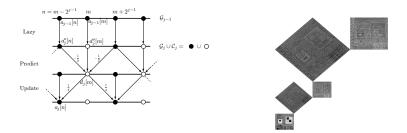
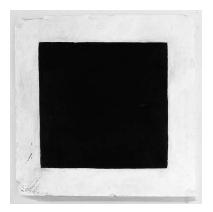


Figure : Predict and update lifting steps; MaxMin lifting of GT


Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
23/28					

Lifting representations

Extensions and related works

- adaptive predictions:
 - ▶ possibility to design the set of parameter \u03c0 = {\u03c0_j}_j to adapt the transform to the geometry of the image
 - λ_j is called an association field, since it links a coefficient of a^o_j to a few neighboring coefficients in d^o_i
 - each association is optimized to reduce the magnitude of wavelet coefficients d_j, and should thus follow the geometric structures in the image
 - may shorten wavelet filters near the edges
- grouplets: association fields combined to maintain orthogonality

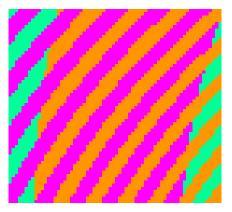
Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
24/28					

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
24/28					

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
24/28					

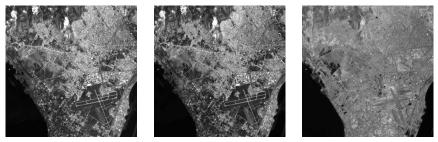


Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
24/28					



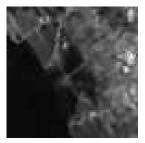
Laurent Jacques, Laurent Duval†, Caroline Chaux, Gabriel Peyré: UCL, IFPEN, AMU, Dauphine Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and directional wavelets for images < □ > < ⊕ > < \overline{\overline{D}} > < < \overline{

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000000	0	0
24/28					



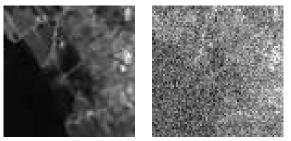
Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
24/28					

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	000000000	0	0
25/28					
					(


Context: multivariate Stein-based denoining of a multi-spectral satellite image

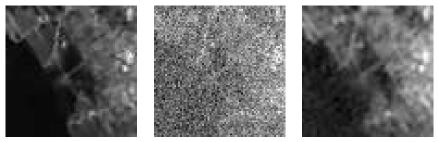
Different spectral bands

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
26/28					


Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
26/28					


Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
26/28					

Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	•	0
27/28					

What else? Images are not (all) flat

Many multiscale designs have been transported, adapted to:

- meshes
- spheres
- two-sheeted hyperboloid and paraboloid
- 2-manifolds (case dependent)
- big deal: data on graphs

see 300+ reference list!

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	•
28/28					

Conclusion: on a (frustrating) panorama

Take-away messages anyway?

If you only have a hammer, every problem looks like a nail

- Is there a "best" geometric and multiscale transform?
 - no: intricate data/transform/processing relationships
 - more needed on asymptotics, optimization, models
 - maybe: many candidates, progresses awaited:
 - "so ℓ_2 "! Low-rank (ℓ_0/ℓ_1), math. morph. (+, × vs max, +)
 - yes: those you handle best, or (my) on wishlist
 - mild redundancy, invariance, manageable correlation, fast decay, tunable frequency decomposition, complex or more

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	•
28/28					
					7

Conclusion: on a (frustrating) panorama

Postponed references & toolboxes

 A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity Signal Processing, Dec. 2011

Toolboxes, images, and names http://www.sciencedirect.com/science/article/pii/S0165168411001356 http://www.laurent-duval.eu/siva-panorama-multiscale-geometric-representations.html http://www.laurent-duval.eu/siva-wis-where-is-the-starlet.html

Cymatiophilic/leptostatonymomaniac acknowledgments to:

the many *-lets (last picks: Speclets/Gabor shearlets)