Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0

2D directional wavelets & geometric multiscale transformations

Laurent Jacques, Laurent Duval, Caroline Chaux, Gabriel Peyré

IFP Énergies nouvelles

20/06/2013

Séminaire MODAL'X

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0

Wavelets

Artlets

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イ団ト イミト ミークへで

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0

Wavelets

1D scaling functions and wavelets

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0

Wavelets

2D scaling functions and wavelets

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•0	000000	0	0000000	0	0
5/24					

Figure : Geophysics: seismic data recording (surface and body waves)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•0	000000	0	0000000	0	0
5/24					

Figure : Geophysics: surface wave removal (before)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (ア・ (ヨト ・ヨー) への

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
● ○	000000	0	0000000	0	0
5/24					

Figure : Geophysics: surface wave removal (after)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (ア・ (ヨト ・ヨー) への

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
•0	000000	0	0000000	0	0
5/24					

Issues here:

- different types of waves on seismic "images"
 - ► appear hyperbolic [layers], linear [noise] (and parabolic)

IFP Énergies nouvelles

3

・ロト ・ 一下 ・ ・ ト ・ ト

- not the standard mid-amplitude random noise problem
- yet local, directional, frequency-limited, scale-dependent signals to separate

Motivations ○●	Intro . 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
6/24					

Agenda

- ► To survey 15 years of improvements in 2D wavelets
 - with spatial, directional, frequency selectivity increased
 - yielding sparser representations of contours and textures
 - from fixed to adaptive, from low to high redundancy
 - generally fast, compact (if not sparse), informative, practical
 - requiring lots of hybridization in construction methods
- Outline
 - introduction
 - ▶ early days (≤ 1998)
 - fixed: oriented & geometrical (selected):
 - directional: ± separable (Hilbert/dual-tree)
 - directional: non-separable (Morlet-Gabor)
 - directional: anisotropic scaling (ridgelet, curvelet, contourlet)
 - adaptive: lifting (+ meshes, spheres, manifolds, graphs)
 - conclusions

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イラト イラト ラー シへへ

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	00000	0	0000000	0	0
7/24					

In just one slide

Figure : A standard, "dyadic", separable wavelet decomposition

Where do we go from here? 15 years, 300+ refs in 30 minutes

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	00000	0	0000000	0	0
8/24					

Images are pixels (but...):

$$\widetilde{\boldsymbol{X}} = \begin{pmatrix} 67 & 93 & 129 & 155 \\ 52 & 97 & 161 & 207 \\ 33 & 78 & 143 & 188 \\ 22 & 48 & 84 & 110 \end{pmatrix}$$

Figure : Image as a (canonic) linear combination of pixels

suffices for (simple) data (simple) manipulation

- counting, enhancement, filtering
- very limited in higher level understanding tasks
 - looking for other (meaningful) linear combinations, what about:

IFP Énergies nouvelles

3

・ロト ・聞ト ・ヨト ・ヨト

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
8/24					

Images are pixels (but...):

A review in an active research field:

- (partly) inspired by:
 - early vision observations [Marr et al.]
 - sparse coding: wavelet-like oriented filters and receptive fields of simple cells (visual cortex) [Olshausen *et al.*]
 - a widespread belief in sparsity
- motivated by image handling (esp. compression)
- continued from the first successes of wavelets (JPEG 2000)
- aimed either at pragmatic or heuristic purposes
 - known formation model or unknown information
- developed through a quantity of *-lets and relatives

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
8/24					

Images are pixels, wavelets are legion

Room(let) for improvement:

Activelet, AMlet, Armlet, Bandlet, Barlet, Bathlet, Beamlet, Binlet, Bumplet, Brushlet, Caplet, Camplet, Chirplet, Chordlet, Circlet, Coiflet, Contourlet, Cooklet, Craplet, Cubelet, CURElet, Curvelet, Daublet, Directionlet, Dreamlet, Edgelet, FAMlet, FLaglet, Flatlet, Fourierlet, Framelet, Fresnelet, Gaborlet, GAMlet, Gausslet, Graphlet, Grouplet, Haarlet, Haardlet, Heatlet, Hutlet, Hyperbolet, Icalet (Icalette). Interpolet, Loglet, Marrlet, MiMOlet, Monowavelet, Morehlet, Multiselectivelet, Multivavelet, Needlet, Noiselet, Ondelette, Ondulette, Prewavelet, Phaselet, Planelet, Platelet, Purelet, QVlet, Radonlet, RAMlet, Randlet, Ranklet, Ridgelet, Riezlet, Ripplet (original, type-I and II), Scalet, S2let, Seamlet, SolHOlet, Sparselet, Spikelet, Splinelet, Starlet, Starlet, Sterelet, Stantlet, Swoothlet, Snakelet, Surfacelet, Surflet, Symmlet, S2let, Tetrolet, Treelet, Vaguelette, Wavelet-Vaguelette, Wavelet, Warblet, Warplet, Wedgelet, Xlet, not mentioning all those not on -let!

Now, some reasons behind this quantity

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	00000	0	0000000	0	0
8/24					

Images are pixels, but altogether different

Figure : Different kinds of images

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イボト イミト ミー 少へや

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	00000	0	0000000	0	0
8/24					

Images are pixels, but altogether different

Figure : Different kinds of images

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles 《 다 › 《 큔 › 《 큰 › 《 큰 › 《 큰 › 《 근 ›

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
8/24					

Images are pixels, but might be described by models

To name a few:

 edge cartoon + texture: [Meyer-2001]

$$\inf_{u} E(u) = \int_{\Omega} |\nabla u| + \lambda ||v||_{*}, f = u + v$$

edge cartoon + texture + noise:
 [Aujol-Chambolle-2005]

$$\inf_{u,v,w} F(u,v,w) = J(u) + J^*\left(\frac{v}{\mu}\right) + B^*\left(\frac{w}{\lambda}\right) + \frac{1}{2\alpha} \|f-u-v-w\|_{L^2}$$

 Heuristically: piecewise-smooth + contours + geometrical textures + noise (or unmodeled)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
8/24					

Images are pixels, but resolution/scale helps with models

Figure : Notion of sufficient resolution [Chabat et al., 2004]

- coarse-to-fine and fine-to-coarse relationships
- discrete 80's wavelets were not bad for: piecewise-smooth (moments) + contours (gradient-behavior) + geometrical textures (oscillations) + noise
- not enough for complicated images (poor sparsity decay)

IFP Énergies nouvelles

(日) (四) (日) (日) (日)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
9/24					

Images are pixels, but sometimes deceiving

Figure : Real world image and illusions

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
9/24					

Images are pixels, but sometimes deceiving

Figure : Real world image and illusions

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日 ・ モート モート モー シュル

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
9/24					

Images are pixels, but sometimes deceiving

Figure : Real world image and illusions

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
10/24					

Images are pixels, but resolution/scale helps

To catch important "objects" in their context

- use scales or multiresolution schemes,
- combine w/ various of description/detection/modeling methods:
 - smooth curve or polynomial fit, oriented regularized derivatives (Sobel, structure tensor), discrete (lines) geometry, parametric curve detectors (e.g. Hough transform), mathematical morphology, empirical mode decomposition, local *frequency estimators*, Hilbert and Riesz (analytic and monogenic), quaternions, Clifford algebras, optical flow approaches, smoothed random models, generalized Gaussian mixtures, warping operators, etc.

IFP Énergies nouvelles

3

・ロト ・ 理ト ・ モト ・ モト

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
11/24					

Images are pixels, and need efficient descriptions

Depend on application, with sparsity priors:

compression, denoising, enhancement, inpainting, restoration, contour detection, texture analysis, fusion, super-resolution, registration, segmentation, reconstruction, source separation, image decomposition, MDC, learning, etc.

Figure : Image (contours/textures) and decaying singular values

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
12/24					

Images are pixels: a guiding thread (GT)

Figure : Memorial plaque in honor of A. Haar and F. Riesz: A szegedi matematikai iskola világhírű megalapítói, court. Prof. K. Szatmáry

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Fourier approach: critical, orthogonal

Figure : GT luminance component amplitude spectrum (log-scale)

Fast, compact, practical but not quite informative (not local)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Scale-space approach: (highly)-redundant, more local

Figure : GT with Gaussian scale-space decomposition

Gaussian filters and heat diffusion interpretation Varying persistence of features across scales \Rightarrow redundancy

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Pyramid-like approach: (less)-redundant, more local

Figure : GT with Gaussian scale-space decomposition

IFP Énergies nouvelles

-

(日) (四) (日) (日) (日)

Gaussian pyramid Varying persistence of features across scales + subsampling

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Differences in scale-space with subsampling

Figure : GT with Laplacian pyramid decomposition

Laplacian pyramid: complete, reduced redundancy, enhances image singularities, low-activity regions/small coefficients, algorithmic

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Isotropic wavelets (more axiomatic)

Consider

Wavelet $\psi \in \mathbb{L}^2(\mathbb{R}^2)$ such that $\psi(\mathbf{x}) = \psi_{rad}(||\mathbf{x}||)$, with $\mathbf{x} = (x_1, x_2)$, for some radial function $\psi_{rad} : \mathbb{R}_+ \to \mathbb{R}$ (with adm. conditions).

Decomposition and reconstruction

For
$$\psi_{(\boldsymbol{b},\boldsymbol{a})}(\boldsymbol{x}) = \frac{1}{a}\psi(\frac{\boldsymbol{x}-\boldsymbol{b}}{a})$$
, $W_f(\boldsymbol{b},\boldsymbol{a}) = \langle \psi_{(\boldsymbol{b},\boldsymbol{a})}, f \rangle$ with reconstruction:

$$f(\boldsymbol{x}) = \frac{2\pi}{c_{\psi}} \int_{0}^{+\infty} \int_{\mathbb{R}^{2}} W_{f}(\boldsymbol{b}, \boldsymbol{a}) \psi_{(\boldsymbol{b}, \boldsymbol{a})}(\boldsymbol{x}) d^{2}\boldsymbol{b} \frac{d\boldsymbol{a}}{\boldsymbol{a}^{3}}$$
(1)

if
$$c_\psi = (2\pi)^2 \int_{\mathbb{R}^2} |\hat{\psi}(\boldsymbol{k})|^2 / \|\boldsymbol{k}\|^2 \; \mathrm{d}^2 \boldsymbol{k} < \infty$$

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Wavelets as multiscale edge detectors: many more potential wavelet shapes (difference of Gaussians, Cauchy, etc.)

Figure : Example: Marr wavelet as a singularity detector

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	0000000	0	0
13/24					

Definition

The family ${\cal B}$ is a frame if there exist two constants 0 $<\mu_1\leqslant\mu_2<\infty$ such that for all f

$$\mu_1 \|f\|^2 \leqslant \sum_{\boldsymbol{m}} |\langle \psi_{\boldsymbol{m}}, f \rangle|^2 \leqslant \mu_2 \|f\|^2$$

Possibility of discrete orthogonal bases with O(N) speed. In 2D:

Definition

Separable orthogonal wavelets: dyadic scalings and translations $\psi_m(x) = 2^{-j} \psi^k (2^{-j}x - n)$ of three tensor-product 2-D wavelets

$$\psi^{V}(\boldsymbol{x}) = \psi(x_1)\varphi(x_2), \ \psi^{H}(\boldsymbol{x}) = \varphi(x_1)\psi(x_2), \ \psi^{D}(\boldsymbol{x}) = \psi(x_1)\psi(x_2)$$

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	•	00000000	0	0
13/24					

So, back to orthogonality with the discrete wavelet transform: fast, compact and informative, but... is it sufficient (singularities, noise, shifts, rotations)?

Figure : Discrete wavelet transform of GT

IFP Énergies nouvelles

(日) (四) (日) (日) (日)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
14/24					

To tackle orthogonal DWT limitations

► 1D, orthogonality, realness, symmetry, finite support (Haar) Approaches used for simple designs (& more involved as well)

- ▶ relaxing properties: IIR, biorthogonal, complex
- *M*-adic MRAs with *M* integer > 2 or M = p/q
- hyperbolic, alternative tilings, less isotropic decompositions
- with pyramidal-scheme: steerable Marr-like pyramids
- relaxing critical sampling with oversampled filter banks
- complexity: (fractional/directional) Hilbert, Riesz, phaselets, monogenic, hypercomplex, quaternions, Clifford algebras

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
15/24					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Figure : Hilbert pair 1

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
15/24					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Figure : Hilbert pair 2

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日 ・ モート モート モー シュル

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
15/24					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Figure : Hilbert pair 3

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イボト イミト ミー 少へで

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
15/24					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Figure : Hilbert pair 4

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日 ・ モート モート モー シュル

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
15/24					

Illustration of a combination of Hilbert pairs and M-band MRA

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega)\widehat{f}(\omega)$$

Compute two wavelet trees in parallel, wavelets forming Hilbert pairs, and combine, either with standard 2-band or 4-band

Figure : Dual-tree wavelet atoms and frequency partinioning

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00●00000	0	0
16/24					

Figure : GT for horizontal subband(s): dyadic, 2-band and 4-band DTT

IFP Énergies nouvelles

ж

・ロト ・日ト ・ヨト ・ヨト

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
	000000	0	00●00000	0	0
16/24					

Figure : GT (reminder)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イボト イミト ミー 少へで

Motivations	Intro. 000000	Early days o	Oriented & geometrical	Far away from the plane 0	End o
16/24					

Figure : GT for horizontal subband(s): 2-band, real-valued wavelet

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
16/24					

Figure : GT for horizontal subband(s): 2-band dual-tree wavelet

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イボト イミト ミー 少へで

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
16/24					

Figure : GT for horizontal subband(s): 4-band dual-tree wavelet

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日 ・ モート モート モー シュル

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
17/24					

Directional, non-separable

Non-separable decomposition schemes, directly n-D

- non-diagonal subsampling operators & windows
- non-rectangular lattices (quincunx, skewed)
- non-MRA directional filter banks
- steerable pyramids
- M-band non-redundant directional discrete wavelets
- served as building blocks for:
 - contourlets, surfacelets
 - first generation curvelets with (pseudo-)polar FFT, loglets, directionlets, digital ridgelets, tetrolets

IFP Énergies nouvelles

3

・ロト ・聞ト ・ヨト ・ヨト

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
17/24					

Directional, non-separable

Directional wavelets and frames with actions of rotation or similitude groups

$$\psi_{(\boldsymbol{b},\boldsymbol{a},\boldsymbol{\theta})}(\boldsymbol{x}) = \frac{1}{\boldsymbol{a}} \psi(\frac{1}{\boldsymbol{a}} R_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x} - \boldsymbol{b})),$$

where R_{θ} stands for the 2 \times 2 rotation matrix

$$W_f(\boldsymbol{b}, \boldsymbol{a}, \theta) = \langle \psi_{(\boldsymbol{b}, \boldsymbol{a}, \theta)}, f \rangle$$

inverted through

$$f(\boldsymbol{x}) = c_{\psi}^{-1} \int_{0}^{\infty} \frac{\mathrm{d}\boldsymbol{a}}{\boldsymbol{a}^{3}} \int_{0}^{2\pi} \mathrm{d}\boldsymbol{\theta} \int_{\mathbb{R}^{2}} \mathrm{d}^{2}\boldsymbol{b} \quad W_{f}(\boldsymbol{b}, \boldsymbol{a}, \boldsymbol{\theta}) \ \psi_{(\boldsymbol{b}, \boldsymbol{a}, \boldsymbol{\theta})}(\boldsymbol{x})$$

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
17/24					

Directional, non-separable

Directional wavelets and frames:

- possibility to decompose and reconstruct an image from a discretized set of parameters; often (too) isotropic
- examples: Conical-Cauchy wavelet, Morlet-Gabor frames

Figure : Morlet Wavelet (real part) and Fourier representation

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Ridgelets: 1-D wavelet and Radon transform $\mathfrak{R}_{f}(\theta, t)$

$$\mathcal{R}_f(b, a, \theta) = \int \psi_{(b, a, \theta)}(\mathbf{x}) f(\mathbf{x}) d^2 \mathbf{x} = \int \mathfrak{R}_f(\theta, t) a^{-1/2} \psi((t-b)/a) dt$$

Figure : Ridgelet atom and GT decomposition

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Curvelet transform: continuous and frame

• curvelet atom: scale *s*, orient. $\theta \in [0, \pi)$, pos. $\mathbf{y} \in [0, 1]^2$:

$$\psi_{s, \mathbf{y}, \theta}(\mathbf{x}) = \psi_s(R_{\theta}^{-1}(\mathbf{x} - \mathbf{y}))$$

 $\psi_s(\mathbf{x}) \approx s^{-3/4} \psi(s^{-1/2}x_1, s^{-1}x_2)$ parabolic stretch; $(w \simeq \sqrt{l})$ Near-optimal decay: C^2 in C^2 : $O(n^{-2}\log^3 n)$

► tight frame: $\psi_m(\mathbf{x}) = \psi_{2^j,\theta_\ell,\mathbf{x}_n}(\mathbf{x})$ where $m = (j, n, \ell)$ with sampling locations:

$$heta_\ell = \ell \pi 2^{\lfloor j/2
floor -1} \in [0,\pi) \quad ext{and} \quad oldsymbol{x}_n = R_{ heta_\ell} (2^{j/2} n_1, 2^j n_2) \in [0,1]^2$$

related transforms: shearlets, type-I ripplets

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イクト イラト イラト ラークへへ

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Curvelet transform: continuous and frame

Figure : A curvelet atom and the wegde-like frequency support

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日ト ・ モート モート モー つへの

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Curvelet transform: continuous and frame

Figure : GT curvelet decomposition

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Contourlets: Laplacian pyramid + directional FB

Figure : Contourlet atom and frequency tiling

from close to critical to highly oversampled

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
18/24					

Contourlets: Laplacian pyramid + directional FB

Figure : Contourlet GT (flexible) decomposition

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro. 000000	Early days 0	Oriented & geometrical	Far away from the plane 0	End 0
18/24					

Additional transforms

- previously mentioned transforms are better suited for edge representation
- oscillating textures may require more appropriate transforms

IFP Énergies nouvelles

э

(日) (四) (日) (日) (日)

- examples:
 - wavelet and local cosine packets
 - best packets in Gabor frames
 - brushlets [Meyer, 1997; Borup, 2005]
 - wave atoms [Demanet, 2007]

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
19/24					

Lifting representations

Lifting scheme is an unifying framework

- to design adaptive biorthogonal wavelets
- use of spatially varying local interpolations
- at each scale j, a_{j-1} are split into a_i^o and d_i^o
- wavelet coefficients d_j and coarse scale coefficients a_j: apply (linear) operators P^{λ_j}_j and U^{λ_j}_j parameterized by λ_j

$$d_j = d_j^o - \mathcal{P}_j^{\lambda_j} a_j^o$$
 and $a_j = a_j^o + U_j^{\lambda_j} d_j$

IFP Énergies nouvelles

э

・ロト ・ 一下 ・ ・ ト ・ ト

lt also

- guarantees perfect reconstruction for arbitrary filters
- adapts to non-linear filters, morphological operations
- can be used on non-translation invariant grids to build wavelets on surfaces

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
19/24					

Lifting representations

$$d_j = d_j^o - P_j^{\lambda_j} a_j^o$$
 and $a_j = a_j^o + U_j^{\lambda_j} d_j$

Figure : Predict and update lifting steps and MaxMin lifting of GT

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
19/24					

Lifting representations

Extensions and related works

- adaptive predictions:
 - ▶ possibility to design the set of parameter \u03c0 = {\u03c0_j}_j to adapt the transform to the geometry of the image
 - λ_j is called an association field, since it links a coefficient of a^o_j to a few neighboring coefficients in d^o_i
 - each association is optimized to reduce the magnitude of wavelet coefficients d_j, and should thus follow the geometric structures in the image

IFP Énergies nouvelles

3

・ロト ・ 理ト ・ モト ・ モト

- may shorten wavelet filters near the edges
- grouplets: association fields combined to maintain orthogonality

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	00000000	0	0
20/24					

Context: multivariate Stein-based denoining of a multi-spectral satellite image

Different spectral bands

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・ (日) ・ (1) \cdot (1)

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
21/24					

Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles ・ロト ・日ト ・ モート モート モー クへや

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
21/24					

Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	0
21/24					

Context: multivariate Stein-based denoining of a multi-spectral satellite image

Form left to right: original, noisy, denoised

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles イロト イヨト イヨト モー 少へや

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	•	0
22/24					

What else? Images are not (all) flat

Many designs have been transported, adapted to:

- meshes
- spheres
- two-sheeted hyperboloid and paraboloid
- 2-manifolds (case dependent)
- functions on graphs

see reference list!

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	•
23/24					

Conclusion: on a (frustrating) panorama

Take-away messages anyway?

If you only have a hammer, every problem looks like a nail

- Is there a "best" geometric and multiscale transform?
 - no: intricate data/transform/processing relationships
 - more needed on asymptotics, optimization, models
 - maybe: many candidates, progresses awaited:
 - so ℓ_2 : low-rank (ℓ_0/ℓ_1), math. morph. (+, × vs max, +)
 - yes: those you handle best, or (my) on wishlist
 - mild redundancy, invariance, manageable correlation, fast decay, tunable frequency decomposition, complex or more

Motivations	Intro.	Early days	Oriented & geometrical	Far away from the plane	End
00	000000	0	0000000	0	•
23/24					

Conclusion: on a (frustrating) panorama

Postponed references & toolboxes

 A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity Signal Processing, December 2011

For toolboxes, images, and names http://www.sciencedirect.com/science/article/pii/S0165168411001356 http://www.laurent-duval.eu/siva-panorama-multiscale-geometric-representations.html http://www.laurent-duval.eu/siva-wise-where-is-the-starlet.html

Acknowledgments to:

the many *-lets (last weeks' pick: the Gabor shearlet)

Laurent Jacques, *Laurent Duval*, Caroline Chaux, Gabriel Peyré: 2D directional wavelets & geometric multiscale transformations

IFP Énergies nouvelles