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On echoes and morphing
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Figure 1: ... and adaptive subtraction
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1. Issues in geophysical signal processing
Problem: multiple reflections (echoes)
e adaptive filtering with approximate models
3. Complex, continuous wavelets
e and how they (may) simplify adaptive filtering
4. Discretization, redundancy and unary filters (morphing)
e being practical: back to the discrete world
Results

6. Conclusion
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Issues in geophysical signal processing

computer
processing
of seismic data

e

Figure 2: Seismic data acquisition and wave fields.
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Issues in geophysical signal processing

a) Receiver number
1500 1600 1700 1800 1900

Figure 3: Seismic data: aspect & dimensions (time, offset)

5/37 @nimi‘:



Context Multiple filtering Continuous wavelets Discretization, redundancy, unary filters Results & conclusion
0000e0 00000000 000000000 000000 0000000

6/37

Issues in geophysical signal processing
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Figure 4: Seismic data: aspect & dimensions (time, offset)

6/37

(5 Energies
Imev’Z/ss



Context Multiple filtering
00000e 00000000

Continuous wavelets

Results & conclusion

7/37
Issues in geophysical signal processing

Reflection seismology:

e seismic waves propagate through the subsurface medium
e seismic traces: seismic wave fields recorded at the surface

e primary reflections: geological interfaces
e many types of distortions/disturbances

e processing goal: extract relevant information for seismic data
e led to important signal processing tools:

e (;-promoted deconvolution (Claerbout, 1973)
o wavelets (Morlet, 1975)

e exabytes (10° gigabytes) of incoming data

e need for fast, scalable algorithms
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Multiple reflections and models

Figure 5: Seismic data acquisition: focus on multiple reflections
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Multiple reflections and models

a) Receiver number b) Receiver number
1500 1600 1700 1800 1900 1500 1600 1700 1800 1900

Figure 5: Reflection data: shot gather and model
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Multiple reflections and models

Multiple reflections:
e seismic waves bouncing between layers
e one of the most severe types of interferences
e obscure deep reflection layers
e high cross-correlation between primaries (p) and multiples (m)

e additional incoherent noise (n)
e d(t) =p(t) +m(t)+
e model-based multiple attenuation: z1(t), x2(t), x3(t)

e how to use approximate models?

9/37 (ifPmaie



Discretization, redundancy, unary filters Results & conclusion

Context Multiple filtering Continuous wavelets
000000 00e00000 000000000 000000 0000000
10/37

Multiple reflections and models
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Figure 6: Multiple reflections: data trace d and model z;
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Multiple reflections and models

Multiple filtering:

e multiple prediction (correlation, wave equation) has limitations
e models are not accurate
o m(t) =~ ap(t)xk(t — 71(t))?
e standard: identify, apply a matching filer, subtract
e primaries and multiples are not (fully) uncorrelated
e same (seismic) source
e similarities/dissimilarities in time
e similarities/dissimilarities in frequency
e variations in amplitude, waveform, delay
e issues in matching filter length:

e short filters and windows: local details
e long filters and windows: large scale effects
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Multiple reflections and models
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Figure 7: Multiple reflections: data trace, model and adaptation
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Multiple reflections and models
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Figure 8: Multiple reflections: data trace and models, 2D version
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Multiple reflections and models

e A long history of multiple filtering methods
e general idea: combine adaptive filtering and transforms
e data transforms: Fourier, Radon
e enhance the differences between primaries, multiples and noise
o reinforce the adaptive filtering capacity

e intrication with adaptive filtering?
® might be complicated (think about inverse transform)
e Main idea here:
e exploit the non-stationary in the data
e naturally allow both large scale & local detail matching
e work in a complex domain: amplitude and phase representation
e emulate an analytic signal representation (Hilbert transform)

= Complex, continuous wavelets
e intermediate complexity in the transform

e hyper-simplicity in the (unary) adaptive filtering
14/37 \ifP,fa"::z;EZ
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Hilbert pairs
Reminders [Gabor-1946][Ville-1948]

~

H{f}(w) = —usign(w) f(w)

Figure 9: Hilbert pair 1
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Hilbert pairs
Reminders [Gabor-1946][Ville-1948]

~

H{f}(w) = —usign(w) f(w)

Figure 9: Hilbert pair 2
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Hilbert pairs
Reminders [Gabor-1946][Ville-1948]

~

H{f}(w) = —usign(w) f(w)

Figure 9: Hilbert pair 3
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Hilbert pairs
Reminders [Gabor-1946][Ville-1948]

~

H{f}(w) = —usign(w) f(w)

Figure 9: Hilbert pair 4
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Continuous wavelets
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Figure 10: Complex wavelets at two different scales - 1
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Continuous wavelets
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Figure 11: Complex wavelets at two different scales - 2
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Continuous wavelets

e Transformation group:
affine = translation (7) + dilation (a)

e Basis functions:

rat) = 720 (57

a > 1: dilation

a < 1: contraction

1/y/a: energy normalization

multiresolution (vs monoresolution in STFT)

Uralt) 5 VaW(af)e 2
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Continuous wavelets

e Definition
Culria) = [ ()07 (00

e Vector interpretation

Cs (Tv a’) = <8(t)a ¢T,a(t)>

projection onto time-scale atoms (vs time-frequency)
e Redundant transform: 7 — 7 x a “samples”

e Parseval-like formula

Cs(r,a) = (X(f), ¥ra(f))
= time-scale domain operations! (cf. Fourier)
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Continuous wavelets
Introductory example
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Figure 12: Noisy chirp mixture in time-scale & sampling
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Continuous wavelets
Noise spread & feature simplification
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Figure 13: Noisy chirp mixture in time-scale: scale, zoomed wiggle
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Continuous wavelets

Amplitude

Figure 14: Which morphing is easier: time or time-scale?
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Continuous wavelets

e Inversion with another wavelet ¢

_ / / C’s(u,a)d)u,a(t)%

= time-scale domain processing! (back to the signal)
e Scalogram

’CS(ta a)‘?

dtd
= [[1c.arts
e Parseval-like formula

dtda
51752 //051 t CL ( ) CL2
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Continuous wavelets

Wavelet existence: admissibility criterion

0<Ah:/+°°‘1“(V)‘I’(V)d,,:/° LYW 4 ¢ oo
0

v oo v

generally normalized to 1

Easy to satisfy (common freq. support midway 0 & oo)
With ¢ = ¢, induces band-pass property:
e necessary condition: |®(0)| = 0, or zero-average shape
e amplitude spectrum neglectable w.r.t. |v| at infinity

Example: Morlet-Gabor (non. adm.)

1 _ 2
w 1) = e 252 67127rf0t
®) V2mo?
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Discretization, redundancy and unary filters

Being practical again: deal with discrete signals

e Can one sample in time-scale (CWT):

Culra) = [ sttt wra) = v (57

with ¢j;, = Cs(kboa), al), (j,k) € Z and still be able to
recover s(t)?

e Result 1 (Daubechies, 1984): there exists a wavelet frame if
apby < C, (depending on v). A frame is generally redundant

e Result 2 (Meyer, 1985): there exist an orthonormal basis for a
specific ¢ (non trivial, Meyer wavelet) and ag =2 by = 1

Now: how to choose the practical level of redundancy?
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Discretization
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Figure 15: Wavelet frame sampling: J =21, by =1, a9 = 1.1
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Discretization
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Figure 15: Wavelet frame sampling: J =5, by =2, ag = V2

26/37 (ifPgmie



Context Multiple filtering Continuous wavelets Discretization, redundancy, unary filters Results & conclusion

000000 00000000 000000000 00000 0000000

26/37
[

Discretization
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Figure 15: Wavelet frame sampling: J =3, bg =1, ag = 2
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Discretization, redundancy and unary filters
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Figure 16: Redundancy selection with variable noise experiments

27/37 (\ian%’Z;ﬁ:



Context Multiple filtering Continuous wavelets Discretization, redundancy, unary filters Results & conclusion
000000 00000000 000000000 [e]o]e] Jele] 0000000

28/37

Discretization, redundancy and unary filters

o Complex Morlet wavelet:
P(t) = 77_1/4e_i“’°te_t2/2, wo: central frequency

e Discretized time r, octave j, voice v:

sl = T

e Time-scale analysis:

d = d; = (dn], o n]) = 3 dinfoy, ]

n

1 T —1r27b
<n ! 0> , bp: sampling at scale zero
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Discretization, redundancy and unary filters

Scale

Figure 17: Morlet wavelet scalograms, data and models

Take advantage from the closest similarity/dissimilarity:

e remember the wiggle: on sliding windows, at each scale, a

single complex coefficient compensates amplitude and phase
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Discretization, redundancy and unary filters

e Windowed adaptation: complex a,,; compensates local
delay/amplitude mismatches:

aypy = argmin ||d — aEpXg
{ar}(keK) Z

e Vector Wiener equations for complex signals:

d Xm 5 ag xkaxm

e Time-scale synthesis:

dn] = ZZd”me[n
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Results
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Figure 18: Wavelet scalograms, data and models, after unary adaptation
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Results (reminders)
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Figure 19: Wavelet scalograms, data and models
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Figure 20: Original data
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Figure 21: Filtered data, “best” model
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Figure 22: Filtered data, three models
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Conclusions

Take-away messages:

e Technical side
Take good care of cascaded processing
Non-stationary, wavelet-based, adaptive multiple filtering
“Complex” wavelet transform + simple one-tap (unary) filter
Redundancy selection: noise robustness and processing speed
Smooth adaptation to adaptive joint multiple model filtering

e Practical side

e Industrial integration
o Competitive with more standard processing
e Alternative results: less sensitive to random noises

e Future work: better integrate incoherent noise
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