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ABSTRACT

Algorithms based on wavelet-domain hidden Markov tree (HMT
have demonstrated excellent performance forimage degoishe
HMT model is able to capture image features across the sé¢ales
contrast to classical shrinkage that thresholds subbartépén-
dently.

In this work, we extend the aforementioned results to a ldppe
transform domain. Lapped Transforms (LT) ddechannel linear
phase filter banks. Their use is motivated by their good gnerg
compaction properties and robustness to oversmoothitigjalso
observed that LT preserve better oscillatory image compuisne
such as textures.

Since LT are applied as block transforms, the transformé coe
ficients are rearranged into an octave-like decomposiéind their
statistics are modeled by the same HMT structure as in theleav
case. At moderate noise levels, the proposed algorithmléstab
improve the results obtained with wavelets, subjectiveig ab-
jectively.

1. INTRODUCTION AND MOTIVATIONS

The discrete wavelet transform (DWT) provides sparse sspre

tations for images. As a consequence, numerous DWT-based al

gorithms have been proposed in the past years for efficigat si
nal and image statistical analysis. For instance, wawsatain
thresholding provides asymptotically optimal performaiit the
case of Gaussian additive noise [1]. The key to noise filterin
is to transform the signal and the noise to a domain where thei
statistics are modeled more efficiently, via appropriateagonal
transforms. Moreover, wavelet decompositions exhibit eoris-
tic properties often termed "clustering” and "persisténéeature-
related wavelet coefficients (edges or singularities) tendlus-
ter locally in a subband and to persist across scales, thrthey
wavelet tree. Recently, algorithms adopted tree-adaptebasd-
dependent shrinkage [2, 3]. Also, sophisticated modelsejdint
statistics may be useful for capturing key-features in-veaild
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that well-designed LT are able to improve on DWT for natuna i
age compression, in the Embedded Zerotree [9] framework.
the context of denoising, the LT coefficients are rearrangexdan
octave-like representation. The resulting "scales” beardame
clustering and persistence properties as in the waveleesep-
tation. Moreover, LT design may enforce both orthogonadityl
linear-phase (in contrast to non-Haar 1D wavelets), as aget-
tractive additional degrees of freedom in design. In thiofahg,
we first briefly review some properties of the Lapped Tramsfor
We then describe the dyadic re-mapping of the transformeé co
ficients, and basic principles behind Hidden Markov Tree et&d
The proposed algorithm is then applied to natural image ideno
ing. We conclude by comments on foreseen improvements of the
present work.
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Fig. 1. Block diagram of the polyphase matrices of a processing
system based on&/-band critically sampled filter bank.

2. LAPPED TRANSFORMS

The Lapped Orthogonal Transform (LOT, [10]) as been devel-
oped to overcome the annoying blocking effects of non operla

images. A recent approach relies on Markov random fields. We ping block transforms such as the DCT. More generally, Ldppe

refer to [4, 5] for an rich overview of their use in signal antbige
processing. Based on the Hidden Markov Tree framework eevel
oped in [5], H. Chokt al. have proposed efficient image denoising
[6] as well as robust SAR segmentation [7].

The proposed work extends the use of hidden Markov mod-

els to a lapped transform (LT) domain. LT are usually viewsd a
block-transforms. Though, T. Traat al. [8] have demonstrated

transforms are defined as linear phase paraunitary filtée#&B).

A block diagram of the analysis and synthesis FB pair is ginen
Figure 1. The analysis and the synthe&disband FB polyphase
matrices E(z) andR(z) respectively) provide perfect reconstruc-
tion with zero delay if and only if:

R(2)E(2) = Iu,



wherel,, is the identity matrix [11, p. 304 sq.]. LT may be pa-
rameterized through efficient lattice structures for absten op-
timization. We refer to [10, 11, 8] for a comprehensive ow@mw
on Lapped Transforms.
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Fig. 2. Dyadic rearrangement of 1D LT coefficients: (Top) block-
transform with uniform frequency partition, (Bottom) oetalike
representation.

Fig. 3. Dyadic equivalence between 2D wavelet and LT coeffi-
cients: (Left) two-level octave-like representation, dR) four-
channel block-transform with uniform frequency partition

LT project signals ontd/ equally spaced frequency bands, in
contrast to the octave-band wavelet representation. Wiides a
power of 2 (typically 8 or 16), the transformed coefficieneab
an octave-like grouping, with = log, M decomposition levels.
For one group of\/ transformed coefficients, the DC component
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Fig. 4. (a) Original Barbara image, (b) Wavelet-db8 decomposi-
tion, (c) four-channel DCT block decomposition, (d) dyadée
mapping from image (c).

wheren is a zero-mean Gaussian noise with known variasice
Since we have chosen orthogonal transform&eeps the same
properties in the transformed domain. The joint probabiien-
sity function of the family of images that belongs to is often
unattainable. Based on wavelet approximate decorrel|asiom

is assigned to the lower scale subband. Then, from low to high pler models have been proposed for coefficient modeling. The

frequencies, théth subband is formed respectively from the next
group of2* /2 coefficients. TheJ + 1 groups are then associated
with respect to the block position in the signal. Figure 2reep
sents the dyadic rearrangement from two consecutive hldoks
blocks of8 = 22 coefficients (dots on top) intd = 4 groups yield

a three-level decomposition (dots on bottom of Fig. 2).

simplest independent Gaussian models generally obtairoiap
ments from residual inter-coefficients dependencies.

The Hidden Markov Tree (HMT) model is often described as
a quad-tree structured probabilistic graph that captinestatisti-
cal properties of the wavelet transforms of images. The malkg
pdf is modeled as a Gaussian mixture with two components. The

The re-mapping from a four channel block transform to a two hidden states refer to the large or small nature of the comitic

level dyadic transform is depicted in Fig. 3. The right-haime
image is made of x 8 subblocks. Each subblock gathdrs 4
coefficients (see the top left subblock), where the blaclaszgi
represent the DC component. In a fashion similar to the 1B,cas
all the 64 DC coefficients are grouped int8 &8 group (top left of
the left-hand side image) representing the low-pass copmaf
the dyadic representation. Arrows between coefficientsriip-
rocal locations of coefficients in the dyadic and the bloakuging
scheme. Once wavelet and LT coefficients share similar gngup
the same denoising procedure may be applied to both domains.

3. TRANSFORM-BASED DENOISING BASED ON
HIDDEN MARKOV TREE MODEL

Under the additive noise assumption, an image and its ndisy o
servation is usually modeled as

y(i,j) = (i, §) + n(i, 5),

Fig. 5. Diagram of a Hidden Markov Tree in a quad-tree. White
dots represent hidden states with arrows as dependentiek, b
dots the wavelet coefficients.



Fig. 6. A segment of the Barbara image, original detail.

Since the coefficient nature tends to propagate acrossssae

[9, 6]), the Hidden Markov Tree materializes the crossediak

between the hidden states. A template HMT is depicted in%-ig.
The parameters of the HMT model are trained for a set of im-

ages using an Expectation Maximization algorithm. We ré&der

[5, 6] for details on the implementation of Hidden Markov @se

[ o[ Noisy (PSNR)] db8-HMT | LOT-HMT |
76 30.46 32.82 33.38
12.7 25.98 29.74 30.15
17.8 23.09 27.82 28.21
20.4 21.89 27.01 27.19
22.9 20.92 26.37 26.43
24.2 20.43 26.09 26.16
25.5 19.97 25.93 25.87
33.1 17.73 24.49 24.23

Table 1. HMT denoising results with the Barbara image at several
noise levels{ is the noise standard deviation, PSNR in dB).

4. APPLICATION TO IMAGE DENOISING

The experiments of this work have been performed on the Barba
image. It is relatively rich in textures that are often oveosthed
with classical wavelet shrinkage method.

Octave and block-domain representations of the Barbara im-
age are given in Fig. 4. Figure 4b results from a two-levelelestv
decomposition of Fig. 4a with the 8-tap orthogonal Daubeshi
wavelet (db8). Though the high-pass coefficients are lowég-m
nitude (dark tones), edges and texture related coefficidnster
and propagate across scales, as observed for efficient esmpr
sion in [9]. Fig. 4c represents the block transformed imagie u
ing a four-channel 8-tap coding gain optimized Lapped Qutmal
Transform. The brighter pixels are mainly DC componentsaghe
4 x 4 subblock. The coefficients are rearranged to an octave-like
domain in Fig. 4d, according to the procedure described o Se
tion 2. For more clarity, the constrast have been enhancetisby
playing the square root of the coefficient magnitudes. Iiltesn
increased brightness for low magnitude cofficients. As etqk
similar clustering and persistence of coefficients are mieskafter
octave remapping.

In the following, we compare results obtained from the db8
wavelet and a coding gain optimized 8-channel 16-tap Lagpred

Fig. 7. Barbaraimage (a) Noisy image at 26 dB, (b) Wavelet result,
(c) LOT result.

thogonal Transform. For fair comparison between the twostra
forms, the DWT has three levels of decomposition, which gjive
equivalent depth to th& = 23 channels of the Lapped Transform.

Table 1 compares objective results for HMT denoising. Both
transforms yield good denoising performance for the Barlrar
age, with up to 6 dB improvement on the noisy image at 17-20 dB
noise levels. LT-HMT denoising outperforms the waveletrfoise
levels above 20 dB. For higher noise levels, the LOT perfoicea
decreases in PSNR.

Figures 7 and 8 display a detail from Barbara (Fig. 8) at
25.98 dB and 19.97 dB PSNR noise level respectively. Figure 7
demonstrates that even with a weak PSNR improvement (0.4 dB)
edges and textures are better preserved with the LOT tharthet
wavelet. It can be seen from the diagonal stripes of the soarf
the bottom center of the picture. Vertical details on thekgaaund
wicker chair are also slightly oversmoothed with the watbns-
form.



(c) LOT-HMT (26.16 dB)

Fig. 8. A segment of the Barbara image at 20.43 dB (a) Noisy
image, (b) Wavelet result, (c) LOT result.

In Figure 8, the PSNR is slightly higher after wavelet-based
HMT denoising. Textures are nevertheless better presesitd
LT-based denoising, as wavelet oversmoothing clearly appe

5. CONCLUSIONS

We propose a Hidden Markov Tree based denoising algorithm in
the Lapped Transform domain. Itrelies on a octave-like egping
of the LT coefficients. In this scheme, a 8-channel 16-tap i©OT
able to outperform wavelets in PSNR for moderate noise level
At higher noise levels, it preserves textures and edgesrbéthe
proposed method inherits from some of the LOT attractivgero
ties (orthogonality, linear phase and robustness to ovartring)
combined with the effectiness of the Hiddden Markov Tree mod
eling of the image features across scales.

Future developments will involve an increase of the decempo
sition level by applying a wavelet transform to the loweravet

band of both the wavelet and the LT decomposition, as wehas t
design of LT to increase the sparse nature of the decompositi
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